8.3 Multiple Regression

Recall that, given data $(x_1, y_1), \dots, (x_n, y_n)$, we saw in §2.2-3 and §8.1-2 how to use linear regression to fit a line to describe how the dependent variable y changes as the independent variable x changes.

§8.3 extends this idea to the case of y depending on _____ independent variables x_1, \dots, x_p via the multiple regression model

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_p x_{pi} + \varepsilon_i$$

Notation:

- $(x_{1i}, \dots, x_{pi}, y_i)$: i^{th} data point, for i = 1 to n
- $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \dots + \hat{\beta}_p x_{pi}$: fitted regression equation, where $\hat{\beta}_i$ estimates the unknown β_i
- $e_i = y_i \hat{y}_i$: residual, the difference between observed y_i and predicted \hat{y}_i

Special cases of multiple regression include

• polynomial regression, in which the p independent variables are $___$ of a single variable x:

$$y_i = \beta_0 + \beta_1 \underline{\hspace{1cm}} + \beta_2 \underline{\hspace{1cm}} + \cdots + \beta_p \underline{\hspace{1cm}} + \varepsilon_i$$

• a quadratic model in variables x_1 and x_2 :

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{1i} x_{2i} + \beta_4 x_{1i}^2 + \beta_5 x_{2i}^2 + \varepsilon_i$$

(These are models are linear in the ______ β_0, \cdots, β_p , not in the _____.)

Estimating the Coefficients $\hat{\beta}_0, \cdots, \hat{\beta}_p$

As before, minimize the error sum of squares

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} [y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \dots + \hat{\beta}_p x_{pi})]^2$$

Do this by setting $\frac{\partial S}{\partial \hat{\beta}_i} = 0$ for i = 0 through p, to get a system of _____ linear equations in the ____ unknowns $\hat{\beta}_0, \dots, \hat{\beta}_p$. A page of matrix calculus gives an elegant solution,

$$\hat{\beta}_i =$$

For each estimated coefficient $\hat{\beta}_i$, the estimated standard deviation is $s_{\hat{\beta}_i} =$ ______. Use _____ to get these numbers.

The Secret Coefficients $\hat{\beta}_0, \dots, \hat{\beta}_p$ (______)

Use the matrix notation

$$\vec{y} = \begin{bmatrix} y_1 & \cdots & y_j & \cdots & y_n \end{bmatrix}_{1 \times n}, \quad \vec{\hat{\beta}} = \begin{bmatrix} \hat{\beta}_0 & \cdots & \hat{\beta}_p \end{bmatrix}_{1 \times (p+1)}, \quad \text{and} \quad X = \begin{bmatrix} 1 & \cdots & 1 & \cdots & 1 \\ x_{11} & \cdots & x_{1j} & \cdots & x_{1n} \\ \vdots & & \vdots & & \vdots \\ x_{p1} & \cdots & x_{pj} & \cdots & x_{pn} \end{bmatrix}_{(p+1) \times n}$$

for n data points (______ of \vec{y} and X) and p independent variables plus 1 constant term (_____ of X, where we understand $x_{0i} \equiv 1$).

The fitted system of equations, $\hat{y}_j = \hat{\beta}_0 x_{0j} + \dots + \hat{\beta}_p x_{pj} = \sum_{k=0}^p \hat{\beta}_k x_{kj}$ (for j = 1 to n), is $\vec{\hat{y}} = \vec{\hat{\beta}} X$

Minimize the sum of the squares of the residuals

$$SSE = \sum_{j=1}^{n} \left(y_j - \sum_{k=0}^{p} \hat{\beta}_k x_{kj} \right)^2$$

by differentiating with respect to $\hat{\beta}_i$ (for i = 0 to p):

$$\frac{\partial}{\partial \hat{\beta}_{i}}(SSE) = \sum_{j=1}^{n} 2\left(y_{j} - \sum_{k=0}^{p} \hat{\beta}_{k} x_{kj}\right)(-x_{ij}) = 0$$

$$\implies \sum_{j=1}^{n} y_{j} x_{ij} = \sum_{j=1}^{n} \sum_{k=0}^{p} \hat{\beta}_{k} x_{kj} x_{ij}$$

$$\implies \sum_{j=1}^{n} y_{j} X_{ji}^{T} = \sum_{k=0}^{p} \hat{\beta}_{k} \left(\sum_{j=1}^{n} x_{kj} [X^{T}]_{ji}\right)$$

$$\implies [\vec{y}X^{T}]_{i} = \sum_{k=0}^{p} \hat{\beta}_{k} (XX^{T})_{ki}$$

$$= [\hat{\beta}(XX^{T})]_{i}$$

This is true for all i, so we can write the matrix equation $\vec{y}X^T = \hat{\beta}(XX^T)$. To solve it, multiply both sides on the right by $(XX^T)^{-1}$: $|\hat{\beta} = (\vec{y}X^T)(XX^T)^{-1}|$

e.g. Find the regression line for the points (1, 1), (2, 3) (3, 2) (draw).

Sums of Squares

Analysis of multple regression relies on three sums of squares:

- Regression sum of squares, SSR = $\sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$: measures spread of predictions around
- Error sum of squares, SSE = $\sum (y_i \hat{y}_i)^2$: measures errors, spread of y_i 's around _____
- Total sum of squares, SST = $\sum (y_i \bar{y})^2$: measures spread of y_i 's around _____

It can be shown that SST = SSR + SSE (the analysis of variance identity).

As before, assume the errors $\varepsilon_1, \dots, \varepsilon_n$ are _____, all having mean _____ and the same variance _____, and are all _____ distributed: $\varepsilon_i \sim N(0, \sigma^2)$.

Then $y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_p x_{pi} + \varepsilon_i \sim N(\underline{\hspace{1cm}},\underline{\hspace{1cm}})$

 βj is the change in _____ caused by a change of _____ in x_j , with the other variables _____

The Statistics s^2 , R^2 , and F

• $s^2 = \frac{\text{SSE}}{n - (n + 1)}$, an estimate of σ^2

Divide by n-(p+1) instead of n because ______ degrees of freedom are lost in estimating $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ from data.

 s^2 enters into a complicated expression for $s^2_{\hat{\beta}_i}$, which we'll get from software. Then $\frac{\hat{\beta}_i - \beta_j}{s_{\hat{\beta}_i}} \sim t_{n-(p+1)}$, which we can use for inference:

- Interval: $\left[\hat{\beta}_{j} \pm t_{n-(p+1),\alpha/2} s_{\hat{\beta}_{j}}\right] (s_{\hat{\beta}_{j}} \text{ is from software})$ Test: $\left[\frac{\hat{\beta}_{j}-\beta_{j_{0}}}{s_{\hat{\beta}_{j}}} \sim t_{n-(p+1)} \text{ tests } H_{0}: \beta_{j}=\beta_{j_{0}}\right]$
- R^2 : Recall (§2.3) that the coefficient of determination, r^2 , is a measure of the of the model to the data. For multiple regression, capitalize the "r":

$$R^{2} = \frac{\sum (y_{i} - \bar{y})^{2} - \sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}} = \frac{SST - SSE}{SST} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

= proportion of variance in y explained by regression $\in [0,1]$

• $F = \frac{\text{SSR}/p}{\text{SSE}/[n - (p+1)]} = \frac{\text{SSR}/p}{s^2} \sim F_{p,n-(p+1)}$

Use F to test $H_0: \beta_1 = \cdots = \beta_p = 0$ (a strong generalization of the one-variable test, " $H_0: \beta_1 = 0$ "), which says y has ______ with any of the x_j 's. Procede with regression only if

Example

e.g. (p. 360 #16) An experiment studying the relationship between the speed of a cutting tool (x, in m/s) and the tool lifetime (y, in hours) yielded the data below. The residual plot for the $y = \hat{\beta}_0 + \hat{\beta}_1 x$ shows curvature. Use multiple regression to find the best model $y = \hat{\beta}_0 + \hat{\beta}_1 x + \hat{\beta}_2 x^2$.

calculations:

The R guide gives the (polynomial regression) model $\hat{y} = 101.4 + 3.37 x - 5.14 x^2$.

a. Using this equation, find the residuals.

$$\hat{y}_1 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

- b. Find the error sum of squares SSE =_____ and the total sum of squares SST =_____.
- d. Find the coefficient of determination $R^2 =$ ______.
- e. For $H_0: \beta_1 = \beta_2 = 0$, find F = ______. Degrees of freedom = ______
- f. Can H_0 be rejected at the 5% level? Explain.

Checking Assumptions in Multiple Regression

Check assumptions as in simple linear regression ($\S 8.2$):

- Make a residual plot (§8.2) of residuals vs. fitted values, _____
- Make a _____ probability plot (§4.7) of the residuals, $\{e_i\}$
- Plot residuals ______ in which the observations were made, $\{(i, e_i)\}$
- Plot residuals vs. each independent variable, $\{(x_{ii}, e_i)\}$ for j = 1 to p

See formula sheet for an "ANOVA table" presentation of the F test.