7.5 The F Test for Equality of Variance

Let X_1, \dots, X_{n_X} and Y_1, \dots, Y_{n_Y} be independent random samples from *normal* populations with (unknown) means μ_X and μ_Y (which we ______) and (unknown) variances σ_X^2 and σ_Y^2 . (Nonnormal \Longrightarrow ______.)

Recall that the sample variances are

$$s_X^2 = \frac{1}{n_X - 1} \sum_{i=1}^{n_X} (X_i - \bar{X})^2$$
 and $s_Y^2 = \frac{1}{n_Y - 1} \sum_{i=1}^{n_Y} (Y_i - \bar{Y})^2$

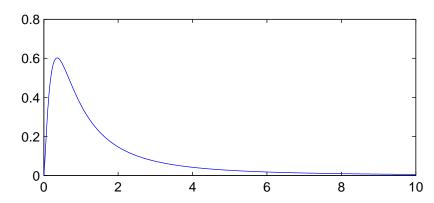
To test $H_0: \sigma_X^2 = \sigma_Y^2$, use a test statistic $F = \frac{s_X^2}{s_Y^2}$. Under H_0 , this statistic has the F distribution with _____ and ____ degrees of freedom.

The F Distributions

(More generally, if $X \sim \chi^2_{\nu_1}$ and $Y \sim \chi^2_{\nu_2}$ are independent, then $\frac{X/\nu_1}{Y/\nu_2} \sim F(\nu_1, \nu_2)$.)

An F distribution is specified by two values for degrees of freedom, ν_1 and ν_2 . Its properties include:

- ν_1 corresponds to F's ______: ν_1 and ν_2 are not interchangeable
- $F \ge 0$ (it's a ratio of _____ numbers)
- Each F_{ν_1,ν_2} density function is skewed right
- e.g. Here's $F_{5,3}$:



• Table A.6 (pp. 526-533) gives, in column ν_1 , row ν_2 , and subrow α , the point $F_{\nu_1,\nu_2,\alpha}$ with area _____ to its right.

e.g.
$$F_{5,3,.05} =$$
 (draw)

• If $\sigma_X^2 = \sigma_Y^2$, we expect $s_X^2 \approx s_Y^2$, so F should be near _____; large $F \implies$ _____ and small $F \implies$ _____ (this is the key to the test)

The F Test

Let X_1, \dots, X_{n_X} and Y_1, \dots, Y_{n_Y} be independent random samples from normal populations with variances σ_X^2 and σ_Y^2 . To test $H_0: \sigma_X^2 = \sigma_Y^2$,

- 1. State null and alternative hypotheses, H_0 and H_1
- 2. Check assumptions
- 4. Find the P-value, which is an area under the F_{n_X-1,n_Y-1} curve depending on H_1 :
 - $H_1: \sigma_X^2 > \sigma_Y^2 \implies P$ -value = $P(F_{n_X-1,n_Y-1} > f)$, the area _____
 - $H_1: \sigma_X^2 \neq \sigma_Y^2 \implies P$ -value = ______ the P-value from a one-sided test
 - (• $H_1: \sigma_X^2 < \sigma_Y^2$ is handled by the _____ in step 3)
- 5. Draw a conclusion

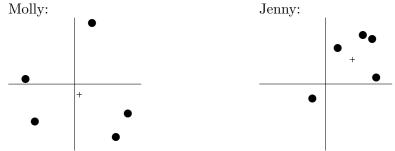
Caution

The F test is _____ for populations that aren't very close to _____.

Examples

- e.g. $F = \frac{s_X^2}{s_Y^2}$ is calculated from samples of sizes $n_X = 10$ and $n_Y = 8$.
 - a. What is the upper 5% critical value for this F?
 - b. In a test of equality of variances against the two-sided alternative, this statistic has the value f = 3.45. Is this value significant at the 10% level? At the 5% level?

 \bullet e.g. Molly and Jenny test themselves by hustling up Green Mountain and immediately firing their .50 BMG rifles at $(100'' \times 100'')$ targets a mile away on Bear Peak, with these results:



The targets suggest that Molly's shots are centered better (+) than Jenny's. (§5.1 might say Molly is more ______.) Jenny can adjust her scope ______.

To simplify things, project to the x-axis, reducing to 1 dimension:

The x-coordinates of the shots (in inches) are:

The targets suggest that Jenny's shots are closer together. (§5.1 might say Jenny is more ______.) Test $H_0: \sigma_M^2 = \sigma_J^2$ against $H_1: \sigma_M^2 > \sigma_J^2$.

• e.g. Grace runs a doll umbrella production line that includes an automated caliper to check lengths of titanium stretchers to the nearest .001 mm. She sends a single stretcher through the caliper 8 times. Then she increases the caliper's jaw speed (which would increase the line's capacity), and sends the same stretcher through 7 more times, with these results (mm):

 \bar{x} Before 21.529 21.530 21.529 21.529 21.52821.52921.52921.52821.529.0006After 21.531 21.52521.52821.53121.520 21.535 21.542 21.530 .0071

Test whether the increased speed changes the variability of the measurements.