7.4 Inferences Using Paired Data

In a matched pairs experime	ent, choose subjects	1	to minimize	
Then randomly assign the	treatment to		Since diff	ferences within pairs
treatment	have been minimized	d, differences	in pairs	treatment
should be due mostly to	·	. Ideal example	es include	
• Testing a drug on pair subjects due to age, s	s of		to get ri	d of variability across
subjects due to age, s	ex, genetics, etc. Tre	eatments are as	signed random	ly within each pair.
• Testing	subjects twice, _			, to reduce effect
of variability	The	order of tests i	s randomly cho	osen for each subject.
Notation:				
$\bullet \ \{(X_1,Y_1),\cdots,(X_n,Y_n)\}$	₁)}: raw	data		
• $\{D_i = X_i - Y_i\}$: a ran	ndom sample from a	population of		
• $\mu_D = \mu_X - \mu_Y$: unkn	own mean	; its point	t estimate is	
• σ_D : unknown standar	ed deviation of differe	ences; its point	estimate is	
		, -		
Apply one-sample procedur	res (for large	n, for	small n) to the	e differences, $\{D_i\}$.
Studying the differences wit	thin matched pairs is	the	O	f this section. Every-
thing that follows, below, is				, and the second
Matched-Pairs Confide	ence Intervals			
Suppose D_1, \dots, D_n is a ra	ndom sample from a	population of	differences wit	hin pairs. Recall:
A $(100\%)(1-\alpha)$ confidence	e interval for μ_D conta	ains μ_D for a p	proportion $1 - \epsilon$	α of random samples.
	,	, -	-	-
• (§5.2) For large n (n	> 30), the interval is			
	<i>,</i> ,			
• $(\S 5.4)$ For small n and	$d an \approx$	population of	of differences, t	he interval is

Matched-Pairs Hypothesis Tests

Suppose D_1, \dots, D_n is a random sample from a population of differences within pairs. Recall: To test $H_0: \mu_D = \mu_0$:

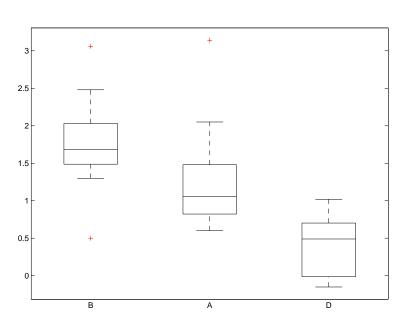
- 1. State null and alternative hypotheses, H_0 and H_1
- 2. Check assumptions: Are $\{D_i\}$ a random sample? For small n, are $\{D_i\} \approx \text{normal}$?
- 3. Find the test statistic depending on n:
 - (§6.1) For large n, use $Z = \frac{\bar{D} \mu_0}{s_D/\sqrt{n}}$, which is \sim _____ (\approx) under H_0 (§6.4) For small n, use $T = \frac{\bar{D} \mu_0}{s_D/\sqrt{n}}$, which is \sim _____ under H_0
- 4. Find the P-value as usual and draw a conclusion

Examples

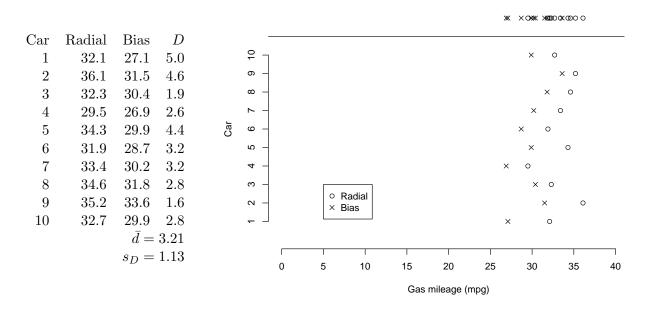
e.g. (Hollander & Wolfe, 1973; thanks to Guilherme Ludwig) Here are measurements from the Hamilton depression scale for 9 patients before (B) and after (A) taking a tranquilizer:

B	1.83	.50	1.62	2.48	1.68	1.88	1.55	3.06	1.30
A	.88	.65	.60	2.05	1.06	1.29	1.06	3.14	1.29

- Make boxplots of B and A. Give two reasons why the §7.3 smallsample test for the difference of two means is a poor choice.
- Plot the differences, D = B A. Is a matched pairs t test of H_0 : $\mu_D=0$ vs. $H_1:\mu_D>0$ reasonable? If so, do it.



e.g. (p. 302 # 17) A taxicab company is trying to decide if it should switch from bias tires to radial tires to improve fuel economy. Each of 10 taxis was equipped with one of the two tire types and driven on a test course. Without changing drivers, tires were then switched to the other type and the test course was repeated. The fuel economy (in mpg) for the 10 cars is as follows:



a. Because switching tires on the taxi fleet is expensive, management does not want to switch unless a hypothesis test provides strong evidence that the mileage will be improved. State the appropriate null and alternate hypotheses, and find the P-value.

b. It will be profitable to switch to radial tires if the mean mileage improvement is greater than 2 mpg. Should the switch be made?