
Buffer Overrun Detection using Linear Programming and
Static Analysis ∗

Vinod Ganapathy, Somesh Jha
University of Wisconsin-Madison

[vg,jha]@cs.wisc.edu

David Chandler, David Melski, David Vitek
Grammatech Inc., Ithaca, NY 14850

[chandler,melski,dvitek]@grammatech.com

ABSTRACT
This paper addresses the issue of identifying buffer overrun vul-
nerabilities by statically analyzing C source code. We demonstrate
a light-weight analysis based on modeling C string manipulations
as a linear program. We also present fast, scalable solvers based
on linear programming, and demonstrate techniques to make the
program analysis context sensitive. Based on these techniques, we
built a prototype and used it to identify several vulnerabilities in
popular security critical applications.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Constraints; G.1.6
[Optimization]: Linear Programming; D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms
Algorithms, Languages, Reliability, Security

Keywords
Buffer overruns, static analysis, linear programming

1. INTRODUCTION
Buffer overruns are one of the most exploited class of security

vulnerabilities. In a study by the SANS institute [3], buffer over-
runs in RPC services ranked as the top vulnerability to UNIX sys-
tems. A simple mistake on the part of a careless programmer can
cause a serious security problem with consequences as serious as a
remote user acquiringroot privileges on the vulnerable machine.
To add to the problem, these vulnerabilities are easy to exploit, and
“cookbooks” [4] are available to construct such exploits. As ob-
served by several researchers [22, 30], C is highly vulnerable be-
cause there are several library functions that manipulate buffers in
an unsafe way.

Several approaches have been proposed to mitigate the problem:
these range from dynamic techniques [8, 10, 11, 13, 18, 24] that
preventattacks based on buffer overruns, to static techniques [17,

∗This work was supported in part by NSF grant CCR-9619219 and
ONR contracts N00014-01-1-0796 and N00014-01-1-0708.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’03,October 27–30, 2003, Washington, DC, USA
Copyright 2003 ACM 1-58113-738-9/03/0010 ...$5.00.

22, 26, 29, 30] that examine source code toeliminatethese bugs
before the code is deployed. Unlike static techniques, dynamic
techniques do not eliminate bugs, and typically have the undesir-
able effect of causing the application to crash when an attack is
discovered.

In this paper, we describe the design and implementation of a
tool that statically analyzes C source code to detect buffer overrun
vulnerabilities. In particular, this paper demonstrates:
• The use of static analysis to model C string manipulations as a
linear program.
• The design and implementation of fast, scalable solvers based
on novel use of techniques from the linear programming literature.
The solution to the linear program determines buffer bounds.
• Techniques to make the program analysis context sensitive.
• The efficacy of other program analysis techniques, such as static
slicing to understand and eliminate bugs from source code.

One of our principle design goals was to make the tool scale to
large real world applications. We used the tool to audit several pop-
ular and commercially used packages. The tool identified14 previ-
ously unknown buffer overruns inwu-ftpd-2.6.2 (Section 6.1.1)
in addition to several known vulnerabilities in other applications.

The rest of the paper is laid out as follows: We discuss related
research in Section 2, followed by an overall description of our tool
in Section 3. Section 4 describes constraint resolution techniques
used by our tool, and Section 5 describes techniques to make the
program analysis context-sensitive. Section 6 contains experimen-
tal results, and Section 7 concludes.

2. RELATED WORK
Several techniques have been proposed to mitigate the problem

of buffer overruns. Dynamic techniques such as Stackguard [13],
RAD [10] help to detect and prevent stack smashing attacks by pro-
tecting the return address on the stack. ProPolice [18] generalizes
these techniques by protecting more entities such as frame pointers,
local variables and function arguments. Pointguard [14] protects all
pointer accesses by encrypting the pointers when they are stored in
memory, and decrypting them when they are loaded into registers.
Safe languages like Java introduce runtime array bounds checks to
preserve type-safety. However, redundant runtime checks can im-
pose performance overhead, and tools such as ABCD [8] aim to
eliminate redundant checks. CCured [11, 24] is a tool that uses
static analysis to judiciously insert runtime checks for correctness
of pointer manipulations to create a type-safe version of a C pro-
gram. These techniques prevent attacks based on unsafe memory
accesses, but fail to eliminate the bugs from source code.

This paper focuses on static analysis techniques that examine
source code for the presence of buffer overruns, and thus help the
developer in eliminating the overrun before source code is deployed.

Several static analysis tools have been proposed. These tools can
be broadly classified as (a) Annotation driven tools (b) Tools that
use symbolic analysis and (c) Tools that extract a model from the
source code, and use it to detect the presence of bugs.

CSSV [17] and Splint [22] are annotation driven tools. In these
tools, user-supplied annotations, such as pre- and post-conditions
of a function, are used to aid static analysis. CSSV aims to find
all buffer overflows with just a few false alarms. The basic idea
is to convert the C program into an integer program, with correct-
ness assertions included, and use a conservative static analysis al-
gorithm to detect faulty integer manipulations, which directly trans-
late to bugs in the C source code. The analysis is performed on
a per-procedure basis, and annotations (calledcontracts) are used
to make the analysis inter-procedural. The number of false alarms
generated by the tool depends on the accuracy of the contracts. The
analysis used by CSSV to check the correctness of integer manipu-
lations was heavyweight, and may scale poorly to large programs.
For instance, CSSV took> 200 seconds to analyze a string ma-
nipulation program with a total of about400 lines of code. Splint
on the other hand, sacrifices soundness and completeness, and uses
a light-weight static analysis to detect bugs in source code. Splint
uses a flow-sensitive intra-procedural program analysis, and user
supplied pre- and post-conditions are used to make the analysis
inter-procedural.

ARCHER [33] is a tool that functions by symbolically execut-
ing the code, while maintaining information about variables in a
database as execution proceeds. The current state of the program is
given by the values in the database. The execution of program state-
ments potentially causes a change in the state of the program. At
statements that access buffers, ARCHER checks, using the database,
whether the access is within the bounds of the array, and flags an
error if not. Rugina and Rinard [26] describe a tool geared specifi-
cally to detect out-of-bounds errors and race conditions on small di-
vide and conquer programs where they determine symbolic bounds
on array indices and use this information to detect illegal accesses.
Larson and Austin propose a testing tool [23] to detect input re-
lated faults. This tool uses actual program execution using a test
input, but enhances bug coverage by maintaining more information
about the possible values of variables along the path followed by
the test input. These techniques have the advantage that they can
be used to detect more than just array out of bounds accesses, as is
demonstrated in [23]. Moreover, the analysis is path sensitive since
an actual program path is followed, and hence false alarm rates are
low. However, the disadvantage is that the coverage of these tools
is limited to the set of program paths examined.

BOON [29, 30], like our tool, extracts a model from the source
code – namely, these tools model strings as abstract data types and
transform the buffer overrun detection problem into a range anal-
ysis problem. However, BOON does not employ precise pointer
analysis algorithms. Moreover, the analysis was flow- and context-
insensitive. Our tool builds on the seminal ideas introduced in
BOON by using more precise pointer analysis algorithms, and en-
hances the program analysis to make it context-sensitive. Addition-
ally, our tool employs algorithms based on linear programming for
constraint resolution as opposed to the custom built range solver
employed by BOON. Our tool also equips the user with several
other static analysis algorithms such as static slicing, which enable
the user to understand the reason behind the bug.

3. OVERALL TOOL ARCHITECTURE
The tool has five components (Figure 1) that are described in

the remainder of this section. Section 3.1 describes the code un-
derstanding tool CodeSurfer. CodeSurfer is used by theconstraint

SDG
PDGs

Constraint
Generator

Taint
Analyzer

Constraint
Solver

Detector
Front−End

SDG
PDGs Linear

Constraints
Linear

Constraints

Warnings

Ranges
Ranges

possible solvers
Choice of two

C Source
.

Codesurfer

.

Figure 1: Overall Architecture of the Buffer Overrun Tool

(1) main(int argc, char* argv[]){
(2) char header[2048], buf[1024],

*cc1, *cc2, *ptr;
(3) int counter;
(4) FILE *fp;
(5) ...
(6) ptr = fgets(header, 2048, fp);
(7) cc1 = copy_buffer(header);
(8) for (counter = 0; counter < 10; counter++){
(9) ptr = fgets (buf, 1024, fp);

(10) cc2 = copy_buffer(buf);
(11) }
(12) }
(13)
(14) char *copy_buffer(char *buffer){
(15) char *copy;
(16) copy = (char *) malloc(strlen(buffer));
(17) strcpy(copy, buffer);
(18) return copy;
(19) }

Figure 2: Running Example

generator, and thedetector front-endwhich is a GUI to help the
user examine potential overruns. Section 3.2 describes constraint
generation. Section 3.3 presentstaint analysis, which identifies and
removes unconstrained constraint variables. Section 3.4 overviews
constraint resolution, and Section 3.5 explains the use of the so-
lution to the constraint system to detect potential buffer overruns.
The program in Figure 2 will serve as a running example.

3.1 CodeSurfer
The constraint generator and the detector front-end are both de-

veloped as plug-ins to CodeSurfer. CodeSurfer is a code under-
standing tool that was originally designed to compute precise inter-
procedural slices [20, 21]. CodeSurfer builds a whole program rep-
resentation that includes a system dependence graph (that is com-
posed of program dependence graphs for each procedure), an inter-
procedural control-flow graph, abstract syntax trees (ASTs) for pro-
gram expressions, side-effect information, and points-to informa-
tion. CodeSurfer presents the user with a GUI for exploring its
internal program representations. The queries that CodeSurfer sup-
ports include forward and backward slicing from a program point,
precise inter-procedural chopping between two program points, find-
ing data and control dependence predecessors and successors from
a program point, and examining the points-to set of a program vari-
able. CodeSurfer presents the user with a listing of their source
code that is “hot”, i.e., the user can click on a program point in
their code and ask any of the queries listed above.

CodeSurfer has two primary uses in our tool: (1) the constraint
generator is a CodeSurfer plug-in that makes use of CodeSurfer’s
ASTs and pointer analysis (based on Andersen’s analysis [6]). (2)

Constraint Stmt.
header!used!max ≥ 2048 6
header!used!min ≤ 1 6
buffer!used!max ≥ buf!used!max 10
buffer!used!min ≤ buf!used!min 10
buffer!alloc!max ≥ buf!alloc!max 10
buffer!alloc!min ≤ buf!alloc!min 10
copy buffer$return!alloc!max ≥ copy!alloc!max 18
copy buffer$return!alloc!min ≤ copy!alloc!min 18
copy buffer$return!used!max ≥ copy!used!max 18
copy buffer$return!used!min ≥ copy!used!min 18
cc2!used!max ≥ copy buffer$return!used!max 10
cc2!used!min ≤ copy buffer$return!used!min 10
cc2!alloc!max ≥ copy buffer$return!alloc!max 10
cc2!alloc!min ≥ copy buffer$return!alloc!min 10
counter ′!max ≥ counter!max + 1 8
counter!max ≥ counter ′!max 8
counter ′!min ≤ counter!min + 1 8
counter!min ≤ counter ′!min 8

Figure 3: Some constraints for the running example

the detector front-end is a CodeSurfer plug-in that uses CodeSurfer’s
GUI in order to display potential overruns. Information about po-
tential overruns is linked to CodeSurfer’s internal program repre-
sentation, so that the user can make use of CodeSurfer’s features,
such as slicing, in order to examine potential overruns.

3.2 Constraint Generation
Constraint generation in our tool is similar to the approach pro-

posed in BOON [30]. We also use points-to information returned
by CodeSurfer, thus allowing for more precise constraints. Each
pointer buf , to a character buffer, is modeled by four constraint
variables, namely,buf!alloc!max andbuf!alloc!min , which
denote the maximum and minimum number of bytes allocated for
the buffer, andbuf!used!max andbuf!used!min , which denote
the maximum and minimum number of bytes used by the buffer.
Each integer variablei is modeled by constraint variablesi!max
andi!min which represent the maximum and minimum value ofi ,
respectively. Program statements that operate on character buffers
or integer variables are modeled using linear constraints over con-
straint variables.

Our constraints model the program in aflow-andcontext insensi-
tivemanner, with the exception of library functions that manipulate
character buffers. A flow-insensitive analysis ignores the order of
statements, and a context-insensitive analysis does not differenti-
ate between multiple call-sites to the same function. For a function
call to a library function that manipulates strings (e.g.,strcpy or
strlen), we generate constraints that model the effect of the call;
for these functions, the constraint model is context-sensitive. In
Section 5, we will show how we extended the model to make the
constraints context-sensitive for user defined functions as well.

Constraints are generated using a single pass over the program’s
statements. There are four program statements that result in con-
straint generation: buffer declarations, assignments, function calls,
and return statements. A buffer declaration such aschar buf[1024]
results in constraints that indicate thatbuf is of size 1024. A
statement that assigns into a character buffer (e.g.,buf[i]=’c’)
results in constraints that reflect the effect of the assignment on
buf!used!max andbuf!used!min . An assignment to an integer
i results in constraints oni!max andi!min .

As mentioned above, a function call to a library function that
manipulates string buffers is modeled by constraints that summa-
rize the effect of the call. For example, thestrcpy statement at
line (18) in Figure 2 results in the following constraints:

copy!used!max ≥ buffer!used!max

copy!used!min ≤ buffer!used!min

For each user-defined functionfoo , there are constraint variables
for foo ’s formal parameters that are integers or strings. Iffoo re-
turns an integer or a string, then there are constraint variables (e.g.,
copy buffer$return!used!max) for the function’s return value.
A call to a user-defined function is modeled with constraints for the
passing of actual parameters and the assignment of the function’s
return value.

As in BOON, constraints are associated with pointers to charac-
ter buffers rather than the character buffers themselves. This means
that some aliasing among character buffers is not modeled in the
constraints and false negatives may result. We chose to follow
BOON in this regard because we are interested in improving pre-
cision by using a context sensitive program analysis (Section 5).
Currently, context-sensitive pointer analysis does not scale well,
and using a context-insensitive pointer analysis would undermine
our aim of performing context-sensitive buffer overrun analysis.

However, we discovered that we could make use of pointer anal-
ysis to eliminate some false negatives. For instance, consider the
statement “strcpy(p->f, buf) ,” wherep could point to a struc-
ture s . The constraints generated for this statement would relate
the constraint variables fors.f and buf . Moreover, we use the
results of pointer analysis to handle arbitrary levels of dereferenc-
ing. Constraint generation also makes use of pointer information
for integers.

Figure 3 shows a few constraints for the program in Figure 2, and
the program statement that generated them. Most of the constraints
are self-explanatory, however a few comments are in order:
• Since we do not model control flow, we ignore predicates during
constraint generation. Hence, in Figure 2, the predicatecounter
< 10 in line (8) was ignored.
• The statementcounter++ is particularly interesting when gener-
ating linear constraints. A linear constraint such ascounter!max
≥ counter!max + 1 cannot be interpreted by a linear program
solver. Hence, we model this statement by treating it as a pair of
statements:counter ′ = counter + 1; counter = counter ′.
These two constraints capture the fact that counter has been incre-
mented by1, and can be translated into constraints that are accept-
able to a linear program solver, although the resulting linear pro-
gram will beinfeasible(Section 4).
• A program variable that acquires its value from the environment
or from user input in an unguarded manner is considered unsafe
– for instance, the statementgetenv("PATH") , which returns the
search path, could return an arbitrarily long string. To reflect the
fact that the string can be arbitrarily long, we generate constraints
getenv$return!used!max ≥ ∞, getenv$return!used!min
≤ 0. Similarly, an integer variablei accepted as user input gives
rise to constraintsi!max ≥ ∞ andi!min ≤ -∞

3.3 Taint Analysis
The linear constraints then pass through ataint analysismod-

ule. The main goal of the taint analysis module is to make the
constraints amenable to the solvers presented in Section 4. These
solvers use linear programming, which can work only with finite
values, hence this requires us to remove variables that can obtain
infinite values. Section 4 will also demonstrate the importance of
max variables having finite lower bounds andmin variables having
finite upper bounds. Hence, taint analysis aims to:
• Identify and remove any variables that get an infinite value: As
mentioned in section 3.2, some constraint variablesvar are associ-
ated with constraints of the formvar ≥ ∞ or var ≤ -∞. Taint
analysis identifies constraint variables that can directly or indirectly
be set to±∞ and removes them from the set of constraints.

• Identify and remove any uninitialized constraint variables: The
system of constraints is examined to see if allmax constraint vari-
ables have a finite lower bound, and allmin constraint variables
have a finite upper bound; we refer to constraint variables that do
not satisfy this requirement asuninitialized. Constraint variables
may fail to satisfy the above requirement if either the program vari-
ables that they correspond to have not been initialized in the source
code, or program statements that affect the value of the program
variables have not been captured by the constraint generator. The
latter case may arise when the constraint generator does not have
a model for a library function that affects the value of the program
variable. It is important to realize that this analysis is not meant
to capture uninitializedprogramvariables, but is meant to capture
uninitializedconstraintvariables.

In the constraints obtained by the program in Figure 2, no vari-
ables will be removed by the taint analysis module, assuming that
we modeled the library functionsstrlen , fgets andstrcpy cor-
rectly. The taint analysis algorithm is presented in detail in [19].

3.4 Constraint Solving
The constraints that remain after taint analysis can be solved us-

ing linear programming. We have developed two solvers, both of
which use linear programming to obtain values for the constraint
variables. The goal of both solvers is the same, to obtain the best
possible estimate of the number of bytes used and allocated for each
buffer in any execution of the program. For a buffer pointed to by
buf , finding the number of bytes used corresponds to finding the
“tightest” possible range [buf!used!min ..buf!used!max]. This
can be done by finding the lowest and highest values of the con-
straint variablesbuf!used!max andbuf!used!min respectively
that satisfy all the constraints. Similarly, we can find the “tight-
est” possible range for the number of bytes allocated for the buffer
by finding the lowest and the highest values ofbuf!alloc!max
and buf!alloc!min respectively. For the program in Figure 2,
the constraint variables take on the values shown in Figure 4. We
explain in detail in Section 4 how these values were obtained.

3.5 Detecting Overruns
Based on the values inferred by the solver, as well as the values

inferred by the taint analysis module, the detector decides whether
there was an overrun on each buffer. We use several heuristics to
give the best possible judgment. We shall explain some of these in
the context of the values from Figure 4.
• The solver found that the buffer pointed to byheader has2048
bytes allocated for it, but that its length could have been between
1 and2048 bytes. This is a scenario where a buffer overrun can
never occur – and hence the buffer pointed to byheader is flagged
as “safe”. The same is true of the buffer pointed to bybuf .
• The buffer pointed to byptr was found to have between1024
and2048 bytes allocated, while between1 and2048 bytes could
have been used. Note thatptr is part of two assignment state-
ments. The assignment statement(6) could makeptr point to a
buffer as long as2048 bytes, while the statement(9) could make
ptr point to a buffer as long as1024 bytes. The flow insensitivity
of the analysis means that we do not differentiate between these
program points, and hence can only infer thatptr was up to2048
bytes long. In such a scenario, where the value ofptr!used!max
is bigger thanptr!alloc!min but smaller than (or equal to) the
value ofptr!alloc!max , we conservatively conclude that there
might have been an overrun. This can result in afalse positivedue
to the flow insensitivity of the analysis.
• In cases such as for program variablecopy where we observe
thatcopy!alloc!max is less thancopy!used!max , we know that

there is a run of the program in which more bytes were written into
the buffer than it could possible hold, and we conclude that there
was an overrun on the buffer.

Variable min Value max Value
header!used 1 2048
header!alloc 2048 2048
buf!used 1 1024
buf!alloc 1024 1024
cc1!used 1 2048
cc1!alloc 0 2047
ptr!used 1 2048
ptr!alloc 1024 2048
cc2!used 1 2048
cc2!alloc 0 2047
buffer!used 1 2048
buffer!alloc 1024 2048
copy!used 1 2048
copy!alloc 0 2047
counter 0 ∞

Figure 4: Values of some constraint variables

We have developed a GUI front end that enables the end-user to
“surf” the warnings – every warning is linked back to the source
code line that it refers to. Moreover, the user can exploit the pro-
gram slicing capabilities of CodeSurfer to verify real overruns.

4. CONSTRAINT RESOLUTION USING LIN-
EAR PROGRAMMING

This section describes two solvers based on linear programming
that the tool uses to solve the set of generated constraints. We chose
to use linear programming for several reasons:
• The use of linear programming allows us to model arbitrary lin-
ear constraints. Hence, our solver automatically evolves to han-
dle new kinds of constraints. Other tools [29, 30, 33] use special-
ized solvers – generation of new kinds of constraints will mean that
these solvers have to be specially adapted to deal with them.
•Commercial implementations of linear program solvers are known
to scale efficiently to millions of constraints.
• The use of a well developed theory helped us easily reason about
the correctness of our solvers.
• Finally, we are currently working on the use of thedual of the
linear program for diagnostic information. In particular, we are in-
vestigating how the dual linear program can be used to produce a
program path that leads to the statement that causes the overflow.
Such information is valuable since it tells the user of the toolwhy
there was an overrun.

4.1 Overview of the solver
A Linear Program is an optimization problem that is expressed

as follows:

Minimize : cTx

Subject To : Ax ≥ b

whereA is anm × n matrix of constants,b andc are vectors of
constants, andx is a vector of variables. This is equivalent to saying
that we have a system ofm inequalities inn variables, and are
required to find values for the variables such that all the constraints
in the system are satisfied and theobjective functioncT x takes its
lowest possible value. It is important to note that the above form
is just one of the numerous ways in which a linear program can be
expressed. For a more comprehensive view of linear programming,
see [27]. Linear programming works on finite real numbers; that
is, the variables in the vectorx are only allowed to take finite real

values. Hence the optimum value of the objective function, if it
exists, is always guaranteed to be finite.

Linear programming is well studied in the literature, and there
are well-known techniques to solve linear programs, Simplex [12,
27] being the most popular of them. Other known techniques, such
interior point methods [31] work in polynomial time. Commer-
cially available solvers for solving linear programs, such as SoPlex
[32] and CPLEX [25] implement these and related methods.

The set of constraints that we obtained after program analysis
are linear constraints, hence we can formulate our problem as a lin-
ear program. Our goal is to obtain the values forbuf!alloc!min ,
buf!alloc!max , buf!used!min andbuf!used!max that yield
the tightest possible ranges for the number of bytes allocated and
used by the buffer pointed to bybuf in such a way that all the con-
straints are satisfied. Formally, we are interested in finding the low-
est possible values ofbuf!alloc!max andbuf!used!max , and
the highest possible values ofbuf!alloc!min andbuf!used!min
subject to the set of constraints. We can obtain the desired bounds
for each bufferbuf by solving four linear programs, each with the
same constraints but with different objective functions:

Minimize: buf!alloc!max
Maximize:buf!alloc!min
Minimize: buf!used!max
Maximize:buf!used!min

However, it can be shown (the proof is beyond the scope of this
paper) that for the kind of constraints generated by the tool, if all
max variables have finite lower bounds, and allmin variables have
finite upper bounds, then the values obtained by solving the four
linear programs as above are also the values that optimize the linear
program with the same set of constraints subject to the objective
function:
Minimize:

∑
buf (buf!alloc!max - buf!alloc!min

+ buf!used!max - buf!used!min)
Note that this objective function combines the constraint vari-

ables acrossall buffers. Since taint analysis ensures that allmax
variables have finite lower bounds and allmin variables have finite
upper bounds, we can solve justonelinear program, and obtain the
bounds forall buffers.

It must be noted that we are actually interested in obtaining inte-
ger values forbuf!alloc!max , buf!used!max , buf!alloc!min
andbuf!used!min . The problem of finding integer solutions to a
linear program is called Integer Linear Programming and is a well
known NP-complete problem [12]. Our approach is thus an ap-
proximation to the real problem of findinginteger solutions that
satisfy the constraints.

4.2 Handling Infeasible Linear Programs
While at first glance the method seems to give the desired buffer

bounds, it does not work for all cases. In particular, an optimal so-
lution to a linear program need not even exist. We describe briefly
the problems faced when using a linear programming based ap-
proach for determining the buffer bounds. A linear program is said
to befeasibleif one can find finite values for all the variables such
that all the constraints are satisfied. For a linear program inn vari-
ables, such an assignment is a vector inRn and is called afeasible
solution to the linear program. A feasible solution is said to beop-
timal if it also maximizes (or minimizes) the value of the objective
function. A linear program is said to beunboundedif a feasible so-
lution exists, but no solution optimizes the objective function. For
instance, consider:

Maximize : x

Subject To : x ≥ 5

Any value ofx ≥ 5 is a feasible solution to the above linear pro-
gram, but no finite valuex ∈ R optimizes the objective function.
Finally, a linear program is said to beinfeasibleif it has no feasible
solutions. An example of an infeasible linear program is shown in
Figure 5.

Minimize : counter!max
Subject To : counter′!max ≥ counter!max + 1

counter!max ≥ counter′!max

Figure 5: An Infeasible Linear Program

In our formulation, if a linear program has an optimal solution,
we can use that value as the buffer bound. None of the linear pro-
grams in our case can be unbounded, since the constraints have
been examined by the taint analyzer to ensure that allmax variables
have finite lower bounds. We minimize for themax variables in the
objective function, and since all themax variables have finite lower
bounds, the lowest value that eachmax variable can obtain is also
finite. Similarly, allmin variables have finite upper bounds, and so
when we maximize themin variables, the highest values that they
could obtain are also finite.Hence taint analysis is an essential step
to ensure that our approach works correctly.

However, when the linear program is infeasible, we cannot as-
sign any finite values to the variables to get a feasible solution. As
a result, we cannot obtain the values for the buffer bounds. In such
a case, a safe option would be to set allmax variables to∞ and
min variables to -∞, but that information would be virtually use-
less to the user of the tool because there would be too many false
alarms. The linear program may be infeasible due to a small sub-
set of constraints; in such a scenario, setting all variables to infinite
values will be overly conservative. For instance, the constraints in
Figure 2 are infeasible because of the constraints generated for the
statementcounter++ .

We have developed an approach in which we try to remove a
“small” subset of the original set of constraints so that the resultant
constraint system is feasible. In fact, the problem of “correcting”
infeasible linear programs to make them feasible is a well studied
problem in operations research. The approach is to identifyIrre-
ducibly Inconsistent Sets(calledIIS) [9]. An IIS is a minimal set of
inconsistent constraints, i.e., the constraints in the IIS together are
infeasible, but any subset of constraints in the IIS form a feasible
set. For instance, both the constraints in the linear program in Fig-
ure 5 constitute an IIS because the removal of any one of the two
constraints makes the linear program feasible. There are several ef-
ficient algorithms available to detect IISs in a set of constraints. We
used theElastic Filtering algorithm[9]. The Elastic Filtering Algo-
rithm takes as input a set of linear constraints and identifies an IIS
in these constraints (if one exists). An infeasible linear program
may have more than one IISs in it, and the elastic filtering algo-
rithm is guaranteed to find at least one of these IISs. To produce a
feasible linear program from an infeasible linear program, we may
be required to run the elastic filtering algorithm several times; each
run identifies and removes an IIS and produces a smaller linear pro-
gram which can further be examined for presence of IISs.

Figure 6 pictorially shows our approach to obtain a set of fea-
sible linear constraints from a set of infeasible linear constraints.
We first examine the input set, depicted asC, to find out if it is
feasible; if so, it does not contain IISs, andC can be used as the
set of constraints in our linear program formulation. If theC turns
out to be infeasible, then it means that there is a subset ofC that
forms one or more IISs. This subset is depicted asC′ in the fig-
ure. The elastic filtering algorithm, over several runs, identifies and

C’’

C’

The set D obtained by
removing C’’

Removal of C’ results inThe set C of constraints.
a set C’’ tainted by C’C’ denotes a set of IISs

Elastic Taint
Filtering AnalysisC C − C’ D

.

Figure 6: Making an Infeasible set of constraints amenable to Linear Programming

removes the subsetC′ from the set of constraints. The resultant
setC − C′ is feasible. We then set the values of themax andmin
variables appearing inC′ to ∞ and -∞ respectively. We do so
because we cannot infer the values of these variables using linear
programming, and hence setting these variables to infinite values is
a conservative approach. These variables whose values are infinite
may appear in the set of constraintsC − C′. The scenario is now
similar to taint analysis, where we had some constraint variables
whose values were infinite, and we had to identify and remove the
constraint variables that were “tainted” by the infinite variables.

Therefore, we apply the taint analysis algorithm to identify the
tainted variables, and remove the constraints in which they appear.
This step results in further removal of constraints, which are de-
picted in the Figure 6 by a subsetC′′ of C − C′. The set of con-
straints after removal ofC′′, denoted asD in Figure 6, satisfies
the property that allmax variables appearing in it have finite lower
bounds, and allmin variables have finite upper bounds. Moreover,
D is feasible, and will only yield optimal solutions when solved
as a linear program with the objective functions described earlier.
Hence, we solve the linear program using the set of constraints in
D. This algorithm is presented in detail in [19].

We have implemented this approach by extending the commer-
cially available package SoPlex [32]. SoPlex is a linear program
solver; we extended it by adding IIS detection and taint analysis.
In practice, linear program solvers work much faster when the con-
straints have beenpresolved. Presolving is a method by which con-
straints are simplifiedbeforebeing passed to the solver. Several
such techniques are described in the literature [7]; we have incor-
porated some of them in our solver.

4.3 Solving Constraints Hierarchically
While the approach presented above is fast, it is an approxima-

tion algorithm. In particular, the algorithm may remove more con-
straints than are actually required to make the constraints feasible.
As a result, more constraint variables may be set to the values∞
or -∞. To address this imprecision, we have designed an imple-
mented ahierarchical solver. The idea behind this solver is to
decompose the set of constraints into smaller subsets, and solve
each subset separately. We do so by constructing a directed acyclic
graph (DAG), each of whose vertices represents a set of constraints.
Moreover, each constraint is associated with exactly one vertex of
the DAG. The DAG is constructed by defining a notion of “depen-
dency” between a pair of constraints (see [19]). The topological
order of the DAG naturally defines a hierarchy of the vertices. The
set of constraints corresponding to each vertex is then solved using
linear programming. It can be shown that this approach is math-
ematically precise in that it sets fewest number of constraint vari-
ables to∞ or -∞, and produces precise ranges. We have omitted
the details due to space considerations, consult [19] for details.

5. ADDING CONTEXT SENSITIVITY
The constraint generation process described in Section 3 was

context-insensitive. When we generated the constraints for a func-
tion, we considered each call-site as an assignment of the actual-in
variables to the formal-in variables, and the return from the func-
tion as an assignment of the formal-out variables to the actual-out
variables. As a result, we merged information across call-sites,
thus making the analysis imprecise. In this section we describe
two techniques to incorporate context sensitivity.

Constraint inliningis similar in spirit to inlining function bodies
at call-sites. Observe that in the context-insensitive approach, we
lost precision because we treateddifferentcall-sites to a function
identically, i.e, by assigning the actual-in variables at each call-site
to thesameformal parameter.

Constraint inlining alleviates this problem by creating a fresh
instance of the constraints of the called function at each call-site.
At each call-site to a function, we produce the constraints for the
called function with the local variables and formal parameters re-
named uniquely for that call-site. This is illustrated in the example
below, which shows some of the constraints forcopy buffer from
Figure 2 specialized for the call-site at line(7) :

copy!alloc!max 1 ≥ buffer!used!max 1 - 1
copy!used!max 1 ≥ buffer!used!max 1
copy!used!min 1 ≤ buffer!used!min 1
copy buffer$return!used!max 1 ≥ copy!used!max 1
copy buffer$return!used!min 1 ≤ copy!used!min 1

Context-sensitivity can be obtained by modeling each call-site to
the function as a set of assignments to the renamed instances of
the formal variables. The actual-in variables are assigned to there-
namedformal-in variables, and therenamedformal-out variables
are assigned to the actual-out variables. As a result, there is exactly
one assignment to each renamed formal-in parameter of the func-
tion, which alleviates the problem of merging information across
different calls to the same function.

With this approach to constraint generation, we obtain the range
[0..2047] and [1..2048] for cc1!alloc andcc1!used respectively,
while cc2!alloc and cc2!used obtain [0..1023] and [1..1024]
respectively, which is an improvement over the values reported in
Figure 4.

Note that using the constraint inlining approach, we can obtain
the value of a variable with a particular calling context (the call-
ing context will be encoded implicitly in the renamed variable).
However, this comes at a price – since we can have an exponential
number of calling contexts, the constraint system will have a large
number of variables, and as a result, a large number of constraints.
Moreover, this approach cannot work with recursive function calls.

These drawbacks can be overcome through the use ofsummary
information. In this approach to inter-procedural dataflow analysis,
first suggested by Sharir and Pnueli [28], a “summary” is obtained
for each functionfoo , and the summary information is used at each
callsite tofoo to “simulate” the effect of the call.

In our case, a function can be summarized by generatingsum-
mary constraints, which summarize the effect of a function in terms
of the constraint variables representing global variables and formal
parameters of the function. This is equivalent to finding a pro-
jection of the constraints generated by the function on the global
variables and the formal parameters of the function. This problem
has several well-known solutions. In particular, if the function gen-
erates onlydifference constraints, then the problem of finding the
summary constraints reduces to an instance of the all-pairs shortest
path algorithm [12, 19], for which several efficient algorithms are
known. For more general kinds of constraints, the Fourier-Motzkin
variable elimination algorithm [16] can be used.

Consider, for instance, constraints generated bycopy buffer .
This function does not modify or use global variables, and hence
we obtain the summary constraints (shown below) by projecting
the constraints on the formal parameters of this function.

copy buffer$return!alloc!max ≥ buffer!used!max - 1
copy buffer$return!used!max ≥ buffer!used!max
copy buffer$return!alloc!min ≤ buffer!used!min - 1
copy buffer$return!used!min ≤ buffer!used!min

To obtain context sensitivity, we use these constraints at each
callsite tocopy buffer with the formal parameters appearing in
the summary constraints replaced with the corresponding actuals.
Constraints are generated at line(7) by replacing the constraint
variables corresponding tobuffer andcopy buffer$return in
the summary constraints with the constraint variables correspond-
ing to header and cc1 respectively. Similarly, the relationship
betweencc2 andbuf at line (10) can be obtained by substituting
them in place ofcopy buffer$return andbuffer respectively,
in the summary constraints. Note that we must still retain the as-
signment of the actual variable to the formal-in parameter so that
we can obtain the values of the constraint variables corresponding
to the local variables of the called function.

This approach is more efficient than the constraint inlining ap-
proach since it does not cause an increase in the number of con-
straint variables. However it is also less precise than constraint
inlining because of the same reason. Observe that in constraint in-
lining the variables were renamed at each callsite, thus enabling us
to examine their values due to a particular calling context. On the
other hand, in the summary constraints approach the values of the
variables are merged across different calling contexts, thus leading
to loss of precision. For instance, consider the program in Fig-
ure 2. While the values forcc1!used , cc1!alloc , cc2!used
and cc2!alloc are the same as obtained using constraint inlin-
ing, the values ofcopy!alloc andcopy!used are [0..2047] and
[1..2048] respectively. This is because the values that these vari-
ables obtained due to calls at line(7) and line(10) are “merged”.
The constraint inlining approach returns the values [0..2047] and
[1..2048] for copy!alloc andcopy!used respectively due to the
call at line(7) , and returns [0..1023] and [1..1024] due to the call
at line(10) .

This approach is capable of handling recursive function calls,
however for simplicity we do not attempt to summarize recursive
function calls in our prototype implementation.

6. EXPERIENCE WITH THE TOOL
We tested our prototype implementation on several popular com-

mercially used programs. In each case, the tool produced several
warnings; we used these warnings, combined with CodeSurfer fea-
tures such as slicing, to check for real overruns. We tested to
see if the tool discovered known overruns documented in public
databases such asbugtraq [1] and CERT [2], and also checked

to see if any overruns that were previously unreported were dis-
covered. We report our experience withwu-ftpd andsendmail .
Results on a few more packages are in [19].

Our experiments were performed on a3GHz Pentium-4 Xeon
processor machine with4GB RAM, running Debian GNU/Linux3.0.
We used CodeSurfer-1.8 for our experiments, thegcc-3.2.1 com-
piler for building the programs. CodeSurfer implements several
pointer analysis algorithms; in each case we performed the experi-
ments with a field-sensitive version of Andersen’s analysis [6] that
uses the common-initial-prefix technique of Yong and Horwitz [34]
to deal with structure casts. We configured the tool to use the hi-
erarchical solver described in Section 4.3 for constraint resolution
(so the values obtained will be precise) and produce constraints in
a context-insensitive fashion. Section 6.4 discusses the effects of
context-sensitive constraint generation.

6.1 WU-FTP Daemon
We tested two versions of thewu-ftp daemon, a popular file

transfer server. Version2.5.0 is an older version with several
known vulnerabilities (see CERT advisories CA-1999-13, CA-2001-
07 and CA-2001-33), while version2.6.2 is the current version
with several security patches that address the known vulnerabili-
ties.

6.1.1 wu-ftpd-2.6.2

wu-ftpd-2.6.2 has about18K lines of code, and produced178
warnings when examined by our tool. Upon examining the warn-
ings, we found14 previously unreported overruns; we will describe
one of these in detail.

The tool reported a potential overrun on a buffer pointed to by
accesspath in the procedureread servers line in the filerd-
servers.c , where as many as8192 bytes could be copied into the
buffer for which up to4095 bytes were allocated. Figure 7 shows
the code snippet fromread servers line which is responsible
for the overrun.

int read_servers_line (FILE *svrfp,
char *hostaddress,
char *accesspath){

static char buffer[BUFSIZ];
...
while (fgets(buffer, BUFSIZ, svrfp)){

...
if ((hp = gethostbyname(hcp))){

struct in_addr in;
memmove(&in, hp->h_addr, sizeof(in));
strcpy(hostaddress, inet_ntoa(in));

}
else

strcpy(hostaddress, hcp);

strcpy(accesspath, acp);
}

}

Figure 7: Code snippet fromwu-ftpd-2.6.2

Thefgets statement may copy as many as8192 (BUFSIZ) bytes
into buffer , which is processed further in this function. As a result
of this processing,acp andhcp point to locations insidebuffer .
By an appropriate choice of the contents ofbuffer , one could
makeacp or hcp point to a string buffer as long as8190 bytes,
which could result in an overflow on the buffer pointed to either by
accesspath or hostname respectively.

The procedureread servers line is called at several places
in the code. For instance, it is called in the main procedure inft-
prestart.c whereread servers line is called with two local

buffers,hostaddress andconfigdir , which have been allocated
32 bytes and4095 bytes respectively. This call reads the contents
of the file PATHFTPSERVERS, which typically has privileged ac-
cess. However, in non-standard and unusual configurations of the
system, PATHFTPSERVERScould be written to by a local user. As
a result, the buffershostaddress andconfigdir can overflow
based on a carefully chosen input string, possibly leading to a local
exploit. The use of astrncpy or strlcpy statement instead of the
unsafestrcpy in read servers line rectifies the problem.

A few other new overruns which were detected by the tool were:
• An uncheckedsprintf in main in the fileftprestart.c could
result in16383 bytes being written into a local buffer that was al-
located4095 bytes.
• Another uncheckedsprintf in main in the file ftprestart.c
could result in8447 bytes being written into a local buffer that was
allocated4095 bytes.
• An uncheckedstrcpy in main in the file ftprestart.c could
result in8192 bytes being written into a local buffer that was allo-
cated4095 bytes.

In each of the above cases, a carefully chosen string in the file
PATHFTPACCESScan be used to cause the overrun. As before,
PATHFTPACCESStypically has privileged access, but could be
written to by a local user in non-standard configurations. We con-
tacted thewu-ftpd developers, and they have acknowledged the
presence of these bugs in their code, and are in the process of fix-
ing the bugs (at the time of writing this paper).

6.1.2 wu-ftpd-2.5.0

wu-ftpd-2.5.0 has about16K lines of code; when analyzed
by our tool, it produced139 warnings. We analyzed the warnings
to check for a widely exploited overrun reported in CERT advi-
sory CA-1999-13. The buffer overflow was on a globally declared
buffer mapped path in the proceduredo elem in the file ftpd.c .
It was noted in [22] that the overrun was due to a statementstr-
cat(mapped path, dir) , where the variabledir could be de-
rived (indirectly) from user input. As a result it was possible to
overflowmapped path for which 4095 bytes were allocated. Our
tool reported the range formapped path!used as [0..+∞], while
mapped path!alloc was [4095..4095]. The call strcat(dst,
src) would be modeled as four linear constraints by our tool:

dst ′!used!max ≥ dst!used!max + src!used!max
dst!used!max ≥ dst ′!used!max
dst ′!used!min ≤ dst!used!min + src!used!min
dst!used!min ≤ dst ′!used!min

The first two constraints make the linear program infeasible, as ex-
plained in Section 4, and result indst!used!max being set to +∞.
Hence, inwu-ftpd-2.5.0 , mapped path!used!max will be set
to +∞, and the tool would have reported the same range even in
the absence of an overrun. We used CodeSurfer’s program slic-
ing feature to confirm thatdir could be derived from user input.
We found that the proceduredo elem , one of whose parameters is
dir , was called from the proceduremapping chdir . This function
was in turn called from the procedurecmd, whose input arguments
could be controlled by the user. This shows the importance of pro-
viding the end user with several program analysis features. These
features, such as program slicing and control and data dependence
predecessors, which are part of CodeSurfer, aid the user of the tool
to understand the source code better and hence locate the source of
the vulnerability.

6.2 Sendmail
Sendmail is a very popular mail transfer agent. We analyzed

sendmail-8.7.6 , an old version that was released after a thor-

ough code audit of version8.7.5 . However, this version has sev-
eral known vulnerabilities. We also analyzedsendmail-8.11.6 ;
in March 2003, two new buffer overrun vulnerabilities were re-
ported in the then latest version ofsendmail . Both sendmail-
8.7.6 andsendmail-8.11.6 are vulnerable to these overruns as
well.

6.2.1 sendmail-8.7.6

sendmail-8.7.6 has about38K lines of code; when analyzed
by our tool, it produced295 warnings. Due to the large number
of warnings, we focused on scanning the warnings to detect some
known overruns.

Wagneret al. use BOON to report an off-by-one bug [30] in
sendmail-8.9.3 where as many as21 bytes, returned by a func-
tion queuename , could be written into a20 byte arraydfname . Our
tool identified four possible program points insendmail-8.7.6
where the return value fromqueuename is copied usingstrcpy
statements into buffers which are allocated20 bytes. As in [30],
our tool reported that the return value fromqueuename could be
up to 257 bytes long, and further manual analysis was required
to decipher that this was in fact an off-by-one bug. Another mi-
nor off-by-one bug was reported by the tool where the programmer
mistakenly allocated only3 bytes for the bufferdelimbuf which
stored" \n\t " , which is4 bytes long including the end of string
character.

6.2.2 sendmail-8.11.6

sendmail-8.11.6 is significantly larger than version8.7.6
and has68K lines of code; when we ran our tool, it produced453
warnings. We examined the warnings to check if the tool discov-
ered the new vulnerabilities reported in March 2003.

One of these vulnerabilities is on a functioncrackaddr in the
file headers.c , which parses an incoming e-mail address string.
This function stores the address string in a local static buffer called
buf that is declared to beMAXNAME + 1bytes long, and performs
several boundary condition checks to see thatbuf does not over-
flow. However, the condition that handles the angle brackets (<>)
in the From address string is imprecise, thus leading to the over-
flow [5].

Our tool reported thatbp, a pointer to the bufferbuf in the func-
tion hadbp!alloc!max = +∞ and bp!used!max = +∞, thus
raising an warning. However, the reason thatbp!alloc!max and
bp!used!max were set to +∞was because of several pointer arith-
metic statements in the body of the function. In particular, the state-
mentbp-- resulted inbp!alloc!max = +∞ andbp!used!max =
+∞. Hence, this warning would have existed even if the boundary
condition checks were correct.

We note that this bug is hard to track precisely in a flow-insensitive
analysis. Moreover, we have discovered that the use of control de-
pendence information, which associates each statement with the
predicate that decides whether the statement will be executed, is
crucial to detecting such overruns reliably. We are working towards
enhancing our infrastructure to support these features.

6.3 Performance
Table 1 contains representative numbers from our experiments

with wu-ftpd-2.6.2 and sendmail-8.7.6 . All timings were
obtained using the UNIXtime command. CODESURFERdenotes
the time taken by CodeSurfer to analyze the program, GENERA-
TOR denotes the time taken for constraint generation, while TAINT

denotes the time taken for taint analysis. The constraints produced
can be resolved in one of two ways; the rows LPSOLVE and HIER-
SOLVE report the time taken by the IIS detection based approach

wu-ftpd-2.6.2 sendmail-8.7.6

CODESURFER 12.54 sec 30.09 sec
GENERATOR 74.88 sec 266.39 sec
TAINT 9.32 sec 28.66 sec
LPSOLVE 3.81 sec 13.10 sec
HIERSOLVE 10.08 sec 25.82 sec
TOTAL (LP./HIER.) 100.55/106.82 sec 338.24/350.96 sec

Number of Constraints Generated
PRE-TAINT 22008 104162
POST-TAINT 14972 24343

Table 1: Performance of the tool

and the hierarchical solves approach respectively (Section 4). The
number of constraints output by the constraint generator is reported
in the row PRE-TAINT , while POST-TAINT denotes the number of
constraints after taint-analysis.

As noted earlier, the IIS detection based approach is more effi-
cient, but is not mathematically precise, whereas the hierarchical
solver is mathematically precise. We however found that the solu-
tion produced by the IIS detection based approach is a good approx-
imation to the solution obtained by the hierarchical solver. In case
of wu-ftpd-2.6.2 fewer than5% of the constraint variables, and
in the case ofsendmail-8.7.6 fewer than2.25% of the constraint
variables obtained imprecise values when we used the IIS detection
based approach. We also found that this imprecision did not signifi-
cantly affect the number of warnings – in case ofwu-ftpd-2.6.2
and sendmail-8.7.6 the IIS based approach resulted in1 and
2 more warnings respectively (these warnings were false alarms),
which shows that in practice we can use the faster IIS detection
based approach with little loss of precision.

6.4 Adding Context Sensitivity
We report here our experience with using context-sensitive anal-

ysis onwuftpd-2.6.2 using both the constraint inlining approach
and the summary constraints approach. Note thatadding context
sensitivity will not find new overruns. Adding context sensitivity
changes the constraints generated so that they precisely reflect the
call-return semantics of functions. As a result, we can expect more
precise values from the constraint solvers. To measure the effec-
tiveness of each approach, we will count the number of range vari-
ables that were refined in comparison to the corresponding ranges
obtained in a context-insensitive analysis. Recall that the value of
a range variablevar is given by the corresponding constraint vari-
ablesvar!min andvar!max as [var!min ..var!max]. We chose
this metric since, as explained in Section 3.5, the detector uses the
values of the ranges to produce diagnostic information, and more
precise ranges will more precise diagnostic information.

The context-insensitive analysis onwuftpd-2.6.2 yields val-
ues for7310 range variables. Using the summary constraints ap-
proach, we found that72 of these range variables obtained more
precise values. Note that in this approach the number of constraint
variables (and hence the number of range variables) is the same as
in the context-insensitive analysis. However, the number of con-
straints may change, and we observed a1% increase in the num-
ber of constraints. This change can be attributed to the fact that
summarization introduces a some constraints (the summaries), and
removes some constraints (the old call-site assignment constraints).

The constraint inlining approach, on the other hand, leads to a
5.8× increase in the number of constraints, and a8.7× increase
in the number of constraint variables (and hence the number of
range variables). This can be attributed to the fact that the inlining
based approach specializes the set of constraints at each callsite.

In particular, we observed that the7310 range variables from the
context-insensitive analysis were specialized to63704 range vari-
ables based on calling context. We can count the number of range
variables that obtained more precise values in two possible ways:
• Out of 63704 specialized range variables,7497 range variables
obtained more precise values than the corresponding unspecialized
range variables.
• Out of 7310 unspecialized range variables,406 range variables
had obtained more precise values in at least one calling context.

As noted earlier, the constraint inlining approach returns more
precise information than the summary constraints based approach.
To take a concrete example, we consider the program variablems-
gcode (an integer), which is the formal parameter of a function
pr mesg in the file access.c in wu-ftpd-2.6.2 . The function
pr mesg is called from several places in the code with different val-
ues for the parametermsgcode . The summary constraints approach
results in the value [530..550] for the range variable corresponding
to msgcode . Constraint inlining refines these ranges – for instance,
it is able to infer thatpr mesg is always called with the value530
from the functionpass in the file ftpd.c .

6.5 Effects of Pointer Analysis
As observed in Section 3, we were able to reduce false negatives

through the use of pointer analysis. The tool is capable of han-
dling arbitrary levels of dereferencing. For instance, ifp points to
a pointer to a structures , the pointer analysis algorithms correctly
infer this fact. Similarly, ifp andq are of typechar** (i.e., they
point-to pointers to buffers), the constraints for a statement such
asstrcpy(*p, *q) would be correctly modeled in terms of the
points-to sets ofp and q (recall that we generated constraints in
terms of pointers to buffers rather than buffers themselves).

To observe the benefits of pointer analysis we generated con-
straints with the pointer analysis algorithms turned off. Since fewer
constraints will be generated, we can expect to see fewer warnings;
in the absence of these warnings, false negatives may result. We
observed a concrete case of this in the case ofsendmail-8.7.6 .
When we generated constraints without including the results of the
pointer analysis algorithms, the tool output251 warnings (as op-
posed to295 warnings). However, this method resulted in the warn-
ing on the arraydfname being suppressed, so the tool missed the
off-by-one bug that we described earlier. A closer look at the pro-
cedurequeuename revealed that in the absence of points-to facts,
the tool failed to generate constraints for a statement:
snprintf(buf, sizeof buf, "%cf%s", type, e − >e id)
in the body ofqueuename since points to facts for the variablee,
which is a pointer to a structure, were not generated.

We note that BOON [30] identified this off-by-one bug because
of a simple assumption made to model the effect of pointers, i.e.,
BOON assumes that any pointer to a structure of typeT can point
to all structures of typeT. While this technique can be effective at
discovering bugs, the lack of precise points-to information will lead
to a larger number of false alarms.

6.6 Shortcomings
While we found the prototype implementation a useful tool to

audit several real world applications, we also noted several short-
comings and are working towards overcoming these limitations.

First, the flow insensitivity of the analysis meant that we would
have several false alarms. Through the use of slicing we were able
to weed out the false alarms, nevertheless it was a manual and often
painstaking procedure. Moreover, the benefits observed by adding
context-sensitivity were somewhat limited because of the flow in-
sensitivity of the analysis. By transitioning to a Static Single As-

signment (SSA) representation [15] of the program, we can add a
limited form of flow sensitivity to the program. However, the SSA
representation will result in a large number of constraint variables.
Fortunately, we have observed that the solvers readily scale to large
linear programs with several thousand variables.

Second, by modeling constraints in terms of pointers to buffers
rather than buffers, we can miss overruns, thus leading to false neg-
atives [30]. However, the reason we did so was because the pointer
analysis algorithms themselves were flow- and context-insensitive,
and generating constraints in terms of buffers would have resulted
in a large number of constraints and consequently a large number
of false alarms. By transitioning to “better” pointer analysis algo-
rithms we can model constraints in terms of buffers themselves,
thus eliminating the false negatives.

7. CONCLUSIONS
We have demonstrated a light-weight technique to analyze C

source code to detect buffer overrun vulnerabilities. We have shown
the efficacy of the technique by applying it to real world examples
and identifying new vulnerabilities in a popular security critical
package. Our techniques use novel ideas from the linear program-
ming literature, and provide a way to enhance context sensitivity.
The output of our tool, coupled with other program understanding
features of CodeSurfer, such as static slicing, aid the user to com-
prehend and eliminate bugs from source code.

Acknowledgments. We would like to thank the members of the
Wisconsin Safety Analyzer research group, Michael Ferris, Aditya
Rao and the anonymous reviewers for their suggestions.

8. REFERENCES
[1] bugtraq . www.securityfocus.com.
[2] CERT/CC advisories.www.cert.org/advisories.
[3] The twenty most critical internet security vulnerabilities.

www.sans.org/top20.
[4] Aleph-one. Smashing the stack for fun and profit. Nov 1996.

Phrack Magazine.
[5] Technical analysis of remote sendmail vulnerability.

www.securityfocus.com/archive/1/313757.
[6] L. O. Andersen.Program Analysis and Specialization for the

C Programming Language. PhD thesis, DIKU, Univ. of
Copenhagen, 1994. (DIKU report 94/19).

[7] E. D. Anderson and K. D. Anderson. Presolving in linear
programming.Mathematical Prog., 71(2):221–245, 1995.

[8] R. Bodik, R. Gupta, and V. Sarkar. ABCD: Eliminating
array-bounds checks on demand. InACM Conf. on Prog.
Lang. Design and Impl. (PLDI), 2000.

[9] J. W. Chinnek and E. W. Dravinieks. Locating minimal
infeasible constraint sets in linear programs.ORSA Journal
on Computing, 3(2):157–168, 1991.

[10] T-C. Chiueh and F-H. Hsu. RAD: A compile-time solution to
buffer overflow attacks. In21st Intl. Conf. on Distributed
Computing Systems (ICDCS), 2001.

[11] J. Condit, M. Harren, S. McPeak, G. C. Necula, and
W. Weimer. CCured in the Real World. InACM Conf. on
Prog. Lang. Design and Impl. (PLDI), 2003.

[12] T. H. Cormen, C. E. Lieserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 2001.

[13] C. Cowan, S. Beattie, R-F Day., C. Pu, P. Wagle, and
E. Walthinsen. Automatic detection and prevention of buffer
overflow attacks. In7th USENIX Sec. Symp., 1998.

[14] C. Cowan, S. Beattie, J. Johansen, and P. Wagle.
PointGuardTM : Protecting pointers from buffer overflow
vulnerabilities. In12th USENIX Sec. Symp., 2003.

[15] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficiently computing static single assignment
form and the control dependence graph.ACM Trans. on
Prog. Lang. and Systems (TOPLAS), 13(4):452–490, 1991.

[16] G. B. Dantzig and B. Curtis Eaves. Fourier-Motzkin
elimination and its dual.Journal of Combinatorial Theory
(A), 14:288–297, 1973.

[17] N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic
tool for statically detecting all buffer overflows in C. InACM
Conf. on Prog. Lang. Design and Impl. (PLDI), 2003.

[18] H. Etoh and K. Yoda. Protecting from stack-smashing
attacks. 2000.www.trl.ibm.com/projects/security/ssp/main.html.

[19] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. Vitek.
Buffer overrun detection using linear programming and static
analysis. 2003. UW-Madison Comp. Sci. Tech. Report 1488.
ftp://ftp.cs.wisc.edu/pub/tech-reports/reports/2003/tr1488.ps.Z

[20] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs.ACM Transactions on Prog.
Lang.s and Systems (TOPLAS), 12(1):26–60, 1990.

[21] S. Horwitz, T. Reps, M. Sagiv, and G. Rosay. Speeding up
slicing. In2nd ACM Symp. on Foundations of Soft. Engg.
(FSE), pages 11–20, New York, 1994.

[22] D. Larochelle and D. Evans. Statically detecting likely buffer
overflow vulnerabilities. In10th USENIX Sec. Symp., 2001.

[23] E. Larson and T. Austin. High coverage detection of input
related security faults. In12th USENIX Sec. Symp., 2003.

[24] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe
retrofitting of legacy code. InACM Conf. on the Principles of
Prog. Lang. (POPL), 2002.

[25] CPLEX Optimizer.www.cplex.com/.
[26] R. Rugina and M. C. Rinard. Symbolic bounds analysis of

pointers, array indices and accessed memory regions. In
ACM Conf. on Prog. Lang. Design and Impl. (PLDI), 2000.

[27] A. Schrijver.Theory of Linear and Integer Programming.
Wiley, N.Y., 1986.

[28] M. Sharir and A. Pnueli.Two Approaches to Interprocedural
Dataflow Analysis. Prentice Hall Inc., 1981.

[29] D. Wagner.Static Analysis and Computer Security: New
techniques for software assurance. PhD thesis, UC Berkeley,
Dec 2000.

[30] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first
step towards automated detection of buffer overrun
vulnerabilities. InNetwork and Distributed System Security
(NDSS), 2000.

[31] S. J. Wright.Primal-Dual Interior-Point Methods. SIAM
Philadelphia, 1997.

[32] R. Wunderling.Paralleler und Objektorientierter
Simplex-Algorithmus. PhD thesis, Konrad-Zuse-Zentrum fur
Informationstechnik Berlin, TR 1996-09.
www.zib.de/PaperWeb/abstracts/TR-96-09/.

[33] Y. Xie, A. Chou, and D. Engler. ARCHER: Using symbolic,
path-sensitive analysis to detect memory access errors. In9th

European Soft. Engg. Conf. and 11th ACM Symp. on
Foundation of Soft. Engg. (ESEC/FSE), 2003.

[34] S. Yong, S. Horwitz, and T. Reps. Pointer analysis for
programs with structures and casting. InACM Conf. on Prog.
Lang. Design and Impl. (PLDI), 1999.

	Introduction
	Related Work
	Overall Tool Architecture
	CodeSurfer
	Constraint Generation
	Taint Analysis
	Constraint Solving
	Detecting Overruns

	Constraint Resolution using Linear Programming
	Overview of the solver
	Handling Infeasible Linear Programs
	Solving Constraints Hierarchically

	Adding Context Sensitivity
	Experience with the tool
	WU-FTP Daemon
	wu-ftpd-2.6.2
	wu-ftpd-2.5.0

	Sendmail
	sendmail-8.7.6
	sendmail-8.11.6

	Performance
	Adding Context Sensitivity
	Effects of Pointer Analysis
	Shortcomings

	Conclusions
	REFERENCES -9pt

