6.4 Small-Sample Tests for a Population Mean

Recall from §5.4 t	that, for a p	population w	with mean μ	μ and standar	d deviation σ ,
--------------------	---------------	--------------	-----------------	-------------------	------------------------

	OT IT	c	1	<u></u>	/	\	. /	c	1 .		1	
•	CLT	says for	large n ,	$X \sim N$	(,		\sim	, tor	almost	any	popula	tion

- For small n in general, we're out of luck
- If population is _____, then $\bar{X} \sim N(\underline{\hspace{1cm}},\underline{\hspace{1cm}})$ (exactly), even for small n
- Standardizing gives $Z = \frac{\bar{X} \mu}{\sigma/\sqrt{n}}$, but we don't know σ and can't use _____ for small n
- - looks like
 - is shorter with thicker tails (random causes more variability than fixed)
 - approaches N(0,1) as _____
 - was discovered by William Gosset at _____

We can use $T = \frac{\bar{X} - \mu}{s/\sqrt{n}} \sim t_{n-1}$ to do hypothesis tests for μ from a small sample for which the assumption of a normal population is ______.

Example: Amber Bubbles

e.g. In $\S 5.4$, we considered the N concentration (%) in nine air bubbles trapped in ancient amber: $63.4\ 65.0\ 64.4\ 63.3\ 54.8\ 64.5\ 60.8\ 49.1\ 51.0$

They had mean 59.59 and standard deviation 6.26. Do these data give good reason to think the % N in the air 85 million years ago was different from today's 78.1%?

Test H_0 : _____ vs. H_1 : _____

Check for departure from _____ (roughly symmetric, single peak, no outliers):

Here's our dotplot from §5.4:

45 50 55 60 65

test statistic: t =

P-value =

Conclusion:

Summary

Suppose X_1, \dots, X_n is a (small) random sample from a *normal* population with mean μ and standard deviation σ . To test that μ has a specified value, $H_0: \mu = \mu_0$,

- 1. State null and alternative hypotheses, H_0 and H_1
- 2. Check assumptions
- 3. Find the test statistic, $t = \frac{\bar{x} \mu_0}{s/\sqrt{n}}$
- 4. Find the P-value, which is an area under t_{n-1} depending on H_1 :

 $H_1: \mu > \mu_0 \implies P$ -value = P(T > t), the area right of t (where $T \sim t_{n-1}$)

 $H_1: \mu < \mu_0 \implies P$ -value = P(T < t), the area left of t

 $H_1: \mu \neq \mu_0 \implies P$ -value = P(|T| > |t|), the sum of areas left of -|t| and right of |t|

5. Draw a conclusion.

Beer Bubbles

e.g. Guinness on tap is pressurized by bottled gasses (______) which force beer through tiny holes in a plate in the tap. Guinness says it takes 119.5 seconds to pour a pint from a tap correctly. Here is a random sample of pouring times (in seconds) by Mike at The Glass Hat.

118 121 113 116 133 117 112 113

Is Mike pouring too quickly?

Test H_0 : _____ vs. H_1 : _____

Check assumptions:

$$\bar{x}=$$
 _____, $s=$ _____, $\nu=$ _____

t =

P-value =

Conclusion:

Remember

If you like Guinness, you like ______.

Soda Bottles

e.g. (p. 238 #7) Two-liter soda bottles are supposed to have average wall thickness 4.0 mils. A quality control engineer samples 7 bottles from a large batch and finds these thicknesses:

4.00 4.04 4.12 4.06 3.97 3.96 4.09

We want to test $H_0: \mu = 4.0$ vs. $H_1: \mu \neq 4.0$.

a. Make a dotplot of the data.

b. Should a t-test be used for H_0 ? If so, do the test. If not, explain why not.

 $\bar{x} =$

s =

t =

 $\nu =$

P-value =

Conclusion:

c. Measurements on a different bottle type are 4.07, 3.97, 4.03, 4.01, 4.20, 4.06, and 4.01. Make a dotplot of these values.

d. Should a t-test be used for H_0 ? If so, do the test. If not, explain why not.

A Pattern to Notice

Many hyp of the form	bothesis tests (including those from $\S 6.1,\ 6.3,$ m	5.4, 7.1, 7.2, 7.3, and 7.4) use test statistics
	(point estimate) – (parameter value)
	(estimated or true)	of point estimate
This	point estimate tells how far the ϵ	stimate is from the parameter, in