The Unwritten Contract of Solid State Drives

Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Department of Computer Sciences, University of Wisconsin - Madison

Enterprise SSD revenue is expected to exceed enterprise HDD in 2017

App

FS

App FS

Performance degradation

Performance degradation

Performance degradation

Performance fluctuation

Early end of device life

Block Device Interface: read(range), write(range), discard(range)

Block Device Interface: read(range), write(range), discard(range)

Unwritten Contract of HDDs

- Sequential accesses are best
- Nearby accesses are more efficient than farther ones

MEMS-based storage devices and standard disk interfaces: A square peg in a round hole?

Steven W. Schlosser, Gregory R. Ganger
FAST'04

Block Device Interface: read(range), write(range), discard(range)

Unwritten Contract of HDDs

Unwritten Contract of SSDs

- Sequential accesses are best
- Nearby accesses are more efficient than farther ones

MEMS-based storage devices and standard disk interfaces: A square peg in a round hole?

Steven W. Schlosser, Gregory R. Ganger
FAST'04

Existing studies

- Existing studies
- Experience of implementing a detailed SSD simulator

- Existing studies
- Experience of implementing a detailed SSD simulator
- Analysis of experiments

- Existing studies
- Experience of implementing a detailed SSD simulator
- Analysis of experiments

The Unwritten Contract of SSDs

In the paper

In the paper

We made 24 detailed observations

In the paper

We made 24 detailed observations

We learned several high-level lessons

Outline

Overview

SSD Unwritten Contract

Violations of the Unwritten Contract

Conclusions

Outline

Overview

SSD Unwritten Contract

Violations of the Unwritten Contract

Conclusions

SSD Background

Controller

FTL

- address mapping
- garbage collection
- wear-leveling

Rules of the Unwritten Contract

```
#1 Request Scale
```

#2 Locality

#3 Aligned Sequentiality

#4 Grouping by Death Time

#5 Uniform Data Lifetime

SSD clients should issue **large** data requests or **multiple** outstanding data requests.

SSD clients should issue **large** data requests or **multiple** outstanding data requests.

SSD clients should issue **large** data requests or **multiple** outstanding data requests.

Request

SSD clients should issue **large** data requests or **multiple** outstanding data requests.

SSD clients should issue **large** data requests or **multiple** outstanding data requests.

If you violate the rule:

- Low internal parallelism

Performance impact:

18x read bandwidth 10x write bandwidth

F. Chen, R. Lee, and X. Zhang. Essential Roles of Exploit- ing Internal Parallelism of Flash Memory Based Solid State Drives in High-speed Data Processing. In Proceedings of the 17th International Symposium on High Performance Computer Architecture (HPCA-11), pages 266–277, San Antonio, Texas, February 2011.

SSD clients should access with locality

SSD **Translation Cache RAM** Logical to **Physical** Mapping **FLASH Table**

SSD clients should access with locality

SSD clients should access with locality

SSD ranslation Cache **RAM** Logical to **Physical** Mapping **FLASH Table**

SSD clients should access with locality

SSD P Hit P ranslation Cache **RAM** Logical to **Physical** Mapping **FLASH Table**

SSD clients should access with locality

SSD P Hit P ranslation Cache **RAM** High Cache Hit Ratio Log to **Physical** Mapping **FLASH Table**

SSD clients should access with locality

SSD clients should access with locality

SSD

SSD clients should access with locality

SSD clients should access with locality

Rule 3: Aligned Sequentiality

Details in the paper

Rule 4: Grouping By Death Time

Data with similar death times should be placed in the same block.

Data movement!!!

If you violate the rule:

- Performance penalty
- Write amplification

movement!!!

Time

Performance impact:

4.8x write bandwidth
1.6x throughput
1.8x block erasure count

C. Lee, D. Sim, J.-Y. Hwang, and S. Cho. F2FS: A New File System for Flash Storage. In Proceedings of the 13th USENIX Conference on File and Storage Technologies (FAST '15), Santa Clara, California, February 2015.

J.-U. Kang, J. Hyun, H. Maeng, and S. Cho. The Multi- streamed Solid-State Drive. In 6th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage '14), Philadelphia, PA, June 2014.

Y. Cheng, F. Douglis, P. Shilane, G. Wallace, P. Desnoyers, and K. Li. Erasing Belady's Limitations: In Search of Flash Cache Offline Optimality. In 2016 USENIX Annual Technical Conference (USENIX ATC 16), pages 379–392, Denver, CO, 2016. USENIX Association.

Clients of SSDs should create data with similar lifetimes

Clients of SSDs should create data with similar lifetimes

Lifetime

1 Day

Clients of SSDs should create data with similar lifetimes

Lifetime

1 Day

Clients of SSDs should create data with similar lifetimes

Lifetime

1 Day

Clients of SSDs should create data with similar lifetimes

Lifetime

1 Day

Usage Count:

No wear-leveling needed

1 Day

1000 Years

Lifetime

1 Day

1000 Years

Usage Count:

365*1000 365*1000

Lifetime

1 Day

1000 Year

Some blocks wear out sooner

Frequent wear-leveling needed!!!

55D

Usage Count:

365*1000 365*1000

Lifetime

1 Day

1000 Year

If you violate the rule:

- Performance penalty
- Write amplification

Some blocks wear out sooner

Frequent wear-leveling needed!!!

55D

Usage Count:

365*1000 365*1000

Lifetime

1 Day

1000 Year

If you violate the rule:

- Performance penalty
- Write amplification

Performance impact:

1.6x write latency

S. Boboila and P. Desnoyers. Write Endurance in Flash Drives: Measurements and Analysis. In Proceedings of the 8th USENIX Symposium on File and Storage Technologies (FAST '10), San Jose, California, February 2010.

Usage Count:

Outline

Overview

SSD Unwritten Contract

Violations of the Unwritten Contract

Conclusions

Do applications/file systems comply with the unwritten contract?

2 of Our 24 Observations

- 1. Linux page cache limits request scale
- 2. F2FS incurs more GC overhead than traditional file systems

2 of Our 24 Observations

- 1. Linux page cache limits request scale
- 2. F2FS incurs more GC overhead than traditional file systems

LevelDB and RocksDB can access files in large sizes.

Why was the request scale low?

App				
Page Cache				
Block Layer	·			
SSD				

App	read()	2MB	
Page Cache			
Block Layer			
SSD			

Cause of Violation Large reads are throttled by small prefetching (readahead).

2 of Our 24 Observations

- 1. Linux page cache limits request scale
- 2. F2FS incurs more GC overhead than traditional file systems

2 of Our 24 Observations

1. Linux page cache limits request scale

2. F2FS incurs more GC overhead than traditional file systems

What's a zombie curve?

What's a good zombie curve?

What's a good zombie curve?

What's a bad zombie curve?

What's a bad zombie curve?

BTW, zombie curve helps you choose over-provisioning ratio

BTW, zombie curve helps you choose over-provisioning ratio

F2FS incurs a worse zombie curve (higher GC overhead) than ext4 for SQLite

F2FS incurs a worse zombie curve (higher GC overhead) than ext4 for SQLite

SQLite fragmented F2FS

- SQLite fragmented F2FS
- F2FS did not discard data that was deleted by SQLite

- SQLite fragmented F2FS
- F2FS did not discard data that was deleted by SQLite
- F2FS was not able to stay log-structured for SQLite's I/O pattern

Legacy file system allocation policies break locality

Legacy file system allocation policies break locality

Application log structuring does not reduce GC

Legacy file system allocation policies break locality

Application log structuring does not reduce GC

24 observations in the paper

The SSD contract is multi-dimensional

- Optimizing for one dimension is not enough
- We need more sophisticated tools to analyze workloads

The SSD contract is multi-dimensional

- Optimizing for one dimension is not enough
- We need more sophisticated tools to analyze workloads

Although not perfect, traditional file systems perform surprisingly well upon SSDs

The SSD contract is multi-dimensional

- Optimizing for one dimension is not enough
- We need more sophisticated tools to analyze workloads

Although not perfect, traditional file systems perform surprisingly well upon SSDs

Myths spread if the unwritten contract is not clarified

"Random writes increase GC overhead"

Understanding the unwritten contract is crucial for designing high performance application and file systems

Understanding the unwritten contract is crucial for designing high performance application and file systems

System designing demands more vertical analysis

Understanding the unwritten contract is crucial for designing high performance application and file systems

System designing demands more vertical analysis

WiscSee (analyzer) and WiscSim (SSD simulator) are available at: http://research.cs.wisc.edu/adsl/Software/wiscsee