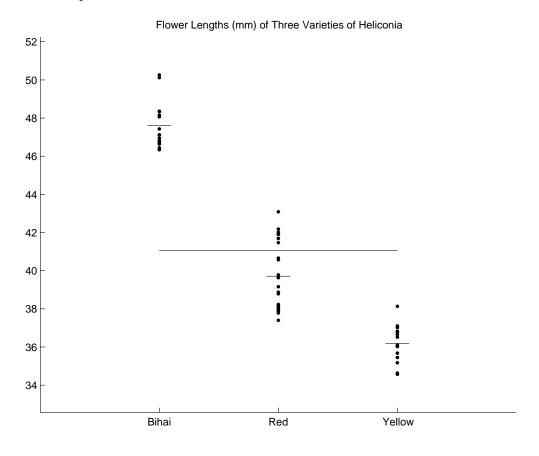
everal (or), and then t is called a Experiments
Experiments
Experiments
Experiments
OVA)
,
in an experiment; its values are
tests " $H_0: \mu_1 = \cdots = \mu_I$ ", where I is the
wo μ_i 's are different" by comparing two estimates
, and the other is from variati
compared to an distribution.
f three varieties of Heliconia flowers on Dominica, ea
gbird. The flowers' forms and birds' beaks seem to have
J_i $ar{x}_i$ s_i
43 46.44 46.64
$34 46.94 48.36 \mid 16 47.60 1.21$
00 00 00 10 10 10
.69 39.78 40.57
40 38.20 38.07
.78 38.01 23 39.71 1.80
4F 90 19 97 10
45 38.13 37.10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
f

Here is a plot of the data:



Notation

	-					
_	•					
•	•	=	#			

• $J_i = i^{\text{th}}$ sample _____ $(i = 1 \text{ to } I); N = \sum_{i=1}^{I} J_i = \text{sum of all sample}$ _____

• $X_{ij} = i^{\text{th}}$ sample's j^{th} observation (______ in plot)

• $\bar{X}_{i.} = \frac{1}{J_i} \sum_{j=1}^{J_i} X_{ij} = i^{\text{th}}$ sample's mean (_______ in plot)

• $\bar{X}_{..} = \frac{1}{N} \sum_{i=1}^{I} \sum_{j=1}^{J_i} X_{ij} = \frac{1}{N} \sum_{i=1}^{I} J_i \bar{X}_{i.} = grand \ sample \ mean \ (\underline{\hspace{2cm}}$ in plot)

• $X_{ij} - \bar{X}_{i.} = residual$ of i^{th} sample's j^{th} observation with respect to i^{th} sample's mean (the difference from ______ in plot)

Is the visually apparent difference in sample means $\{\bar{X}_{1.}, \bar{X}_{2.}, \bar{X}_{3.}\}$ statistically significant? It matters only ______ the spread of individual observations. Is it due to ______, or statistically significant? (Could we run a difference-of-two-means test for each pair of means? _____)

Sums of Squares

tition the sum of squar	ed deviations from	into the sum of squared
iations from	plus the sum of squared of	deviations of sample means from
•		
• The total sum of squ	T T	
	$SST = \sum_{i=1}^{I} \sum_{i=1}^{J_i} (X_{ij} - \bar{X}_{})^2$	
	i-1 j -1	
• Variation	samples is measured by the	
	SSE = $\sum_{i=1}^{I} \sum_{j=1}^{J_i} (X_{ij} - \bar{X}_{i.})^2 = \sum_{i=1}^{I} (J_{ii})^2$	$(s_i - 1)s_i^2$
Its average is the	square (MSE)	
	$MSE = \frac{SSE}{N-I}$	
whom N Lightha	degrees of freedom for SSE. (It's "	", not "".)
where $N - I$ is the 0		
	mate of	
$s^2 = MSE$ is an estimate	$\begin{array}{ll} \text{mate of } \underline{\hspace{1cm}}. \\ \text{ance of the residuals } (\underline{\hspace{1cm}} \underline{\hspace{1cm}} \text{min} \end{array}$	us respective
$s^2 = MSE$ is an estimate		us respective
$s^2 = MSE$ is an estimate e.g. MSE is the variation		us respective
$s^2 = MSE$ is an estimate e.g. MSE is the variation		us respective
$s^2 = \text{MSE}$ is an estimate e.g. MSE is the variate SSE = MSE =	ance of the residuals (min	
$s^2 = \text{MSE}$ is an estimate e.g. MSE is the variate SSE = MSE =	nnce of the residuals (min min	
$s^2 = \text{MSE}$ is an estimate e.g. MSE is the variate SSE = MSE =	nnce of the residuals (min min	
$s^2 = \text{MSE}$ is an estimate e.g. MSE is the variation SSE = MSE = Variation	ance of the residuals (min samples is measured by the SSTr $=\sum_{i=1}^{I}J_{i}(\bar{X}_{i.}-\bar{X}_{})^{2}$	
$s^2 = \text{MSE}$ is an estimate e.g. MSE is the variation SSE = MSE = Variation	ance of the residuals (min samples is measured by the $SSTr = \sum_{i=1}^{I} J_i(\bar{X}_{i.} - \bar{X}_{})^2$ square,	
$s^2 = \text{MSE}$ is an estimate e.g. MSE is the variation SSE = MSE = Variation	ance of the residuals (min samples is measured by the SSTr $=\sum_{i=1}^{I}J_{i}(\bar{X}_{i.}-\bar{X}_{})^{2}$	
s ² = MSE is an esting e.g. MSE is the variation SSE = MSE = Variation Its average is the	ance of the residuals (min samples is measured by the $SSTr = \sum_{i=1}^{I} J_i(\bar{X}_{i.} - \bar{X}_{})^2$ square,	
s ² = MSE is an esting e.g. MSE is the variation SSE = MSE = Variation Its average is the where	ance of the residuals (min samples is measured by the $SSTr = \sum_{i=1}^{I} J_i (\bar{X}_{i.} - \bar{X}_{})^2$ square, $MSTr = \frac{SSTr}{I-1}$	sum of squares,
s ² = MSE is an esting e.g. MSE is the variation SSE = MSE = Variation where A MSTr i	ance of the residuals (min samples is measured by the $SSTr = \sum_{i=1}^{I} J_i (\bar{X}_{i.} - \bar{X}_{})^2$ square, $MSTr = \frac{SSTr}{I-1}$ _ is the degrees of freedom for SSTr.	$__$ sum of squares, $_$ MSTr leaves H_0
s ² = MSE is an esting e.g. MSE is the variation SSE = MSE = Variation where A MSTr i	samples is measured by the samples is measured by the $SSTr = \sum_{i=1}^{I} J_i (\bar{X}_{i.} - \bar{X}_{})^2$ square, $MSTr = \frac{SSTr}{I-1}$ is the degrees of freedom for SSTr. as evidence H_0 , while a	$__$ sum of squares, $_$ MSTr leaves H_0
s ² = MSE is an esting e.g. MSE is the variation SSE = MSE = Variation Its average is the where A MSTr is e.g. MSTr measures	samples is measured by the samples is measured by the $SSTr = \sum_{i=1}^{I} J_i (\bar{X}_{i.} - \bar{X}_{})^2$ square, $MSTr = \frac{SSTr}{I-1}$ is the degrees of freedom for SSTr. as evidence H_0 , while a	$__$ sum of squares, $_$ MSTr leaves H_0

Assumptions

- The treatment populations are _____
- The treatment populations all have the same
- All observations are

Checks include:

- A probability plot of residuals $\{X_{ij} \bar{X}_{i.}\}$ against $N(\underline{\hspace{1cm}},\underline{\hspace{1cm}})$ should be $\approx\underline{\hspace{1cm}}$
- The _____ sample standard deviation shouldn't be more than about _____ as the ____ sample standard deviation.
- A residual plot of residuals $\{X_{ij} \bar{X}_{i.}\}$ against their respective sample mean $\bar{X}_{i.}$ should show reasonably ______ spread across samples and no ______

The *F*-test of $H_0: \mu_1 = \cdots = \mu_I$ for One-Way ANOVA

Under H_0 , MSTr and MSE are both estimates of σ^2 , the common variance of the populations.

- MSTr _____ on the truth of H_0
 - $-H_0 \text{ true } \implies \mu_{\text{MSTr}} = \sigma^2$
 - $-H_0 \text{ false } \Longrightarrow \mu_{\text{MSTr}} \underline{\hspace{1cm}} \sigma^2$
- MSE _____ on the truth of H_0 . Either way, $\mu_{\text{MSE}} = \sigma^2$.
- Use the test statistic $F = \frac{\text{MSTr}}{\text{MSE}} = \frac{\text{average variation among sample means}}{\text{average variation among individuals in the same sample}}$
 - $-H_0$ true $\implies F$ should be near _____
 - $-H_0$ false $\implies F$ should be _____

Under H_0 , $F \sim F_{I-1,N-I}$. (It's "_____", not "N-1".)

e.g. For the flower data, find F and its P-value, and draw a conclusion.

$$F = \Longrightarrow P$$
-value =

 \Longrightarrow

The preceding work can be summarized in this ANOVA table:

Source	DF	SS	MS	\mathbf{F}	P
Treatment	2	1084.00	541.50	259.09	< .001
Error	51	106.58	2.09		
Total	53	1190.58			

Rejecting $H_0: \mu_1 = \cdots = \mu_I$, doesn't tell ______: §9.2.

(A balanced experiment has equal sample sizes and is more robust against _____ than an unbalanced one. $I=2 \implies F$ -test is ____ to t-test of $H_0: \mu_X - \mu_Y = 0$, with F= ____.)