
Linux (Bash) Shell Scripts

Background: Why learn shell scripting?1

� It gives access to large-scale computing on many platforms, including 100% of the top-500
supercomputers and 90% of cloud infrastructure.

� It makes automating repetetive tasks easy.

� 80% of a data analyst’s time is spent cleaning up data. Shell scripting for I/O and extracting
data from text can be much easier than doing it in R.

� There are many data science problems with so much data that we can’t use a sophisticated
model, but a simple statistic (mean, median) or graph can answer the question. The issue
becomes, “Can I even read the data?” For a person who can write a shell script to extract a
little information from each of many files, the answer is often “Yes.”

� A few years ago, R’s tidyr and other packages introduced the pipeline to R programmers,
imitating what the shell has been doing since the 1970s! Shell scripting ideas can improve
your use of R: write small tools that do simple things well, using a clean text I/O interface.

“This is the Unix philosophy:

� Write programs that do one thing and do it well.

� Write programs to work together.

� Write programs to handle text streams, because that is a universal interface.”

–Doug McIlroy, manager of the Bell Labs UNIX team

Linux (Bash) Shell Scripts

A shell script is a text file of commands run by Bash, the Linux command-line interpreter.

� To run a first script,

– open a new file hello.sh, paste the text,

#!/bin/bash

echo 'Hello, World.' # echo displays a line of text. "#" starts a comment.

and save the file. The first line tells the program loader to run /bin/bash.

– run chmod u+x hello.sh to add “execute” (x) to the user’s (u) permissions (run ls -l hello.sh

before and after to see the change)

– run ./hello.sh

1Bash is a defective programming language. Google’s Shell Style Guide says not to use it for programs of more
than 100 lines. It is suited to solving problems that evolve from typing at the command prompt.

https://google.github.io/styleguide/shellguide.html

� Assign a variable via NAME=VALUE, where there is no space around =, and

– NAME has letters (a-z,A-z), underscores (_), and digits (and does not start with a digit)

– VALUE consists of (combinations of)

* a string, e.g. a=apple or b="apple and orange" or c=3

* the value of a variable via $VARIABLE (or ${VARIABLE} to avoid ambiguity), e.g.
d=$c; echo "a=$a, b=$b, c=$c, d(with suffix X)=${d}X"

* a command substitution $(COMMAND) (or `COMMAND`), e.g. files=$(ls -1); echo $files

* an integer arithmetic expression $((EXPRESSION)), using +, -, *, /, ** (exponen-
tiaton), % (remainder); e.g. e=$(($c * $c / 2)); echo $e

* a floating-point arithmetic expression from the bc calculator (see man bc) via
$(echo "scale=DECIMAL_POINTS; EXPRESSION" | bc), e.g.
f=$(echo "scale=6; $c * $c / 2" | bc); echo $f

g=$(echo "scale=10; 1 / s(3.14159 / 2)" | bc --mathlib); echo $g # s() is sine

* an indirect variable reference ${!VARIABLE}, e.g. g=a; h=${!g}; echo $h

� Append to a string via +=, e.g. b+=" and cherry"; echo $b

� Quotes

– in double quotes, "...", text loses special meaning, except $ still allows $x (variable
expansion), $(...) still does command substitution (as does `...`), and $((...)) still
does arithmetic expansion; e.g. echo "echo ls $(ls)"

– single quotes, '...', suppress all expansion; e.g. echo 'echo ls $(ls)'

– escape a character with \, as in R; e.g. echo cost=\$5.00

� Create several strings with a brace expansion,

PREFIX{COMMA-SEPARATED STRINGS, or range of integers or characters}SUFFIX;

e.g. echo {Tu,Th}_Table{1..6}

� Use wildcards to write glob patterns (not regular expressions) to specify sets of filenames (e.g.
for ls, rm, cp, mv, etc.):

– * matches any characters

– ? matches any one character

– square brackets, [...], enclose a character class matching any one of its characters,
except that [!...] matches any one character not in the class; e.g. [aeiou] matches a
vowel and [!aeiou] matches a non-vowel

– [[:CLASS:]] matches any one character in [:CLASS:], which is one of [:alnum:],
[:alpha:], [:digit:], [:lower:], [:upper:], etc.

e.g. ls *; ls *.cxx; ls [abc]*; ls *[[:digit:]]*

� Conditional expressions

if [[CONDITION_1]]; then

EXPRESSION_1

elif [[CONDITION_2]]; then # use 0 to several elif blocks

EXPRESSION_2

else # else block is optional

EXPRESSION_DEFAULT

fi

Regarding CONDITION,

– comparison operators include,

* for strings, == (equal to) and != (̸=)

* for integers, -eq (equal), -ne (̸=), -lt (<), -le (≤), -gt (>), and -ge (≥)

– logical operators include ! (not), && (and), and || (or); e.g.

x=3 # also try 4 for 3 and || for &&

name="Philip"

if [[($x -eq 3) && ($name == "Philip")]]; then

echo true

fi

– match a regular expression via STRING =~ PATTERN, which is true for a match; the
array BASH_REMATCH then contains, at position 0, ${BASH_REMATCH[0]}, the substring
matched by PATTERN, and, at position $i, ${BASH_REMATCH[$i]}, a backreference to the
substring matched by the ith parenthesized subexpression, e.g.

file="NetID.cxx"

pattern="(.*).cxx" # putting bash regex in variable reduces backslash trouble

if [[$file =~ $pattern]]; then

echo ${BASH_REMATCH[1]}

fi

– the spaces in “[[” and “]]” are required

� Loops

– traverse a sequence: for NAME in SEQUENCE; do EXPRESSION; done, e.g.

for file in $(ls); do echo "file=$file"; done

– zero or more: while [[CONDITION]]; do EXPRESSION; done, e.g.

x=7; while [[$x -ge 1]]; do echo "x=$x"; x=$((x / 2)); done

e.g. There’s a while read example at the end of this handout.

– one or more (a hack based on the value of several statements being that of the last one and
: being a no-effect statement): while EXPRESSION; CONDITION; do : ; done, e.g.

while echo -n "Enter positive integer: "; read n; [[$n -le 0]]; do : ; done

– break leaves a loop and continue skips the rest of the current iteration

� Write a function via

function NAME {

EXPRESSION

}

Access parameters via $1, $2, The number of parameters is $#. Precede a variable
initialization by local to make a local variable. “Return” a value via echo and capture it by
command substitution. e.g.

function binary_add {

local a=$1

local b=$2

local sum=$(($a + $b))

(Explain this code line after discussing I/O on the next page.)

Write debugging message to stderr (for human to read) by

redirecting ("1>&2", described below) stdout to stderr.

echo "a=$a, b=$b, sum=$sum" 1>&2

echo $sum # write "return value" to stdout (for code (or human) to read)

}

binary_add 3 4

x=$(binary_add 3 4); echo x=$x

� Command-line arguments are accessible via $0, the script name, and $1, $2, The number
of parameters is $#. e.g. Save this in a script called repeat.sh:

#!/bin/bash

Repeat <word> <n> times.

Most scripts start by checking that the number of command-line

arguments is correct (sometimes including other checks) and

printing a usage line if not.

if [[$# -ne 2]]; then # Recall: "-ne" checks integer inequality.

echo "usage: $0 <word> <n>" 1>&2 # write error message to stderr (below)

exit 0

fi

word=$1

n=$2

for i in $(seq $n); do # try "man seq" to see what it does

echo $word

done

� Input/output (I/O), pipelines, and redirection

– A script starts with three I/O streams, stdin, stdout, and stderr for standard input,
output, and error (and diagnostic) messages, respectively. Each stream has an associated
integer file descriptor : 0=stdin, 1=stdout, 2=stderr.

– A pipeline connects one command’s stdout to another’s stdin via COMMAND_1 | COMMAND_2.

– I/O can be redirected :

* redirect stdout to

· write to FILE via COMMAND > FILE, overwriting FILE if it exists (here “>” is
shorthand for “1>”)

· append to FILE via COMMAND >> FILE

* redirect stderr to write to FILE via COMMAND 2> FILE

* redirect both stdout and stderr via COMMAND &> FILE (shorthand for COMMAND > FILE 2>&1,
“redirect COMMAND’s stdout to FILE and redirect its stderr to where stdout goes”)

* redirect stdout to go to stderr (e.g. to echo an error message) via COMMAND 1>&2

(“redirect 1 (stdout) to where 2 (stderr) goes”)

* redirect stdin to

· read from FILE via COMMAND < FILE (here “<” is shorthand for “0<”)

· read from a here string via COMMAND <<< "CHARACTER STRING", e.g.
bc -l <<< "4 * a(1)"

· read from a here document via

COMMAND << END_NAME

EXPRESSSION

END_NAME

* discard unwanted output by writing to /dev/null

� Evaluate a string as bash code via eval STRING, e.g.

a="ls"; b="| wc"; c="$a $b"; echo "c=$c"; eval $c

A script that uses eval carelessly may be exploited to run arbitrary code, so eval is dangerous.

Here are two more handy loop examples demonstrating while read loops:

� A while read loop reads text one line at a time into variables name1 (first word on a line),
name2 (second word), ..., and nameN (Nth through last word). (Don’t use)

while read name1 name2 ... nameN; do

COMMAND # some COMMAND involving name1, name2, ..., nameN

done

Follow the loop with “ < FILE” to read from FILE instead of stdin.

e.g. Put these lines in a file called students.txt:

Name Height Weight Major

Michael 70 180 Economics

Li 65 140 Math

Elizabeth 68 130 History

Then run this command

while read name height weight; do

echo "name=$name, height=$height, weight=$weight, major=$major(oops)"

done < students.txt

� Here is a variant showing that we can pipe into a compound expression (or grouped command)
in braces:

echo "1 2 3" | sed 's/ /\n/g' | { sum=0; while read n; do sum=$(($sum + $n)); done; echo $sum; }

The space in “{ ” is required. The “;” before the “}” is required.

For more information,

� run COMMAND --help to see the usage of COMMAND, e.g. seq --help

� see the COMMAND man page (M-x man Enter COMMAND Enter)

� see the bash man page

� check “The Linux Command Line” by William E Shotts Jr.:

– free online at http://linuxcommand.org/tlcl.php

– for sale at www.amazon.com/Linux-Command-Line-Complete-Introduction/dp/1593273894

� check google

http://linuxcommand.org/tlcl.php
www.amazon.com/Linux-Command-Line-Complete-Introduction/dp/1593273894

