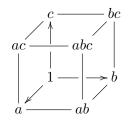
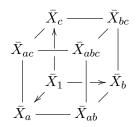
## 9.5 Preface


| ors, and imple experiment sses indicates the nt random errors diamonds whose |
|------------------------------------------------------------------------------|
| nt random errors<br>diamonds whose                                           |
|                                                                              |
| ne pans as follows:                                                          |
| measurements.)                                                               |
| s as follows:                                                                |
| re then                                                                      |
| $-M_2+M_3-M_4$                                                               |
| $-M_2-M_3+M_4$                                                               |
|                                                                              |

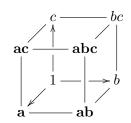

# 9.5 $2^p$ Factorial Experiments (part 1 of 2)

| To study $p$ factors simultaneously, a pr<br>has only levels, and<br>called a $2^p$ factorial experiment. It prepa<br>at (possibly) level | The experares for further      | riment then has          | treatments and is                   |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------|-------------------------------------|
| We've already discussed $2^p$ factorial expe                                                                                              | eriments for $p =$             | = and                    | <u>_</u> ·                          |
| e.g. A 2 <sup>3</sup> factorial experiment has                                                                                            | $\_$ factors and $\_$          | treatments.              |                                     |
| $2^3$ Factorial Experiments                                                                                                               |                                |                          |                                     |
| Consider a $2^p$ factorial experiment with $p$                                                                                            | $\rho = 3 \text{ factors } \_$ | ,, and                   | ·                                   |
| Treatments                                                                                                                                |                                |                          |                                     |
| The treatment with all factors at their are denoted by lower-case character string the corresponding factor is at its                     | s, where "level.               | els is denoted "", or ". | ". Other treatments" indicates that |
| e.g. The treatment                                                                                                                        |                                |                          |                                     |
| • "1" has all 3 factors                                                                                                                   | -                              |                          |                                     |
| • "a" has                                                                                                                                 | high and                       |                          | low                                 |
| • "ac" has                                                                                                                                | high, and                      |                          | low                                 |
| e.g. The 8 treatments are                                                                                                                 |                                |                          |                                     |

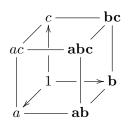
The 8 treatments may be pictured as:

Corresponding treatment cell means are:

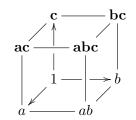





#### **Main Effects**


| Α             | is a linear com                                           | bination of treatme                                    | nt means whose coeffic | ients add to           |
|---------------|-----------------------------------------------------------|--------------------------------------------------------|------------------------|------------------------|
| The contras   | st of a factor is the                                     | of mean respon                                         | ses at the factor's    | level minus            |
| the           | of mean responses at                                      | the factor's                                           | level.                 |                        |
| e.g. The co   | entrast for factor A is                                   |                                                        |                        |                        |
|               |                                                           |                                                        |                        |                        |
| The main      | effect of a factor is the                                 | difference in its _                                    | response               | with the factor at its |
|               | level and its                                             | response                                               | with the factor        | A main effect          |
| estimate is   | therefore of its                                          | s contrast.                                            |                        |                        |
| e.g. The m    | ain effect for factor A i                                 | s denoted $A$ and es                                   | timated as             |                        |
| $\frac{1}{4}$ | $\bar{X}_a + \bar{X}_{ab} + \bar{X}_{ac} + \bar{X}_{abc}$ | $(1) - \frac{1}{4}(\bar{X}_1 + \bar{X}_b + \bar{X}_b)$ | $(z+ar{X}_{bc})$       |                        |

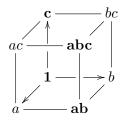
Here are the main effects pictured:


• A = mean minus mean:



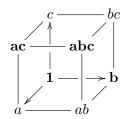
•  $B = \underline{\hspace{1cm}}$  mean minus  $\underline{\hspace{1cm}}$  mean:



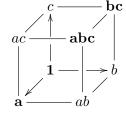

ullet C= \_\_\_\_\_ mean minus \_\_\_\_ mean:



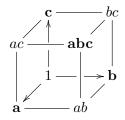
#### Interactions


\_\_\_\_\_\_, and \_\_\_\_\_\_ are the three \_\_\_\_\_\_ interactions:

• AB = half the difference in the mean \_\_\_\_ effect with \_\_\_\_ and the mean \_\_\_ effect with \_\_\_\_ and the mean \_\_\_\_ effect with \_\_\_ and the mean \_\_\_\_ effect with \_\_\_\_ and the mean \_\_\_ effect with \_\_\_\_ and \_\_ effect with \_\_\_ effect




(The "half" makes the \_\_\_\_\_ the same for all main effect and interaction estimates.)


• AC = the diagonal plane 1, b, ac, abc mean minus the diagonal plane a, ab, c, bc mean:



• BC = the diagonal plane 1, a, bc, abc mean minus the diagonal plane b, ab, c, ac mean:



ABC, the one three-way interaction, is half the difference in the mean AB interaction with C high and the mean AB iteraction with C low = mean of a, b, c, abc minus mean of 1, ab, ac, bc:



### Example

e.g. (p. 463 #4) A study on the effects of 3 vitamins, A = nicotinic acid, B = thiamine, and C = biotin, on the yield  $(\frac{1}{100} g/L)$  of the organic acid pyruvate in a cell culture used two replicates per treatment. In the data, "-1" indicates the low factor level and "1" indicates the high level:

| A  | В  | $\mathbf{C}$ | Treatment | Yields | Mean Yield |                                                                                    |                                                              |
|----|----|--------------|-----------|--------|------------|------------------------------------------------------------------------------------|--------------------------------------------------------------|
| -1 | -1 | -1           |           | 55, 49 |            | - 90 F                                                                             | ,                                                            |
| 1  | -1 | -1           | a         | 60, 42 | 51         | 54 - 38.5                                                                          | c - bc                                                       |
| -1 | 1  | -1           | b         | 37, 28 | 32.5       | $50.5 \frac{ }{}28$                                                                |                                                              |
| 1  | 1  | -1           |           | 30, 28 |            | 50.5 — 26                                                                          | ac abc                                                       |
| -1 | -1 | 1            | c         | 54, 54 | 54         | $\left  \begin{array}{c} \\ \end{array} \right  - \left  \rightarrow 32.5 \right $ | $\begin{vmatrix} 1 & - \\ 1 & - \end{vmatrix} \rightarrow b$ |
| 1  | -1 | 1            | ac        | 54, 47 | 50.5       |                                                                                    |                                                              |
| -1 | 1  | 1            | bc        | 44, 33 | 38.5       | 51 —— [                                                                            | a = ab                                                       |
| 1  | 1  | 1            | abc       | 36, 20 | 28         |                                                                                    |                                                              |

Estimate the main effects and interactions. Which do you think are most important?

- $\bullet$  A =
- B =
- $C = \frac{1}{4}(50.5 + 28 + 54 + 38.5) \frac{1}{4}(51 + 29 + 52 + 32.5) = 1.625$
- *AB* =
- *AC* =
- $BC = \frac{1}{4}(28 + 38.5 + 51 + 52) \frac{1}{4}(50.5 + 54 + 29 + 32.5) = .875$
- $\bullet$  ABC =

Next time we'll see how to test which of these main effects and interactions are \_\_\_\_\_\_.