Notation (not a big deal): $X = \text{capital "chi" (also capital "ex")}, \chi = \text{lower "chi"}$

- A _____ gets a capital letter: $Z, X, X_i, \bar{X}, T, X^2$
- A _____ gets lower-case: $z = 1.96, z_{\alpha/2}, x, x_i, \bar{x}, t = -8.87, t_{n-1,\alpha/2}, \chi^2 = 12.6$
- Distributions follow the culture. e.g. $N(\mu, \sigma^2)$, t_{n-1} , χ^2_{ν}

6.5 The Chi-Square Test

The chi-square test is for H_0 : "The frequency distribution of ______ events observed in a sample is _____ with a particular distribution" against H_1 : "Not H_0 ". We consider three of its forms: the tests for goodness-of-fit, independence, and homogeneity.

Each uses a *chi-square* statistic of the form

$$X^2 = \sum \frac{[(\text{observed count}) - (\text{expected count})]^2}{\text{expected count}}$$

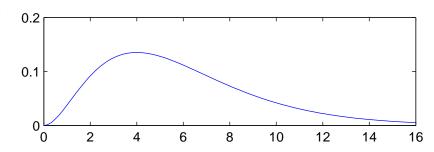
This is a measure of

If expected counts are all at least _____, and under a suitable H_0 , then X^2 fits a χ^2 distribution.

The Chi-Square Distributions

(Background: if Z_1, \dots, Z_{ν} are independent, N(0,1) random variables, then $X^2 = \sum_{i=1}^{\nu} Z_i^2 \sim \chi_{\nu}^2$.) A χ^2 distribution is specified by its degrees of freedom, ν . Here are some of its properties:

- $X^2 \ge 0$ (it's a measure of distance)
- $X^2 = 0 \implies$ observed and expected counts are _____
- Large $X^2 \implies$ observed counts aren't _____
- Each χ^2_{ν} density function is skewed _____
- e.g. Here's χ_6^2 :



• Table A.5 (p. 525) gives, in row ___ and column ___, the point $\chi^2_{\nu,\alpha}$ with area α to its right. e.g. $\chi^2_{6,.05} =$ ____ (draw)

The Chi-Square Test For Goodness-of-Fit

Recall the z-test for a population proportion (§6.3), H outcome takes one of values, success or failure. T alizes to the case of an outcome taking any of H_0 : "These categorical data came from the specified dis	The <i>chi-sq</i> valu	<i>uare test</i> es of a cat	for goodr tegorical	ness-of- variabl	fit gener- le, testing
e.g. The Nice family gives trick-or-treaters a scoop ofgives M&Ms. Margaret, Monica, Andre treating, and their father says, "Where did you get the lof the Nice and Naughty homes, but can't remember w the M&Ms." The children Their mother (asource." She investigates and finds these color distribut	ew, Mary M&Ms?" hich one.	, and Phi They kn Their fa	ilip retur low they ather say	rn from visited s, "Th	trick-or- only one row away
	Brown	Yellow	Green	Red	Total
Nice supply	20% 50%	25% 20%	40%	15% 20%	100%
Naughty supply Margaret, Monica, Andrew, Mary, & Philip (sample)	$\frac{3070}{12}$	$\frac{2070}{15}$	$\frac{10\%}{17}$	6	n =
From which family did the kids get their M&Ms?	l				
Expected Counts					
Let $k = \#$ category values $=$ If n is the sample category i under H_0 , the expected count of each type is $X^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$, whose value for the M&Ms is $\chi^2 =$	$E_i = \underline{\hspace{1cm}}$				
Under $H_0, X^2 \sim \chi^2_{\nu}$, where $\nu = k-1 =$ The P -v Conclusion:	alue is $P($	$\langle X_3^2 \rangle$) =		·
Next, test H_0 : "The kids got M&Ms from the Naughty $\chi^2 =$	family"	vs. H_1 : "	They dic	l not".	Here
The <i>P</i> -value is $P(X_3^2 >) =$		_·			
Conclusion:					

The Chi-Square Test for Independence

The chi-square test for independence tests H_0 : "Categorical variables A and B are independent" against H_1 : "There is ______ between A and B".

e.g. Here is a *contingency table* of ______ that relates the education level and smoking status of a SRS of 459 French men. Are education and smoking related?

	Smoking status				
Education	Nonsmoker	Former	Moderate	Heavy	Total
Primary	56	54	41	36	
Secondary	37	43	27	32	139
University	53	28	36	16	133
Total		125	104	84	

The marginal distribution of education level (circle) is found by summing over ______, and the marginal distribution of smoking status (box) is found by summing over ______.

Test H_0 : "Education and smoking _____" vs. H_1 : "There's _____ between education and smoking".

Expected Counts

Under H_0 , $P(\text{Primary} \cap \text{Nonsmoker}) = ______,$ so the expected count in the Primary / Nonsmoker cell is

More generally, let

- $O_{ij} =$ _____ count in row i and column j
- $O_{i.} = \underline{\hspace{1cm}} i \text{ total}, O_{.j} = \underline{\hspace{1cm}} j \text{ total}$
- \bullet $O_{\cdot \cdot} = \underline{\hspace{1cm}}$ total
- $I = \#_{__}$, $J = \#_{__}$

Then, under H_0 , the expected cell count in row i and column j is $E_{ij} = \frac{O_{i.}O_{.j}}{O_{..}} = \frac{\text{(row total)(column total)}}{\text{table total}}$. Here are the 12 expected counts:

	Smoking status				
Education	Nonsmoker	Former	Moderate	Heavy	Total
Primary		50.9	42.4	34.2	187
Secondary	44.2	37.9	31.5	25.4	139
University	42.3	36.2	30.1		133
Total	146	125	104	84	459

The chi-square statistic is $X^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$. For the smokers, its value χ^2 has 12 terms:

	Smoking status				
Education	Nonsmoker	Former	Moderate	Heavy	
Primary		.19	.04	.09	
Secondary	1.2	.7	.6	1.7	
University	2.7	1.9	1.1		

The table sum is $\chi^2=13.3$. The required degrees of freedom is $\nu=(\#\text{rows - 1})(\#\text{columns - 1})=$ _____, and the P-value is $P(X_6^2>13.3)=$ _____.

Conclusion:

The Chi-Square Test For Independence Doesn't Say What The Relationship Is

We rejected H_0 , concluding that there is a relationship between education and smoking. What is the relationship? The chi-square test _______.

We can get some insight by comparing conditional distributions of the dependent variable for the separate values of the independent variable. Here are these distributions (as percentages), along with the marginal distribution of smoking status for comparison. What relationship can we see?

	Smoking status			
Education	Nonsmoker	Former	Moderate	Heavy
Primary	29.9%	28.9%	21.9%	19.3%
Secondary	26.6%	30.9%	19.4%	23.0%
University	39.8%	21.1%	27.1%	12.0%
Overall	31.8%	27.2%	22.7%	18.3%

The Chi-Square Test For Homogeneity

The *chi-square test for homogeneity* checks whether different populations have a common distribution with respect to a categorical variable. It uses ______ expected counts, test statistic, and degrees of freedom as the test for independence.

e.g. (p. 246 #5) Here are data from a study linking exposure to beryllium to disease. Test H_0 : "the proportions in disease categories are the same across exposure levels" vs. H_1 : "they differ".

	Exposure (Years)			
	< 1	1 to < 5	≥ 5	
Diseased	10	8	23	
Sensitized	9	19	11	
Normal	70	136	206	

R gives $\chi^2 =$ ______ (see the R guide for §6.5). Since $\nu =$ ______, the P-value is $P(X_4^2 > 10.83) =$ ______, and we conclude . . .