Buffer Overrun Detection using Linear Programming and
Static Analysis

Vinod Ganapathy, Somesh Jha David Chandler, David Melski, David Vitek

University of Wisconsin-Madison Grammatech Inc., Ithaca, NY 14850
[vg,jha]@cs.wisc.edu [chandler,melski,dvitek|@grammatech.com
ABSTRACT 72, [26,[29,30] that examine source codeetiminatethese bugs

before the code is deployed. Unlike static techniques, dynamic
techniques do not eliminate bugs, and typically have the undesir-
able effect of causing the application to crash when an attack is
§iscovered.

This paper addresses the issue of identifying buffer overrun vul-
nerabilities by statically analyzing C source code. We demonstrate
a light-weight analysis based on modeling C string manipulations

as a linear program. We also present fast, scalable solvers base X
In this paper, we describe the design and implementation of a

on linear programming, and demonstrate techniques to make the X
program analysis context sensitive. Based on these techniques, Wéool that statically analyzes C source code to detect buffer overrun

built a prototype and used it to identify several vulnerabilities in vulnerabilities. In.partlcula.r, this paper dempnstrate;: .
popular security critical applications e The use of static analysis to model C string manipulations as a

linear program.
e The design and implementation of fast, scalable solvers based

Categories and Subject Descriptors on novel use of techniques from the linear programming literature.
D.3.3 [Language Constructs and Featurels Constraints; G.1.6 The solution to the linear program determines buffer bounds.
[Optimization]: Linear Programming; D.2.5oftware Engineer- e Techniques to make the program analysis context sensitive.

ing]: Testing and Debugging e The efficacy of other program analysis techniques, such as static

slicing to understand and eliminate bugs from source code.
One of our principle design goals was to make the tool scale to

General Terms large real world applications. We used the tool to audit several pop-

Algorithms, Languages, Reliability, Security ular and commercially used packages. The tool identifieprevi-
ously unknown buffer overruns imu-ftpd-2.6.2 (Section®6.1]1)
Keywords in addition to several known vulnerabilities in other applications.

The rest of the paper is laid out as follows: We discuss related
research in Sectidh 2, followed by an overall description of our tool
in Section[B. Sectioff 4 describes constraint resolution techniques
1. INTRODUCTION used by our tool, and Sectigh 5 describes techniques to make the

Buffer overruns are one of the most exploited class of security Program analysis context-sensitive. Secfion 6 contains experimen-
vulnerabilities. In a study by the SANS institute [3], buffer over- tal results, and Sectidh 7 concludes.
runs in RPC services ranked as the top vulnerability to UNIX sys-
tems. A simple mistake on the part of a careless programmer cany RELATED WORK

cause a serious security problem with consequences as serious as a i .
remote user acquiringot privileges on the vulnerable machine. ~_ Several techniques have been proposed to mitigate the problem
To add to the problem, these vulnerabilities are easy to exploit, and ©f Puffer overruns. Dynamic techniques such as Stackguard [13],
“cookbooks” [4] are available to construct such exploits. As ob- RAD [L0] help to detect and prevent stack smashing attacks by pro-
served by several researchers [22, 30], C is highly vulnerable be- t€cting the return address on the stack. ProPolide [18] generalizes
cause there are several library functions that manipulate buffers in these techniques by protecting more entities such as frame pointers,
an unsafe way. local variables and function arguments. Pointguard [14] protects all
Several approaches have been proposed to mitigate the problemPinter accesses by encrypting the pointers when they are stored in
these range from dynamic techniqu&s|fg, [0, [11,[13/18, 24] that Memory, and decrypting them when they are loaded into registers.
preventattacks based on buffer overruns, to static technigues [17, Safé languages like Java introduce runtime array bounds checks to
preserve type-safety. However, redundant runtime checks can im-
*This work was supported in part by NSF grant CCR-9619219 and pose performance overhead, and tools such as AECD [8] aim to
ONR contracts N00014-01-1-0796 and NO0014-01-1-0708. eliminate redundant checks. CCuréd][LL, 24] is a tool that uses
Permission to make digital or hard copies of all or part of this work for Static analysis to judiciously insert runtime checks for correctness
personal or classroom use is granted without fee provided that copies areof pointer manipulations to create a type-safe version of a C pro-
not made or distributed for profit or commercial advantage and that copies gram. These techniques prevent attacks based on unsafe memory
bear this notice and the full citation on th_e first page. To copy otherwise,_tp accesses, but fail to eliminate the bugs from source code.
reput_)lls_h, to post on servers or to redistribute to lists, requires prior specific This paper focuses on static analysis techniques that examine
permission and/or a fee.
CCS'03,0ctober 27-30, 2003, Washington, DC, USA source coqle fc_)r t_he presence of buffer overruns, and thus help the
Copyright 2003 ACM 1-58113-738-9/03/001G$5.00. developer in eliminating the overrun before source code is deployed.

Buffer overruns, static analysis, linear programming

Several static analysis tools have been proposed. These tools can G Source ~ aRGS conear o ouinear
be broadly classified as (a) Annotation driven tools (b) Tools that Constraint Taint Constraint
use symbolic analysis and (c) Tools that extract a model from the —(Codesurfer Generator Analyzer Solver

source code, and use it to detect the presence of bugs. PDGs y
CSSV [17] and Splint[[22] are annotation driven tools. In these SDG Range =
tools, user-supplied annotations, such as pre- and post-conditions anges/
of a function, are used to aid static analysis. CSSV aims to find Detector Choice oftwo
all buffer overflows with just a few false alarms. The basic idea Front-End possible solvers
is to convert the C program into an integer program, with correct-
ness assertions included, and use a conservative static analysis al-
gorithm to detect faulty integer manipulations, which directly trans-
late to bugs in the C source code. The analysis is performed on
a per-procedure basis, and annotations (caladractg are used
to make the analysis inter-procedural. The number of false alarms
generated by the tool depends on the accuracy of the contracts. The| () main(int arge, char* argv{]){
analysis used by CSSV to check the correctness of integer manipu-| @ & he,?cdcelr[z,?c‘g' P;:[1024],
lations was heavyweight, and may scale poorly to large programs. | (3) int counter: Y
For instance, CSSV took 200 seconds to analyze a string ma- 4 FILE *fp;
nipulation program With_ a total of abod0o0 lines of code. Splint Eg; pir = fgets(header, 2048, fp):
on the other hand, sacrifices soundness and completeness, and uses (7) ccl = copy_buffer(header);
a light-weight static analysis to detect bugs in source code. Splint | (8) for (counter = 0; counter < 10; counter++){
uses a flow-sensitive intra-procedural program analysis, and user | (%) ptr = fgets (buf, 1024, fp);

lWarnings

Figure 1: Overall Architecture of the Buffer Overrun Tool

, o - | (0 2 = buffer(buf);
supplied pre- and post-conditions are used to make the analysis Ellg ec2 = copy_bufer(ou
inter-procedural. (12) }

ARCHER [33] is a tool that functions by symbolically execut- gig har *copy_buffer(char “buffer)

ing the code, while maintaining information about variables in a | i5) ¢ ach;?pf'cgp;e ehar “outie
database as execution proceeds. The current state of the program is (16) copy = (char *) malloc(strlen(buffer));
given by the values in the database. The execution of program state-| (17) strcpy(copy, buffer);

ments potentially causes a change in the state of the program. At ggg) return. copy;

statements that access buffers, ARCHER checks, using the database,
whether the access is within the bounds of the array, and flags an
error if not. Rugina and Rinard [26] describe a tool geared specifi- Figure 2: Running Example
cally to detect out-of-bounds errors and race conditions on small di-

vide and conquer programs where they determine symbolic bounds

on array indices and use this information to detect illegal accesses.generator and thedetector front-endvhich is a GUI to help the
Larson and Austin propose a testing topl [23] to detect input re- yser examine potential overruns. Section 3.2 describes constraint
lated faults. This tool uses actual program execution using a testgeneration. Sectiofi3.3 presetast analysiswhich identifies and
input, but enhances bug coverage by maintaining more information yemoves unconstrained constraint variables. Se&fidn 3.4 overviews
about the possible values of variables along the path followed by ¢onstraint resolution, and Sectigi]3.5 explains the use of the so-

the test input. These techniques have the advantage that they cafytion to the constraint system to detect potential buffer overruns.
be used to detect more than just array out of bounds accesses, as ighe program in Figurg 2 will serve as a running example.

demonstrated i [23]. Moreover, the analysis is path sensitive since
an actual program path is followed, and hence false alarm rates are3.1 CodeSurfer
low. However, the disadvantage is that the coverage of these tools
is limited to the set of program paths examined.

BOON [29,[30], like our tool, extracts a model from the source
code — namely, these tools model strings as abstract data types an
transform the buffer overrun detection problem into a range anal-
ysis problem. However, BOON does not employ precise pointer
analysis algorithms. Moreover, the analysis was flow- and context-
insensitive. Our tool builds on the seminal ideas introduced in
BOON by using more precise pointer analysis algorithms, and en-
hances the program analysis to make it context-sensitive. Addition-
ally, our tool employs algorithms based on linear programming for
constraint resolution as opposed to the custom built range solver
employed by BOON. Our tool also equips the user with several
other static analysis algorithms such as static slicing, which enable
the user to understand the reason behind the bug.

The constraint generator and the detector front-end are both de-

veloped as plug-ins to CodeSurfer. CodeSurfer is a code under-
tanding tool that was originally designed to compute precise inter-

§rocedural slices[20, 21]. CodeSurfer builds a whole program rep-
resentation that includes a system dependence graph (that is com-
posed of program dependence graphs for each procedure), an inter-
procedural control-flow graph, abstract syntax trees (ASTSs) for pro-
gram expressions, side-effect information, and points-to informa-
tion. CodeSurfer presents the user with a GUI for exploring its
internal program representations. The queries that CodeSurfer sup-
ports include forward and backward slicing from a program point,
precise inter-procedural chopping between two program points, find-
ing data and control dependence predecessors and successors from
a program point, and examining the points-to set of a program vari-
able. CodeSurfer presents the user with a listing of their source
code that is “hot”, i.e., the user can click on a program point in
3. OVERALL TOOL ARCHITECTURE their code and ask any of the queries listed above.

The tool has five components (Figuiie 1) that are described in CodeSurfer has two primary uses in our tool: (1) the constraint
the remainder of this section. Sectibnl 3.1 describes the code un-generator is a CodeSurfer plug-in that makes use of CodeSurfer's
derstanding tool CodeSurfer. CodeSurfer is used bytimstraint ASTs and pointer analysis (based on Andersen’s analysis [6]). (2)

Constraint Stmt. | Imi | Imi

headerlusedimax S 2048 5 copy!used!min < bufferlused!min

headerlusedimin <1 6 For each user-defined functiéwo , there are constraint variables
bufferlused!max > buflused!max 10 B R .

bufferlused!min < buftusedimin 10 for foo ’s formal parameters that are integers or stringsodf re-
bufferlalloc!max > buflallocimax 10 turns an integer or a string, then there are constraint variables (e.g.,
buffertalloc!min < buflallocimin 10 copy _buffer$returnlused!max) for the function’s return value.

copy -buffer$returnlalloc!max > copylalloc!max 18 Acall defined f - deled with . for th
copy _buffer$returntaliocimin < copytaliocimin 18 call to a user-defined function is modeled with constraints for the
copy _buffer$returntused!max > copy!used!max 18 passing of actual parameters and the assignment of the function’s
copy -buffer$returniused!min > copy'used!min 18 return value.

cc2lused!'max > copy -buffer$returnlused!max 10 :

cc2lusedimin < copy _buffer$returntused!min 10 As in BOON, constraints are associated with pointers to charac-
cc2lalloc!max > copy _buffer$returntalloc!max 10 ter buffers rather than the character buffers themselves. This means
cc2!alloc!p|1in >2 copy -‘buffer$return!a”00!min éO that some aliasing among character buffers is not modeled in the
counter ‘Imax > counter!max + 1 H :

counterlmax > counter 'Imax s constra_lnts _and false negatives may _result. We_ c_hose tg follow
counter ‘Imin < counterlmin + 1] BOON in this regard because we are interested in improving pre-
counter'min < counter ’!min 8 cision by using a context sensitive program analysis (Se¢tion 5).

Currently, context-sensitive pointer analysis does not scale well,
)) . and using a context-insensitive pointer analysis would undermine
Figure 3: Some constraints for the running example our aim of performing context-sensitive buffer overrun analysis.
However, we discovered that we could make use of pointer anal-
the detector front-end is a CodeSurfer plug-in that uses CodeSurferd>'> to eliminate some false negatlves. For instance, consider the
statement §trepy(p->f, buf) . wherep could point to a struc-

GUI in order to display potential overruns. Information about po- N Th traint ted for this stat t d relat
tential overruns is linked to CodeSurfer's internal program repre- (< - '€ constrainis generated for this statement would retate
the constraint variables farf andbuf . Moreover, we use the

sentation, so that the user can make use of CodeSurfer’s features . . .
fesults of pointer analysis to handle arbitrary levels of dereferenc-

such as slicing, in order to examine potential overruns. X :
ing. Constraint generation also makes use of pointer information

3.2 Constraint Generation for integers. _ o

Constraint generation in our tool is similar to the approach pro- Figuref3 shows a few constraints for the program in Figure 2, and
posed in BOON[30]. We also use points-to information returned the program statement that generated them. Most c_Jf the constraints
by CodeSurfer, thus allowing for more precise constraints. Each are'self-explanatory, however a few Com”_“e”ts are |n'order. .
pointerbuf , to a character buffer, is modeled by four constraint ® Smce_we do not _model contro_l ﬂOW‘ We Ighore precﬁcates during
variables, namelypuftalloc'max and buflalloc!min , Which const_ral_nt generatlo_n. Hence, in Figilre 2, the predicadeter
denote the maximum and minimum number of bytes allocated for < 10inline (8) was |gnoreq. . . .
the buffer. anduflusedimax ~ andbuflusedimin which denote e The statemerdounter++ is particularly interesting when gener-
the maxir‘num and minimum number of bytes ljsed by the buffer ating linear constraints. A linear constraint suctcaster!max
Each integer variable is modeled by constraint variablésax > counterimax + 1 cannot be interpreted by a linear program
anditmin which represent the maximum and minimum value of solver. Hence, we model this statement by treating it as a pair of

A—— . _ ’
respectively. Program statements that operate on character buffer tﬁtem?ntscountter ints coutnter t; fl,tizurtner —tcouhnterb g
or integer variables are modeled using linear constraints over con- ' '€S€ WO constraints capture the fact that counter nhas been incre-
straint variables. mented byl, and can be translated into constraints that are accept-

Our constraints model the program ifl@v-andcontext insensi- able to a linear program solver, although the resulting linear pro-

tive manner, with the exception of library functions that manipulate grzm will be'”fe‘?‘sgf'e(ﬁec“"rﬂ‘.‘)- . lue f h .
character buffers. A flow-insensitive analysis ignores the order of * fprogram variable that acqwrgs(ljts vaiue from t e_znwrgnmen;
statements, and a context-insensitive analysis does not differenti-C", ITOM USEr Input in an unguarded manner is considered unsafe

ate between multiple call-sites to the same function. For a function ~ fOF Instance, the statemeuitenv("PATH") , which returns the
call to a library function that manipulates strings (esycpy or search path, could return an arbitrarily long string. To reflect the

strlen), we generate constraints that model the effect of the call; fact that the string can be arbitrarily long, we generate constraints

for these functions, the constraint model is context-sensitive. In 9etenvdreturniusedimax = oo, getenvgretumnlused!min
Section[b, we will show how we extended the model to make the g 0. Slmllarlyz a_n integer vanab[e gccepted as user input gives
constraints context-sensitive for user defined functions as well, "1S€ t0 constraintgmax > co anditmin < - oo

Constraints are generated using a single pass over the program' 3 Taint Analysis
statements. There are four program statements that result in con-
straint generation: buffer declarations, assignments, function calls,

and return statements. A buffer declaration suathas buf[1024] ule. tThetmam gozgll OI tf;ﬁ talnlt analysis mtogu_le Sls tg ma:lkeTtr?e
results in constraints that indicate thatf is of size1024. A constraints amenable to the solvers presented In Segtion 4. ese

statement that assigns into a character buffer (Bugfij="c) solvers use linear programming, which can work only with finite

results in constraints that reflect the effect of the assignment on yafl_uis, h(lence tg's rtnges_ltljs lto rgmove \:arltabtlﬁs _that ctan Obte}m
buflusedimax andbuflused'min . An assignment to an integer infinite values. Sectioff 4 will also demonstrate the importance o

i results in constraints Gfmax anditmin max variables having finite lower bounds amih variables having

As mentioned above, a function call to a library function that finite upper bounds. Hence, taint analysis aims to:

manipulates string buffers is modeled by constraints that summa- ® Ide_ntn‘y a_nd remove any variables thf’_‘t getan infinite val,ae_
rize the effect of the call. For example, thecpy statement at mentioned in sectiofi 3.2, some constraint variabéesare associ-

. - . f - ated with constraints of the formar > oo orvar < -oo. Taint
line (18) in Figure[2 results in the following constraints: L o . o= = L
(18) guref? g analysis identifies constraint variables that can directly or indirectly

copylused!max > bufferlused!max be set toatoco and removes them from the set of constraints.

The linear constraints then pass througtaat analysismod-

e |dentify and remove any uninitialized constraint variabl@e there is a run of the program in which more bytes were written into
system of constraints is examined to see ifnadk constraint vari- the buffer than it could possible hold, and we conclude that there
ables have a finite lower bound, and mlilh constraint variables was an overrun on the buffer.

have a finite upper bound; we refer to constraint variables that do

not satisfy this requirement aminitialized Constraint variables nggg‘:used min Va'“f max;’gt‘se
may fail to satisfy the above requirement if either the program vari- headerlalloc 2048 2048
ables that they correspond to have not been initialized in the source buflused 1 1024
code, or program statements that affect the value of the program buflalloc 1024 1024
variables have not been captured by the constraint generator. The Egi::ﬁ;’g (1) ggji
latter case may arise when the constraint generator does not have ptriused 1 2048
a model for a library function that affects the value of the program ptrialloc 1024 2048
variable. It is important to realize that this analysis is not meant coziused . o
to capture uninitializeghrogramvariables, but is meant to capture bufferlused 1 2048
uninitializedconstraintvariables. buffertalloc 1024 2048
In the constraints obtained by the program in Figiire 2, no vari- ﬁgg;::ﬁg‘c’ (1) 3833
ables will be removed by the taint analysis module, assuming that counter 0 oo
we modeled the library functiorssrlen |, fgets andstrcpy cor-
rectly. The taint analysis algorithm is presented in detaii’in [19]. Figure 4: Values of some constraint variables

3.4 Constraint Solving

The constraints that remain after taint analysis can be solved us- We have developed a GUI front end that enables the end-user to
ing linear programming. We have developed two solvers, both of “surf” the warnings — every warning is linked back to the source
which use linear programming to obtain values for the constraint code line that it refers to. Moreover, the user can exploit the pro-
variables. The goal of both solvers is the same, to obtain the bestgram slicing capabilities of CodeSurfer to verify real overruns.
possible estimate of the number of bytes used and allocated for each
buffer in any execution of the program. For a buffer pointed to by 4. CONSTRAINTRESOLUTION USING LIN-
buf , finding the number of bytes used corresponds to finding the
“tightest” possible rangeb[iflused'min ..buflused!'max]. This EAR PROGRAMMING
can be done by finding the lowest and highest values of the con- This section describes two solvers based on linear programming
straint variablesuflused'max andbuflused'min respectively that the tool uses to solve the set of generated constraints. We chose
that satisfy all the constraints. Similarly, we can find the “tight- to use linear programming for several reasons:
est” possible range for the number of bytes allocated for the buffer e The use of linear programming allows us to model arbitrary lin-

by finding the lowest and the highest valuesbaftalloc'max ear constraints. Hence, our solver automatically evolves to han-
and buflalloc!min respectively. For the program in Figufle 2, dle new kinds of constraints. Other toojS][29} 80, 33] use special-
the constraint variables take on the values shown in Figure 4. We ized solvers — generation of new kinds of constraints will mean that
explain in detail in Sectiofi 4 how these values were obtained. these solvers have to be specially adapted to deal with them.

. e Commercial implementations of linear program solvers are known
3.5 Detecting Overruns to scale efficiently to millions of constraints.

Based on the values inferred by the solver, as well as the values® The use of a well developed theory helped us easily reason about
inferred by the taint analysis module, the detector decides whetherthe correctness of our solvers.
there was an overrun on each buffer. We use several heuristics to® Finally, we are currently working on the use of tteal of the
give the best possible judgment. We shall explain some of these inlinear program for diagnostic information. In particular, we are in-
the context of the values from Figuifie 4. vestigating how the dual linear program can be used to produce a
e The solver found that the buffer pointed to byader has2048 program path that leads to the statement that causes the overflow.
bytes allocated for it, but that its length could have been between Such information is valuable since it tells the user of the toloy
1 and 2048 bytes. This is a scenario where a buffer overrun can there was an overrun.
never occur — and hence the buffer pointed thvéyder is flagged .
as “safe”. The same is true of the buffer pointed tabiy . 4.1 Overview of the solver
o The buffer pointed to byptr was found to have betwee®24 A Linear Program is an optimization problem that is expressed
and2048 bytes allocated, while betwednand 2048 bytes could as follows:
have been used. Note thatr is part of two assignment state- Minimize : <'x
ments. The assignment statem@)t could makeptr point to a Subject To : Ax > b
buffer as long a2048 bytes, while the stateme(s) could make -
ptr point to a buffer as long ak)24 bytes. The flow insensitivity whereA is anm x n matrix of constantsh andc are vectors of
of the analysis means that we do not differentiate between theseconstants, and is a vector of variables. This is equivalent to saying

program points, and hence can only infer th@at was up t02048 that we have a system of inequalities inn variables, and are
bytes long. In such a scenario, where the valuptidiised!max required to find values for the variables such that all the constraints
is bigger thamtrialloc!min but smaller than (or equal to) the in the system are satisfied and tigective functiorc7x takes its
value of ptrlalloc!max , We conservatively conclude that there lowest possible value. It is important to note that the above form
might have been an overrun. This can result falae positivedue is just one of the numerous ways in which a linear program can be
to the flow insensitivity of the analysis. expressed. For a more comprehensive view of linear programming,

e In cases such as for program variabtpy where we observe see [2]7/]. Linear programming works on finite real numbers; that
thatcopy!alloc!max is less thareopylused'max , we know that is, the variables in the vectar are only allowed to take finite real

values. Hence the optimum value of the objective function, if it Any value ofx > 5 is a feasible solution to the above linear pro-
exists, is always guaranteed to be finite. gram, but no finite valug € R optimizes the objective function.

Linear programming is well studied in the literature, and there Finally, a linear program is said to lxgfeasibleif it has no feasible
are well-known techniques to solve linear programs, Simpiex [12, solutions. An example of an infeasible linear program is shown in
2171 being the most popular of them. Other known techniques, such Figure[b.
interior point methods[[31] work in polynomial time. Commer-
cially available solvers for solving linear programs, such as SoPlex
[84] and CPLEX [2b] implement these and related methods.

The set of constraints that we obtained after program analysis
are linear constraints, hence we can formulate our problem as a lin-
ear program. Our goal is to obtain the valuestaitalloc!min ,
buflalloc!max , buflused!min andbuflused!max that yield
the tightest possible ranges for the number of bytes allocated and

counter!max
counter’!max > counter!max + 1
counter!max > counter’!max

Minimize :
Subject To :

Figure 5: An Infeasible Linear Program

In our formulation, if a linear program has an optimal solution,

used by the buffer pointed to yf in such a way that all the con-
straints are satisfied. Formally, we are interested in finding the low-
est possible values difuflalloc'max andbuflused!max , and

the highest possible valuestafflalloc!min andbuflused!min

subject to the set of constraints. We can obtain the desired bounds

for each buffebuf by solving four linear programs, each with the
same constraints but with different objective functions:

Minimize: buflalloc!max
Maximize: buflalloc!min
Minimize: buflused!max
Maximize:buflused!min

However, it can be shown (the proof is beyond the scope of this
paper) that for the kind of constraints generated by the tool, if all
max variables have finite lower bounds, andralh variables have

we can use that value as the buffer bound. None of the linear pro-
grams in our case can be unbounded, since the constraints have
been examined by the taint analyzer to ensure thatadvariables

have finite lower bounds. We minimize for theax variables in the
objective function, and since all tleax variables have finite lower
bounds, the lowest value that eaabhx variable can obtain is also
finite. Similarly, allmin variables have finite upper bounds, and so
when we maximize thenin variables, the highest values that they
could obtain are also finitddence taint analysis is an essential step

to ensure that our approach works correctly.

However, when the linear program is infeasible, we cannot as-
sign any finite values to the variables to get a feasible solution. As
a result, we cannot obtain the values for the buffer bounds. In such
a case, a safe option would be to setradix variables toco and
min variables to eo, but that information would be virtually use-

finite upper bounds, then the values obtained by solving the four |o<c 15 the user of the tool because there would be too many false

linear programs as above are also the values that optimize the lineal

program with the same set of constraints subject to the objective
function:
Minimize: 3, . (buflallocimax - buftalloc!min

+ buflused'max - buflused!min)

Note that this objective function combines the constraint vari-
ables acrosall buffers. Since taint analysis ensures thatnadk
variables have finite lower bounds andralh variables have finite
upper bounds, we can solve justelinear program, and obtain the
bounds forall buffers.

It must be noted that we are actually interested in obtaining inte-
ger values fobuflalloc!max ~ , buflused!max , buflalloc!min
andbuflused!min . The problem of finding integer solutions to a
linear program is called Integer Linear Programming and is a well
known NP-complete problem [12]. Our approach is thus an ap-
proximation to the real problem of findinigteger solutions that
satisfy the constraints.

4.2 Handling Infeasible Linear Programs

While at first glance the method seems to give the desired buffer
bounds, it does not work for all cases. In particular, an optimal so-
lution to a linear program need not even exist. We describe briefly

the problems faced when using a linear programming based ap-

proach for determining the buffer bounds. A linear program is said
to befeasibleif one can find finite values for all the variables such
that all the constraints are satisfied. For a linear programvari-
ables, such an assignment is a vectdRihand is called deasible
solution to the linear program. A feasible solution is said t@pe
timal if it also maximizes (or minimizes) the value of the objective
function. A linear program is said to mboundedf a feasible so-
lution exists, but no solution optimizes the objective function. For
instance, consider:

Maximize :
Subject To :

X
xX>5

falarms. The linear program may be infeasible due to a small sub-

set of constraints; in such a scenario, setting all variables to infinite
values will be overly conservative. For instance, the constraints in
Figure[2 are infeasible because of the constraints generated for the
statementounter++

We have developed an approach in which we try to remove a
“small” subset of the original set of constraints so that the resultant
constraint system is feasible. In fact, the problem of “correcting”
infeasible linear programs to make them feasible is a well studied
problem in operations research. The approach is to ideltiy
ducibly Inconsistent SefsalledlIS) []. An IIS is a minimal set of
inconsistent constraints, i.e., the constraints in the IIS together are
infeasible, but any subset of constraints in the IIS form a feasible
set. For instance, both the constraints in the linear program in Fig-
ure[® constitute an 1S because the removal of any one of the two
constraints makes the linear program feasible. There are several ef-
ficient algorithms available to detect 11Ss in a set of constraints. We
used theElastic Filtering algorithm[{g]. The Elastic Filtering Algo-
rithm takes as input a set of linear constraints and identifies an IS
in these constraints (if one exists). An infeasible linear program
may have more than one IISs in it, and the elastic filtering algo-
rithm is guaranteed to find at least one of these 11Ss. To produce a
feasible linear program from an infeasible linear program, we may
be required to run the elastic filtering algorithm several times; each
run identifies and removes an IIS and produces a smaller linear pro-
gram which can further be examined for presence of IISs.

Figure[® pictorially shows our approach to obtain a set of fea-
sible linear constraints from a set of infeasible linear constraints.
We first examine the input set, depicted@sto find out if it is
feasible; if so, it does not contain IISs, a6tcan be used as the
set of constraints in our linear program formulation. If théurns
out to be infeasible, then it means that there is a subset thfat
forms one or more 11Ss. This subset is depicted”asn the fig-
ure. The elastic filtering algorithm, over several runs, identifies and

Elastic) Taint
c Filtering C-C" | Analysis D
B R - .
c”
L C’ ,:
The set C of constraints. Removal of C’ results in The set D obtained
C’ denotes a set of ISs a set C” tainted by C’ removing C”

Figure 6: Making an Infeasible set of constraints amenable to Linear Programming

removes the subsét’ from the set of constraints. The resultant 5. ADDING CONTEXT SENSITIVITY

setC — (' is feasible. We then set the values of thax andmin The constraint generation process described in Seffion 3 was
variables appearing i6” to co and oo respectively. We do s0 context-insensitive. When we generated the constraints for a func-
because we cannot infer the values of these variables using lineatjon we considered each call-site as an assignment of the actual-in
programming, and hence setting these variables to infinite values isyariaples to the formal-in variables, and the return from the func-
a Conservative approach. These Variables Whose VaIUeS are |nf|n|tq|0n as an assignment Of the forma'_out Variab|es to the actuaj_out
may appear in the set of constraidis— C’. The scenario is NOW variables. As a result, we merged information across call-sites,
similar to taint analysis, where we had some constraint variables ;5 making the analysis imprecise. In this section we describe
whose values were infinite, and we had to identify and remove the {0 techniques to incorporate context sensitivity.
constraint variables that were “tainted” by the infinite variables. Constraint inliningis similar in spirit to inlining function bodies
Therefore, we apply the taint analysis algorithm to identify the 5t call-sites. Observe that in the context-insensitive approach, we
tainted variables, and remove the constraints in which they appear.|ost precision because we treatsifferent call-sites to a function
This step results in further removal of constraints, which are de- jgentically, i.e, by assigning the actual-in variables at each call-site
picted in the Figuré]6 by a subsét’ of C — C’. The set of con- to thesameformal parameter.
straints after removal o, denoted asD in Figure[§, satisfies Constraint inlining alleviates this problem by creating a fresh
the property that alinax variables appearing in it have finite lower jnstance of the constraints of the called function at each call-site.
bounds, and alnin variables have finite upper bounds. Moreover, At each call-site to a function, we produce the constraints for the
D is feasible, and will only yield optimal solutions when solved ¢gjled function with the local variables and formal parameters re-
as a linear program with the objective functions described earlier. named uniquely for that call-site. This is illustrated in the example
Hence, we solve the linear program using the set of constraints in pelow, which shows some of the constraintsdapy _buffer ~ from

D. This algorithm is presented in detail in[19]. Figure[? specialized for the call-site at li® :
We have implemented this approach by extending the commer-
cially available package SoPlex [32]. SoPlex is a linear program COPy:a"OE!ImaX 1>2bb#ffﬁflusglf“max 1-1
i B copy:used:max 1 > Dbufieriused:max 1
solver; we extended it by adding IIS detection and taint analysis. copylusedimin 1 < bufferlusedimin 1
In practice, linear program solvers work much faster when the con- copy _buffer$returniused!max 1 > copylusedimax
straints have begpresolved Presolving is a method by which con- copy -buffer$return!used!min 1 < copylused!min 4

straints are simplifietbeforebeing passed to the solver. Several
such techniques are described in the literatlire [7]; we have incor-
porated some of them in our solver.

Context-sensitivity can be obtained by modeling each call-site to
the function as a set of assignments to the renamed instances of
the formal variables. The actual-in variables are assigned t@the
namedformal-in variables, and theenamedformal-out variables
. . . . are assigned to the actual-out variables. As a result, there is exactly
4.3 Solving Constraints Hierarchically one assignment to each renamed formal-in parameter of the func-
While the approach presented above is fast, it is an approxima-tion, which alleviates the problem of merging information across
tion algorithm. In particular, the algorithm may remove more con- different calls to the same function.
straints than are actually required to make the constraints feasible. With this approach to constraint generation, we obtain the range
As a result, more constraint variables may be set to the valwes [0..2047] and [1..2048] for ccllalloc andccllused respectively,
or -co. To address this imprecision, we have designed an imple- while cc2lalloc andcc2'used obtain 0..1023] and [1..1024]
mented ahierarchical solver. The idea behind this solver is to respectively, which is an improvement over the values reported in
decompose the set of constraints into smaller subsets, and solvea~igure[#.
each subset separately. We do so by constructing a directed acyclic Note that using the constraint inlining approach, we can obtain
graph (DAG), each of whose vertices represents a set of constraintsthe value of a variable with a particular calling context (the call-
Moreover, each constraint is associated with exactly one vertex of ing context will be encoded implicitly in the renamed variable).
the DAG. The DAG is constructed by defining a notion of “depen- However, this comes at a price — since we can have an exponential
dency” between a pair of constraints (s€€ [19]). The topological number of calling contexts, the constraint system will have a large
order of the DAG naturally defines a hierarchy of the vertices. The number of variables, and as a result, a large number of constraints.
set of constraints corresponding to each vertex is then solved usingMoreover, this approach cannot work with recursive function calls.
linear programming. It can be shown that this approach is math- These drawbacks can be overcome through the userofary
ematically precise in that it sets fewest number of constraint vari- information In this approach to inter-procedural dataflow analysis,
ables tooo or -oco, and produces precise ranges. We have omitted first suggested by Sharir and Pnugiil[28], a “summary” is obtained
the details due to space considerations, consult [19] for details. for each functiorioo , and the summary information is used at each
callsite tofoo to “simulate” the effect of the call.

In our case, a function can be summarized by generatimg- to see if any overruns that were previously unreported were dis-
mary constraintswhich summarize the effect of a function interms covered. We report our experience with-ftpd andsendmail
of the constraint variables representing global variables and formal Results on a few more packages are’in [19].
parameters of the function. This is equivalent to finding a pro- Our experiments were performed or8&Hz Pentiumd Xeon
jection of the constraints generated by the function on the global processor machine wittGB RAM, running Debian GNU/Linux.0.
variables and the formal parameters of the function. This problem We used CodeSurfer8 for our experiments, thgcc-3.2.1 com-
has several well-known solutions. In particular, if the function gen- piler for building the programs. CodeSurfer implements several
erates onlydifference constrainighen the problem of finding the pointer analysis algorithms; in each case we performed the experi-
summary constraints reduces to an instance of the all-pairs shortesments with a field-sensitive version of Andersen’s analysis [6] that
path algorithm [[12[19], for which several efficient algorithms are uses the common-initial-prefix technique of Yong and Horwitz [34]
known. For more general kinds of constraints, the Fourier-Motzkin to deal with structure casts. We configured the tool to use the hi-

variable elimination algorithnT]16] can be used. erarchical solver described in Section 4.3 for constraint resolution
Consider, for instance, constraints generateddpy _buffer . (so the values obtained will be precise) and produce constraints in

This function does not modify or use global variables, and hence a context-insensitive fashion. Sectibnl 6.4 discusses the effects of
we obtain the summary constraints (shown below) by projecting context-sensitive constraint generation.
the constraints on the formal parameters of this function.

6.1 WU-FTP Daemon

copy -buffer$returnlallocimax > bufferlused!max - 1 . .

copy _buffer$returntusedimax > bufferlusedimax We tested two versions of theu-ftp daemon, a popular file
copy _buffer$return!alloc!min < bufferlused'min - 1 transfer server. Version.5.0 is an older version with several
copy -buffer$returntused!min < bufferlused!min known vulnerabilities (see CERT advisories CA-1999-13, CA-2001-

07 and CA-2001-33), while versian6.2 is the current version
with several security patches that address the known vulnerabili-
ties.

To obtain context sensitivity, we use these constraints at each
callsite tocopy _buffer ~ with the formal parameters appearing in
the summary constraints replaced with the corresponding actuals.
Constraints are gengrated at li® by replacing the constr.aint 6.1.1 wu-ftpd-2.6.2
variables corresponding tauffer andcopy _buffer$return in
the summary constraints with the constraint variables correspond-
ing to header andccl respectively. Similarly, the relationship
betweercc2 andbuf atline(10) can be obtained by substituting
them in place otopy _buffer$return andbuffer respectively,
in the summary constraints. Note that we must still retain the as-
signment of the actual variable to the formal-in parameter so that
we can obtain the values of the constraint variables corresponding
to the local variables of the called function. h d . y ; hich i ol

This approach is more efficient than the constraint inlining ap- ;olratﬁg o?/;r:fnpet romead _servers line - which Is responsible
proach since it does not cause an increase in the number of con-)
straint variables. However it is also less precise than constraint - -

S . . . |int read_servers_line (FILE *svrfp,

inlining because of the same reason. Observe that in constraint in- char *hostaddress,
lining the variables were renamed at each callsite, thus enabling usg char *accesspath){
to examine their values due to a particular calling context. On the static char buffer[BUFSIZ];

other hand, in the summary constraints approach the values of the
variables are merged across different calling contexts, thus leading
to loss of precision. For instance, consider the program in Fig- if (hp = gethostbyname(hcp)))

ure[2. While the values fotcllused ,.ccl!aIIO(.: , cc2!usgd o rsT:reunC]tmg\ﬁg‘?r; I?1;p->h_addr, sizeof(in)):
andcc2lalloc are the same as obtained using constraint inlin- strepy(hostaddress, inet_ntoa(in));

ing, the values otopy'alloc ~ andcopylused are [0..2047] and
[1..2048] respectively. This is because the values that these vari-
ables obtained due to calls at li® and line(10) are “merged”.
The constraint inlining approach returns the valug2(47] and strepy(accesspath, acp);
[1..2048] for copylalloc andcopy'used respectively due to the b

call at line(7) , and returns(]..1023] and [1..1024] due to the call
atline(10) .

This approach is capable of handling recursive function calls,
however for simplicity we do not attempt to summarize recursive
function calls in our prototype implementation. Thefgets statement may copy as many&92 (BUFSIZ) bytes

intobuffer , which is processed further in this function. As a result

of this processingacp andhcp point to locations insidéuffer .

6. EXPERIENCE WITH THE TOOL By an appropriate choice of the contentskoffer , one could

We tested our prototype implementation on several popular com- makeacp or hcp point to a string buffer as long &190 bytes,
mercially used programs. In each case, the tool produced severalWwhich could result in an overflow on the buffer pointed to either by
warnings; we used these warnings, combined with CodeSurfer fea-accesspath or hostname respectively.
tures such as slicing, to check for real overruns. We tested to The procedureead _servers _line is called at several places
see if the tool discovered known overruns documented in public in the code. For instance, it is called in the main procedufe in
databases such asigtrag [L] and CERT [2], and also checked prestart.c whereread _servers _line is called with two local

wu-ftpd-2.6.2 has about 8K lines of code, and produced'8
warnings when examined by our tool. Upon examining the warn-
ings, we found 4 previously unreported overruns; we will describe
one of these in detail.

The tool reported a potential overrun on a buffer pointed to by
accesspath inthe procedureead _servers _line in the filerd-
servers.c , Where as many &sl92 bytes could be copied into the
buffer for which up t04095 bytes were allocated. Figufe 7 shows

\‘/‘v‘hile (fgets(buffer, BUFSIZ, svrfp))X{

else
strcpy(hostaddress, hcp);

-

Figure 7: Code snippet fromwu-ftpd-2.6.2

buffers,hostaddress andconfigdir , which have been allocated
32 bytes andt095 bytes respectively. This call reads the contents
of the file_PATHFTPSERVERSwhich typically has privileged ac-

cess. However, in non-standard and unusual configurations of theported in the then latest version séndmail

system, PATHFTPSERVERSould be written to by a local user. As
a result, the buffergostaddress andconfigdir can overflow

based on a carefully chosen input string, possibly leading to a local

exploit. The use of atrncpy orstricpy statement instead of the
unsafestrcpy inread _servers _line rectifies the problem.

A few other new overruns which were detected by the tool were:
e An uncheckedprintf in main in the fileftprestart.c could
result in16383 bytes being written into a local buffer that was al-
located4095 bytes.
e Another uncheckedprintf in main in the fileftprestart.c
could result in8447 bytes being written into a local buffer that was
allocated4095 bytes.
e An uncheckedtrcpy in main in the fileftprestart.c could
result in8192 bytes being written into a local buffer that was allo-
cated4095 bytes.

ough code audit of versiog7.5 . However, this version has sev-
eral known vulnerabilities. We also analyzeshdmail-8.11.6 ;

in March 2003, two new buffer overrun vulnerabilities were re-
. Both sendmail-

8.7.6 andsendmail-8.11.6 are vulnerable to these overruns as

well.

6.2.1 sendmail-8.7.6

sendmail-8.7.6 has abouBS8K lines of code; when analyzed
by our tool, it produced@95 warnings. Due to the large number
of warnings, we focused on scanning the warnings to detect some
known overruns.

Wagneret al. use BOON to report an off-by-one bug[30] in
sendmail-8.9.3 where as many &l bytes, returned by a func-
tion queuename, could be written into &0 byte arraydfname . Our
tool identified four possible program points sandmail-8.7.6
where the return value fromueuename is copied usingstrcpy
statements into buffers which are alloca@tbytes. As in [30],
our tool reported that the return value frajpeuename could be

In each of the above cases, a carefully chosen string in the file up to 257 bytes long, and further manual analysis was required

_PATHFTPACCESScan be used to cause the overrun. As before,
_PATHFTPACCESStypically has privileged access, but could be

written to by a local user in non-standard configurations. We con-
tacted thewu-ftpd developers, and they have acknowledged the

to decipher that this was in fact an off-by-one bug. Another mi-
nor off-by-one bug was reported by the tool where the programmer
mistakenly allocated onlg bytes for the buffedelimbuf which
stored" \n\t " , which is4 bytes long including the end of string

presence of these bugs in their code, and are in the process of fixcharacter.

ing the bugs (at the time of writing this paper).

6.1.2 wu-ftpd-2.5.0

wu-ftpd-2.5.0 has aboutl6K lines of code; when analyzed
by our tool, it produced 39 warnings. We analyzed the warnings
to check for a widely exploited overrun reported in CERT advi-
sory CA-1999-13. The buffer overflow was on a globally declared
buffer mapped_path in the procedureo_elem in the fileftpd.c
It was noted in[[22] that the overrun was due to a statersent
cat(mapped _path, dir) , where the variabléir could be de-
rived (indirectly) from user input. As a result it was possible to
overflowmapped_path for which 4095 bytes were allocated. Our
tool reported the range fonapped_path!used as P..+oc], while
mapped_path!alloc was [{095..4095]. The callstrcat(dst,
src) would be modeled as four linear constraints by our tool:

dst "lused'max > dstlused!max + srclused!max
dstlused!max > dst ‘lused!max
dst “lused'min < dstlused!min

dstlused!min < dst “lused!min

+ srclused!min

The first two constraints make the linear program infeasible, as ex- mentbp-- resulted inbp'alloc!max

plained in Sectiofi4, and resultdistiused'max
Hence, inwu-ftpd-2.5.0 , mapped_path!used!max

being set to #o.
will be set

to +oo, and the tool would have reported the same range even in
the absence of an overrun. We used CodeSurfer’s program slic-

ing feature to confirm thadir could be derived from user input.
We found that the proceduti _elem , one of whose parameters is
dir , was called from the procedurrepping _chdir . This function
was in turn called from the procedutsd, whose input arguments
could be controlled by the user. This shows the importance of pro-

6.2.2 sendmail-8.11.6

sendmail-8.11.6 is significantly larger than versios.7.6
and has$i8K lines of code; when we ran our tool, it producés
warnings. We examined the warnings to check if the tool discov-
ered the new vulnerabilities reported in March 2003.

One of these vulnerabilities is on a functiorackaddr in the
file headers.c , which parses an incoming e-mail address string.
This function stores the address string in a local static buffer called
buf that is declared to bRIAXNAME + bytes long, and performs
several boundary condition checks to see thét does not over-
flow. However, the condition that handles the angle brackets (
in the From address string is imprecise, thus leading to the over-
flow [B].

Our tool reported thaip, a pointer to the buffeuf in the func-
tion had bp!alloc!max = +oo andbplused!'max = +oo, thus
raising an warning. However, the reason th@tlloc'max and
bplused!max were set to vo was because of several pointer arith-
metic statements in the body of the function. In particular, the state-
= +o0o andbpl!used!max
+o00. Hence, this warning would have existed even if the boundary
condition checks were correct.

We note that this bug is hard to track precisely in a flow-insensitive
analysis. Moreover, we have discovered that the use of control de-
pendence information, which associates each statement with the
predicate that decides whether the statement will be executed, is
crucial to detecting such overruns reliably. We are working towards
enhancing our infrastructure to support these features.

viding the end user with several program analysis features. These6-3 Performance
features, such as program slicing and control and data dependence Table[l contains representative numbers from our experiments

predecessors, which are part of CodeSurfer, aid the user of the toolwith wu-ftpd-2.6.2

andsendmail-8.7.6 . All timings were

to understand the source code better and hence locate the source afbtained using the UNIXime command. ©DESURFERdenotes

the vulnerability.

6.2 Sendmail

Sendmail is a very popular mail transfer agent. We analyzed
sendmail-8.7.6 , an old version that was released after a thor-

the time taken by CodeSurfer to analyze the programiERA-
TOR denotes the time taken for constraint generation, whilenT
denotes the time taken for taint analysis. The constraints produced
can be resolved in one of two ways; the rows L.AR8E and HER-
SOLVE report the time taken by the IIS detection based approach

wu-ftpd-2.6.2

sendmail-8.7.6

ToTAL (LP./HIER.)

100.55/106.82 sec

338.24/350.96 sec

Number of Constraints Ge

nerated

PRE-TAINT
POSTTAINT

22008
14972

104162
24343

In particular, we observed that th&10 range variables from the

CODESURFER 12.54 sec 30.09 sec context-insensitive analysis were specialize$3804 range vari-
GENERATOR 74.88 sec 266.39 sec .

TAINT 9.32 sec 98 66 sec ables based on calling context. We can count the number of range
LPSOLVE 3.81 sec 13.10 sec variables that obtained more precise values in two possible ways:
HIERSOLVE 10.08 sec 25.82 sec e Out of 63704 specialized range variables{97 range variables

obtained more precise values than the corresponding unspecialized
range variables.
e Out of 7310 unspecialized range variable&)6 range variables

had obtained more precise values in at least one calling context.
As noted earlier, the constraint inlining approach returns more
precise information than the summary constraints based approach.
To take a concrete example, we consider the program variahle
gcode (an integer), which is the formal parameter of a function

and the hierarchical solves approach respectively (Seftion 4). ThePr -mesg in the fileaccess.c in wu-ftpd-2.6.2 . The function
number of constraints output by the constraint generator is reportedPr -mesg s called from several places in the code with different val-
in the row RRE-TAINT, while POST-TAINT denotes the number of ~ U€s for the parametersgcode . The summary constraints approach
constraints after taint-analysis. results in the valuesB0..550] for the range variable corresponding
cient, but is not mathematically precise, whereas the hierarchical it is able to infer thapr _mesg is always called with the valug30
solver is mathematically precise. We however found that the solu- from the functiorpass in the fileftpd.c
tion produced by the 1IS detection based approach is a good approx- . .
imat?on to the s)cglution obtained by the hieprgrchical sol?/er. InF::F;se 6.5 Effects of Pointer Analysis
of wu-ftpd-2.6.2 fewer than5% of the constraint variables, and As observed in Sectidh 3, we were able to reduce false negatives
in the case ofendmail-8.7.6 fewer thar2.25% of the constraint through the use of pointer analysis. The tool is capable of han-
variables obtained imprecise values when we used the 1IS detectiondling arbitrary levels of dereferencing. For instancey ffoints to
based approach. We also found that this imprecision did not signifi- a pointer to a structure, the pointer analysis algorithms correctly
cantly affect the number of warnings — in casevofftpd-2.6.2 infer this fact. Similarly, ifp andq are of typechar** (i.e., they
and sendmail-8.7.6 the 1IS based approach resultedlirand point-to pointers to buffers), the constraints for a statement such
2 more warnings respectively (these warnings were false alarms), asstrcpy(*p, *q) would be correctly modeled in terms of the
which shows that in practice we can use the faster IIS detection points-to sets op andq (recall that we generated constraints in
based approach with little loss of precision. terms of pointers to buffers rather than buffers themselves).
To observe the benefits of pointer analysis we generated con-
6.4 Adding Context Sensitivity straints with the pointer analysis algorithms turned off. Since fewer
We report here our experience with using context-sensitive anal- constraints will be generated, we can expect to see fewer warnings;
ysis onwuftpd-2.6.2 using both the constraint inlining approach in the absence of these warnings, false negatives may result. We
and the summary constraints approach. Note sldaling context ~ observed a concrete case of this in the caseeodmail-8.7.6
sensitivity will not find new overrunsAdding context sensitivity When we generated constraints without including the results of the
changes the constraints generated so that they precisely reflect th@ointer analysis algorithms, the tool outfiil warnings (as op-
call-return semantics of functions. As a result, we can expect more Posed t@95 warnings). However, this method resulted in the warn-
precise values from the constraint solvers. To measure the effec-iNg on the arraydfname being suppressed, so the tool missed the
tiveness of each approach, we will count the number of range vari- 0ff-by-one bug that we described earlier. A closer look at the pro-
ables that were refined in comparison to the corresponding rangescedurequeuename revealed that in the absence of points-to facts,
obtained in a context-insensitive analysis. Recall that the value of the tool failed to generate constraints for a statement:
arange variablear is given by the corresponding constraint vari- Snprintf(buf, sizeof buf, "%cf%s", type, e — >e.d)
ablesvarlmin andvar'max as jarlmin ..var'max]. We chose in the body ofqueuename since points to facts for the variabde
this metric since, as explained in Sect[of 3.5, the detector uses theVhich is a pointer to a structure, were not generated.
values of the ranges to produce diagnostic information, and more e note that BOON[[30] identified this off-by-one bug because
precise ranges will more precise diagnostic information. of a simple assumption made to model the effect of pointers, i.e.,
The context-insensitive analysis enftpd-2.6.2 yields val- BOON assumes that any pointer to a structure of fpan point
ues for7310 range variables. Using the summary constraints ap- t0 all structures of typd&. While this technique can be effective at
proach, we found thal2 of these range variables obtained more discovering bugs, the lack of precise points-to information will lead
precise values. Note that in this approach the number of constraintt0 @ larger number of false alarms.
variables (and hence the number of range variables) is the same a% .
in the context-insensitive analysis. However, the number of con- 6 Shortcommgs
straints may change, and we observetVaincrease in the num- While we found the prototype implementation a useful tool to
ber of constraints. This change can be attributed to the fact that audit several real world applications, we also noted several short-
summarization introduces a some constraints (the summaries), anccomings and are working towards overcoming these limitations.
removes some constraints (the old call-site assignment constraints). First, the flow insensitivity of the analysis meant that we would
The constraint inlining approach, on the other hand, leads to a have several false alarms. Through the use of slicing we were able
5.8 increase in the number of constraints, anfl.ax increase to weed out the false alarms, nevertheless it was a manual and often
in the number of constraint variables (and hence the number of painstaking procedure. Moreover, the benefits observed by adding
range variables). This can be attributed to the fact that the inlining context-sensitivity were somewhat limited because of the flow in-
based approach specializes the set of constraints at each callsitesensitivity of the analysis. By transitioning to a Static Single As-

Table 1: Performance of the tool

signment (SSA) representation[15] of the program, we can add a[14] C. Cowan, S. Beattie, J. Johansen, and P. Wagle.

limited form of flow sensitivity to the program. However, the SSA PointGuard™: Protecting pointers from buffer overflow

representation will result in a large number of constraint variables. vulnerabilities. In12!* USENIX Sec. SymR003.

Fortunately, we have observed that the solvers readily scale to large[15] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and

linear programs with several thousand variables. F. K. Zadeck. Efficiently computing static single assignment
Second, by modeling constraints in terms of pointers to buffers form and the control dependence grap&M Trans. on

rather than buffers, we can miss overruns, thus leading to false neg- Prog. Lang. and Systems (TOPLAS3(4):452-490, 1991.

atives [30]. However, the reason we did so was because the pointer[le] G. B. Dantzig and B. Curtis Eaves. Fourier-Motzkin

analysis algorithms themselves were flow- and context-insensitive, elimination and its duallournal of Combinatorial Theory

and generating constraints in terms of buffers would have resulted (A), 14:288-297, 1973.

in a large number of constraints and consequently a large number[17] N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic
of false alarms. By transitioning to “better” pointer analysis algo-

rithms we can model constraints in terms of buffers themselves,

thus eliminating the false negatives.

7. CONCLUSIONS

We have demonstrated a light-weight technique to analyze C
source code to detect buffer overrun vulnerabilities. We have shown
the efficacy of the technique by applying it to real world examples

and identifying new vulnerabilities in a popular security critical

package. Our techniques use novel ideas from the linear program-
ming literature, and provide a way to enhance context sensitivity.

tool for statically detecting all buffer overflows in C. KCM
Conf. on Prog. Lang. Design and Impl. (PLDB003.

[18] H. Etoh and K. Yoda. Protecting from stack-smashing
attacks. 2000www.trl.ibm.com/projects/security/ssp/main.html.

[19] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. Vitek.

Buffer overrun detection using linear programming and static

analysis. 2003. UW-Madison Comp. Sci. Tech. Report 1488.
ftp://ftp.cs.wisc.edu/pub/tech-reports/reports/2003/tr1488.ps.Z

[20] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence grap#sCM Transactions on Prog.
Lang.s and Systems (TOPLA$2(1):26—60, 1990.

The output of our tool, coupled with other program understanding [21] S. Horwitz, T. Reps, M. Sagiv, and G. Rosay. Speeding up

features of CodeSurfer, such as static slicing, aid the user to com-

prehend and eliminate bugs from source code.

Acknowledgments. We would like to thank the members of the

slicing. In2"¢ ACM Symp. on Foundations of Soft. Engg.
(FSE) pages 11-20, New York, 1994.

[22] D. Larochelle and D. Evans. Statically detecting likely buffer
overflow vulnerabilities. In.0!* USENIX Sec. Symp001.

Wisconsin Safety Analyzer research group, Michael Ferris, Aditya [23] E. Larson and T. Austin. High coverage detection of input

Rao and the anonymous reviewers for their suggestions.

8. REFERENCES

[1] bugtrag .www.securityfocus.com.

[2] CERT/CC advisoriesvww.cert.org/advisories.

[3] The twenty most critical internet security vulnerabilities.
www.sans.org/top20.

[4] Aleph-one. Smashing the stack for fun and profit. Nov 1996.

Phrack Magazine.

[5] Technical analysis of remote sendmail vulnerability.
www.securityfocus.com/archive/1/313757.

[6] L. O. AndersenProgram Analysis and Specialization for the
C Programming Languagé’hD thesis, DIKU, Univ. of
Copenhagen, 1994. (DIKU report 94/19).

[7] E. D. Anderson and K. D. Anderson. Presolving in linear
programmingMathematical Prog.71(2):221-245, 1995.

[8] R.Bodik, R. Gupta, and V. Sarkar. ABCD: Eliminating
array-bounds checks on demandA@M Conf. on Prog.
Lang. Design and Impl. (PLDJR000.

[9] J. W. Chinnek and E. W. Dravinieks. Locating minimal
infeasible constraint sets in linear progra®RSA Journal
on Computing3(2):157-168, 1991.

[10] T-C. Chiueh and F-H. Hsu. RAD: A compile-time solution to
buffer overflow attacks. 121 Intl. Conf. on Distributed
Computing Systems (ICDCZ001.

[11] J. Condit, M. Harren, S. McPeak, G. C. Necula, and
W. Weimer. CCured in the Real World. BRCM Conf. on
Prog. Lang. Design and Impl. (PLDIR2003.

[12] T. H. Cormen, C. E. Lieserson, R. L. Rivest, and C. Stein.
Introduction to AlgorithmsMIT Press, 2001.

[13] C. Cowan, S. Beattie, R-F Day., C. Pu, P. Wagle, and
E. Walthinsen. Automatic detection and prevention of buffer
overflow attacks. 7" USENIX Sec. SymL998.

related security faults. 182" USENIX Sec. SymR2003.

[24] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe

retrofitting of legacy code. IACM Conf. on the Principles of
Prog. Lang. (POPL)2002.

[25] CPLEX Optimizerwww.cplex.com/.

[26] R. Rugina and M. C. Rinard. Symbolic bounds analysis of
pointers, array indices and accessed memory regions. In
ACM Conf. on Prog. Lang. Design and Impl. (PLP2000.

[27] A. Schrijver.Theory of Linear and Integer Programming
Wiley, N.Y., 1986.

[28] M. Sharir and A. PnueliTwo Approaches to Interprocedural
Dataflow AnalysisPrentice Hall Inc., 1981.

[29] D. Wagner.Static Analysis and Computer Security: New
techniques for software assurané&hD thesis, UC Berkeley,
Dec 2000.

[30] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first
step towards automated detection of buffer overrun
vulnerabilities. InNetwork and Distributed System Security
(NDSS) 2000.

[31] S.J. WrightPrimal-Dual Interior-Point MethodsSIAM
Philadelphia, 1997.

[32] R. Wunderling.Paralleler und Objektorientierter
Simplex-AlgorithmusPhD thesis, Konrad-Zuse-Zentrum fur
Informationstechnik Berlin, TR 1996-09.
www.zib.de/PaperWeb/abstracts/TR-96-09/.

[33] Y. Xie, A. Chou, and D. Engler. ARCHER: Using symbolic,
path-sensitive analysis to detect memory access erro®” In
European Soft. Engg. Conf. and'#1ACM Symp. on
Foundation of Soft. Engg. (ESEC/FSEDO3.

[34] S. Yong, S. Horwitz, and T. Reps. Pointer analysis for
programs with structures and casting AGM Conf. on Prog.
Lang. Design and Impl. (PLDJY1999.

	Introduction
	Related Work
	Overall Tool Architecture
	CodeSurfer
	Constraint Generation
	Taint Analysis
	Constraint Solving
	Detecting Overruns

	Constraint Resolution using Linear Programming
	Overview of the solver
	Handling Infeasible Linear Programs
	Solving Constraints Hierarchically

	Adding Context Sensitivity
	Experience with the tool
	WU-FTP Daemon
	wu-ftpd-2.6.2
	wu-ftpd-2.5.0

	Sendmail
	sendmail-8.7.6
	sendmail-8.11.6

	Performance
	Adding Context Sensitivity
	Effects of Pointer Analysis
	Shortcomings

	Conclusions
	REFERENCES -9pt

