- 5.3 Confidence Intervals for Proportions
- 5.4 Small-Sample Confidence Intervals for a Population Mean

5.3 Confidence Intervals for Proportions

The Old Method

Let

- $p = \frac{\text{\#successes in population}}{\text{population size}} = \text{population proportion of successes (a fixed, unknown}$ e.g. (from §5.1 lecture) p = U.S. unemployment rate
- X = #successes in n independent Bernoulli trials with P(success) = p: $X \sim _$ e.g. X = #unemployed in a random sample of size n ("success" = "unemployed")
- $\hat{p} = \frac{\text{#successes in sample}}{\text{sample size}} = \text{sample proportion of successes (a random}$ So $\hat{p} = \frac{\text{#successes in sample proportion of successes}}{\text{(a random }}$

If np > 10 and n(1-p) > 10, then $X \sim N(np, np(1-p))$ (\approx , from §4.8 CLT), so $\hat{p} \sim N(\mu_{\hat{p}} = \underline{\hspace{1cm}}, \sigma_{\hat{p}}^2 = \underline{\hspace{1cm}}) = N(\underline{\hspace{1cm}}, \underline{\hspace{1cm}})$

We could use the $\S 5.2$ reasoning to derive a confidence interval for p. Instead, for a different approach, here I'll declare the interval and show that it has the advertised coverage.

Claim: the interval $\hat{p} \pm z_{\alpha/2}\sigma_{\hat{p}}$ contains p for a proportion $1-\alpha$ of random samples.

Proof: $P(p \in \text{interval}) = P(\hat{p} - z_{\alpha/2}\sigma_{\hat{p}}$

But we don't know $\sigma_{\hat{p}}$ because we don't know _____. For large n, we can estimate it with _____ to say that an approximate $100\%(1-\alpha)$ confidence interval for p is $\hat{p}\pm z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$.

e.g. (p. 193 #3a) Leakage from underground fuel tanks pollutes water. In a random sample of 87 gas stations, 13 had at least one leaking tank. Find a 95% confidence interval for the proportion p of stations with at least one leaking tank.

In many cases, using $p \approx \hat{p}$ (in $\sigma_{\hat{p}}$) makes this interval to have its claimed confidence.
The New Plus-Four Method
Recent research (1998) describes an improvement: add observations, successes and failures, to the sample. That is, define $\tilde{n}=$ and $\tilde{p}=$ ("p-tilde") and use the "plus-four" interval $\tilde{p}\pm z_{\alpha/2}\sqrt{\frac{\tilde{p}(1-\tilde{p})}{\tilde{n}}}$
, , , , , , , , , , , , , , , , , , ,
(Since $p \in [0, 1]$, the interval if it extends outside $[0, 1]$.) e.g. (p. 193 #3a) Find the 95% plus-four confidence interval for p in the leaking tank example.
Choosing the Sample Size
Choosing the Sample Size
For a desired margin of error m , we can find the required sample size: $m = \Longrightarrow \tilde{n} = \Longrightarrow n =$
$m = \Longrightarrow \tilde{n} = \Longrightarrow n =$
(Note: the book forgot in its derivation on pp. 191-192.)
This relies on an estimate \tilde{p} from If none is available, use $\tilde{p} =$, which maximizes $\tilde{p}(1-\tilde{p})$, ensuring that n will be large enough to give the desired margin.
e.g. (p. 193 $\#3c$) How many stations must be checked for leaks to get an error margin of .04?
A Pattern to Notice
Many confidence intervals have the form (point estimate) \pm (margin of error) =(point estimate) \pm (table value for confidence) \times [(estimated or true) standard deviation of point estimate] = $\hat{\theta} \pm$ (table value for confidence) \times $\sigma_{\hat{\theta}}$

5.4 Small-Sample Confidence Intervals for a Population Mean

In §5.2 we used the CLT to say that, for a large random sample X_1, \dots, X_n from a population with mean μ and standard deviation $\sigma, \bar{X} \sim$ We used this normal distribution to make a confidence interval for μ around \bar{X} . But the CLT is no help for a small sample: in this course, we're
However, for the special case that the population is, so that $X_i \sim N(\mu, \sigma^2)$, we saw in §4.3 that $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ (), even for small n .
Standardizing gives $Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$, but we don't know For large n , we used, but this approximation for small n . A new distribution solves this problem.
The Student's t Distribution
Define the random variable $T = \frac{\bar{X} - \mu}{s/\sqrt{n}}$. T's distribution isn't normal; it's the Student's t distribution with $n-1$ degrees of freedom, denoted t_{n-1} . ("Student" is a pseudonym for William Gosset, a statistician at) Here are some of its properties:
• t_{n-1} looks like $N(0,1)$: symmetric about,peaked, andshaped
• T 's variance is than Z 's because estimating σ () by s () gives T more variation than Z : t_{n-1} is shorter with thicker tails (draw $N(0,1)$ and t_{6-1})
• As n increases, t_{n-1} gets closer to (s becomes a of σ); in the limit as $n \to \infty$, they're
Let $t_{n-1,\alpha}$ = the critical value t cutting off a area of α from t_{n-1} (draw). Table A.3 (p. 523) gives tail probabilities, using ν ("nu") for $n-1$.
e.g. Use Table A.3 to find the critical value t
• cutting off a right tail area of .05 from the t_{6-1} distribution: $t_{5,.05} =$
• such that the area under the t_{22-1} curve between $-t$ and t is 98%
• such that the area under the t_{25-1} curve left of t is .025

 $\bullet\,$ such that the area under the t_{25-1} curve left of t is .70

Confidence Intervals Using the Student's t Distribution

We can work from $T = \frac{\bar{X} - \mu}{s/\sqrt{n}} \sim t_{n-1}$ to a 100% $(1 - \alpha)$ confidence interval for μ .

Start with $P(-t_{n-1,\alpha/2} < T < t_{n-1,\alpha/2}) = 1 - \alpha$ (draw). It implies

 $P(-t_{n-1,\alpha/2} < \frac{\bar{X}-\mu}{s/\sqrt{n}} < t_{n-1,\alpha/2}) = 1-\alpha$, which we solve in two ways:

- for \bar{X} in the middle: $P(\mu t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} < \bar{X} < \mu + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}) = 1 \alpha$ (draw)
- for μ : $P(\bar{X} t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} < \mu < \bar{X} + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}) = 1 \alpha$ (add to drawing for a typical \bar{X})

That is, $\bar{X} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$ contains μ for a proportion $1-\alpha$ of random samples. It's the $100\%(1-\alpha)$ confidence interval for μ , for a small random sample from a ______ population with mean μ .

Example

e.g. We can study air bubbles in amber (fossilized tree resin) to learn what the atmosphere was like long ago. Amber bubbles from 85 million years ago (when _____ were around) have these percentagess of nitrogen (N):

 $63.4\ 65.0\ 64.4\ 63.3\ 54.8\ 64.5\ 60.8\ 49.1\ 51.0$

Assume this is a SRS from the atmosphere (some experts disagree). Find a 90% confidence interval for the mean percent of N in ancient air.

(Wiki says N is 78.1% today. Of which movie does this remind you? ______

Cautions

- The data must be (reasonably regarded as) a _____ from the population
- _____ are uncommon in data from normal distributions (§4.3), so don't use this interval with data containing an _____
- ullet Use t interval if data appear reasonably normal (roughly symmetric, single _____, no _____)