4.2 The Poisson Distribution
4.5 The Exponential Distribution
4.6 Some Other Continuous Distributions
4.2 The Poisson Distribution
The Binomial Distribution is for Large n
Consider a binomial random variable $(X \sim \text{Bin}(n, p))$ where n is large and p is small. For example,
• (p. 132 #3) Suppose $p = .2\%$ of diodes in a certain application fail within the first month of use. Let $X = \#$ diodes in a random sample of $n = 1000$ that fail within a month.
• $Y = \#$ cars crossing a bridge in a five-minute period in a town of $n = 100000$ cars, each of which has probability $p = \frac{1}{10000}$ of crossing in the period
• $Z=\#$ chocolate chips in a made from a randomly-selected T of 100 T of dough containing $n=300$ chips; each chip has probability $p=$ of being selected
e.g. Since $X \sim \text{Bin}(1000, .002), P(X = 4) =$
The Poisson Distribution Approximates $Bin(n, p)$ for Large n and Small p
A random variable X has the Poisson distribution with parameter $\lambda > 0$, if
$p(x) = P(X = x) = \begin{cases} (e^{-\lambda}) \frac{\lambda^x}{x!}, & \text{if } x \text{ is a nonnegative integer} \\ 0, & \text{otherwise} \end{cases}$
If n is large and p is small, and we let $\lambda = \underline{\hspace{1cm}}$, then it can be shown that $\binom{n}{x}p^x(1-p)^{(n-x)} \approx (e^{-\lambda})\frac{\lambda^x}{x!}$. That is, $P(X_{\text{Bin}(n,p)} = x) \approx P(X_{\text{Poisson}(\lambda = np)} = x)$.
e.g. For the diodes, $\lambda =$, so $P(X=4) \approx$
The Poisson Distribution in Nature

More importantly, for processes (like those above) in which events occur with a fixed _____

Experts tell us that $\mu_X = \underline{\hspace{1cm}}$ and $\sigma_X^2 = \underline{\hspace{1cm}}$.

 λ and _____ of the time since the last event, the Poisson distribution models the that occur in a fixed time interval (or area or volume).

Examples

e.g. (p. 132 #5) The number of hits on a website is $Poisson(\lambda = 4 / minute)$.

- a. What's the probability that 5 hits occur in a minute?
- b. What's the probability that 9 hits occur in 1.5 minutes?
- c. What's the probability that fewer than 3 hits occur in 30 seconds?

4.5 The Exponential Distribution

For events occurring independently at constant average rate $\lambda > 0$, the exponential distribution with parameter λ models the ______ before an event occurs. e.g. the time until

- a light bulb fails
- a car crosses a bridge
- a Geiger counter clicks due to radioactive decay of an atom

The density function of $X \sim \text{Exp}(\lambda)$ is

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, \text{ for } x > 0 \text{ (draw)} \\ 0, \text{ for } x \le 0 \end{cases}$$

Integrate the density f(x) to find the cumulative distribution function F(x). For x > 0, we need $F(x) = \int_{-\infty}^{x} f(t) dt =$

X's cumulative distribution function is therefore $F(x) = P(X \le x) = \begin{cases} \frac{1}{0, \text{ for } x \le 0}, \text{ for } x > 0 \end{cases}$ The mean and variance of X are (by integration by parts, omitted) $\mu_X = \underline{\qquad}$ and $\sigma_X^2 = \underline{\qquad}$. e.g. (p. 151 #4) The distance D between flaws on a long cable is exponentially distributed with mean 12 m.

a. Find the probability that the distance between two flaws is greater than 15 m.

- b. Find the probability that the distance between two flaws is between 8 and 20 m?
- c. Find the median distance.
- d. Find the standard deviation of the distances. $\sigma_D =$
- e. Find the 65^{th} percentile, p, of the distances.

Lack of Memory Property

A cool feature of $\operatorname{Exp}(\lambda)$ is it's "lack of memory." For $T \sim \operatorname{Exp}(\lambda)$, suppose we've _____ seconds. Then the probability of waiting _____ seconds is

$$P(T > t + s | T > s) = \frac{P[(T > t + s) \cap (T > s)]}{P(T > s)}$$

$$= \frac{P(T > t + s)}{P(T > s)}$$

$$= \frac{1 - P(T \le t + s)}{1 - P(T \le s)}$$

$$= \frac{1 - (1 - e^{-\lambda(t + s)})}{1 - (1 - e^{-\lambda s})}$$

$$= \frac{e^{-\lambda(t + s)}}{e^{-\lambda s}}$$

$$= e^{-\lambda t}$$

$$= 1 - P(T \le t)$$

$$= P(T > t)$$

So for exponential waiting times, it	_ that we've already waited a
seconds; the probability of waiting another t seconds is the same	as waiting t seconds from the
beginning. e.g. These behaviors are approximately "memoryless:" the	ne next click on Geiger counter
the next car across a bridge, and the next	in the middle of the road

The Poisson Process

A Poisson process with rate parameter λ has

- _____ numbers of events in disjoint time intervals
- _____ average rate λ
- $X \sim \text{Poisson}(\lambda t)$, where X is the ______ that occur in an interval of length t

The random waiting time, T, from _____ starting point until the next event in a Poisson process with rate parameter λ has distribution $T \sim \text{Exp}(\lambda)$.

4.6 Some Other Continuous Distributions

The Uniform Distribution

The probability density of the continuous uniform distribution with parameters a and b is

$$f(x) = \begin{cases} \frac{1}{b-a}, \text{ for } a < x < b \text{ (draw)} \\ 0, \text{ otherwise} \end{cases}$$

If $X \sim U(a, b)$, then

• $\mu_X =$

•
$$\sigma_X^2 = \int_a^b (x - \frac{a+b}{2})^2 \frac{1}{b-a} dx = \dots = \frac{(b-a)^2}{12}$$

e.g. Computer programming languages often offer functions to generate random numbers from an interval [a, b] according to U(a, b).

(We'll omit §4.6's Gamma and Weibull distributions.)