Syllabus's week 07 has exam 1 rules, ______, tables, last semester's exam and _____.

- 4.3 The Normal Distribution ($_$ §4.3)
- 4.4 The Lognormal Distribution

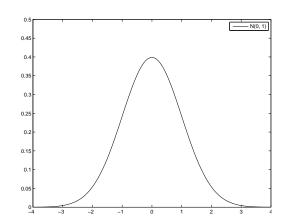
4.3 The Normal Distribution

The normal distribution is the most important distribution in statistics. It's (exactly or \approx) the distribution of

- the mean, \bar{X} , of a large sample from (almost) _____ distribution with finite μ and σ (§4.8); this is important for _____ procedures we'll learn soon
- many effects that are the sum of many small additive and independent effects
- $\bullet\,$ repeated measurements of the same quantity, where each is understood as a _ plus a
- velocities of molecules in an ______, long-duration _____ amounts like monthly totals, and many other natural quantities
- _____, where np > 10 and n(1-p) > 10; and _____, where $\lambda > 10$ (§4.8)

A normal distribution has a symmetric, bell-shaped curve. It's specified by two parameters, _____ (the mean) and _____ (the variance) and denoted ______. Its probability density function is

 $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ (which you may)



f isn't _____ by basic methods, so use a table for F(x) (or software).

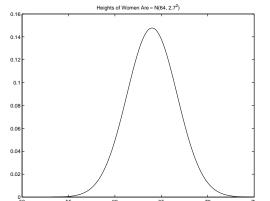
Find μ and σ by eye:

- μ is the location of the
- σ is distance from the center to the point at which the _____ from getting steeper to getting flatter (run a pencil along the curve)

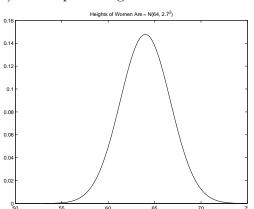
The 68 - 95 - 99.7 Rule

For a normal distribution $N(\mu, \sigma^2)$, 95% of observations fall within _____ of the mean, μ _____

e.g. Returning to women's heights, which are $\approx N(64^{\circ}, 2.7^{\circ 2})$,



(b) What percentage are taller than 61.3"?



The Standard Normal Distribution

Standardize the scale on a $N(\mu, \sigma^2)$ distribution by measuring in ______ units about the ______. Subtracting μ centers distribution at ______, and dividing by σ makes the standard deviation ______. In particular, if x is an observation from $N(\mu, \sigma^2)$, then the standard value of x is z = ----; it's also called the ______. The standard normal

distribution is N(0,1). If $X \sim N(\mu, \sigma^2)$, then $Z = \frac{X - \mu}{\sigma} \sim N(0,1)$.

e.g. Eleanor scored 680 on the SAT math test, which had $N(518, 114^2)$ scores. Gerald scored 27 on the ACT math test, which had $N(20.7, 5.0^2)$ scores. Find the standardized score for both. Assuming the tests measure the same ability (and are taken by the same population), who performed better?

Using Table A.2 to Find Normal Probabilities

e.g. Eleanor scored higher than what proportion of students on SAT math? We need P(Z < 1.42 = 1.4 + .02) from Table A.2 on pp. 521-522, "Cumulative normal distribution". Look in row and column ______ to see that P(Z < 1.42) = ______.

e.g. Use table to find $P(Z \le 0) = \underline{\hspace{1cm}}$ and $P(-1 \le Z \le 1)$ (draw) = $\underline{\hspace{1cm}}$.

rinding a value Given a Proportio	lue Given a Proportior	(Value	\mathbf{a}	inding	\mathbf{F}
-----------------------------------	------------------------	---	-------	--------------	--------	--------------

knowledge of the process that produced the data.

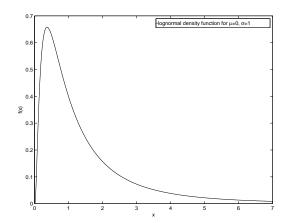
In §4.7 we'll use a ______ to check normality.

rinding a value diven a rioportion
e.g. IQ scores are $N(100, 15^2)$.
(a) What scores fall in lowest 25%?
(b) How high a score is needed to be in top 5%?
e.g. ACT scores are $N(20.9, 4.8^2)$. SAT scores are $N(1026, 209^2)$. José scored 1287 on the SAT.
Assuming that both tests measure the same thing, what is the ACT equivalent of José's SAT score?
Linear Functions of Normal Random Variables
If $X \sim N(\mu, \sigma^2)$, and $a \neq 0$ and b are constants, then $aX + b \sim N(\underline{\hspace{1cm}},\underline{\hspace{1cm}})$.
Linear Combinations of Independent Normal Random Variables
More generally, experts say
If X_1, \dots, X_n are independent normally distributed random variables with means μ_1, \dots, μ_n and variances $\sigma_1^2, \dots, \sigma_n^2$, then the linear combination
$c_1 X_1 + \dots + c_n X_n \sim N(c_1 \mu_1 + \dots + c_n \mu_n, c_1^2 \sigma_1^2 + \dots + c_n^2 \sigma_n^2)$
(That the sum of normals is isn't obvious.)
In particular, for a random sample X_1, \dots, X_n from $N(\mu, \sigma^2)$, the sample mean $\bar{X} = \frac{1}{n} \sum X_i \sim N(\underline{\hspace{1cm}}, \underline{\hspace{1cm}})$. (We found the mean and variance in §3.4; " $\underline{\hspace{1cm}}$ " is new.)
How Can I Tell Whether My Data Come from a Normal Population?
The histogram of a large sample from a normal population will look \approx normal: in the middle and decreasing \approx from the middle.
Samples from a normal population rarely contain
For a sample without an outlier, deciding whether the population is normal requires

4.4 The Lognormal Distribution

The normal distribution, which is symmetric with tails that fall off rapidly, isn't appropriate for data that are ______ or contain _____. The lognormal distribution, which is skewed and has a thicker right tail, might be appropriate.

- If Y has the lognormal distribution with parameters μ and σ^2 , then $X = \underline{\hspace{1cm}} \sim N(\mu, \sigma^2)$.
- If $X \sim N(\mu, \sigma^2)$, then $Y = \underline{\hspace{1cm}}$ has the lognormal distribution with parameters μ and σ^2 (these $\underline{\hspace{1cm}}$ Y's mean and variance).
- Y's mean and variance are $\mu_Y = e^{\mu + \frac{\sigma^2}{2}}$ and $\sigma_Y^2 = e^{2\mu + 2\sigma^2} e^{2\mu + \sigma^2}$.



e.g. (p. 146 #3) The body mass index (BMI) of a person is the person's mass divided by the square of the person's height. BMI is \approx lognormal with $\mu = 3.215$ and $\sigma = .157$ (for men aged 25-34).

- a. Find the mean BMI. $\mu_{BMI} =$
- b. Find the standard deviation of the BMI. $\sigma_{BMI} =$
- c. Find the median BMI. $M_{BMI} =$
- d. What proportion have a BMI less than 22?
- e. Find the 75^{th} percentile of BMI.

How Can I Tell Whether My Data Come from a Lognormal Population?

Transform the data by taking the _____ of each value. Check the transformed data for normality by checking its histogram or by using a probability plot (§4.7).