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Do the current apps/FSes comply 
with the unwritten contract of SSDs?

LevelDB RocksDB
SQLite
(RollBack)

SQLite
(WAL) Varmail5 apps

for 
SSD

ext4 F2FS XFS
for 

SSD

3 file systems

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5Contract

To study the contract, we built a sophisticated 
SSD simulator and workload analyzer
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Rule #1: Request Scale 
Violation

Channel Channel Channel Channel

SSD

Wasted

If you violate the rule: 
- Low internal parallelism 

Performance impact: 
18x read bandwidth
10x write bandwidth

F. Chen, R. Lee, and X. Zhang. Essential Roles of Exploit- ing Internal Parallelism 
of Flash Memory Based Solid State Drives in High-speed Data Processing. In 
Proceedings of the 17th International Symposium on High Performance Com- 

puter Architecture (HPCA-11), pages 266–277, San Antonio, Texas, February 2011. 
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Rule 2: Locality Violation
SSD clients should access with locality
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If you violate the rule: 
- Translation cache misses
- More translation entry reads/writes

Performance impact: 
2.2x average response time

Y. Zhou, F. Wu, P. Huang, X. He, C. Xie, and J. Zhou. An Efficient Page-level FTL to 
Optimize Address Translation in Flash Memory. In Proceedings of the EuroSys 

Conference (EuroSys ’15), Bordeaux, France, April 2015. 
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Details in the paper
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Rule 4: Grouping By Death Time 
Violation

Data movement!!!

2pm

2pm

😞

If you violate the rule: 
- Performance penalty
- Write amplification

Performance impact: 
4.8x write bandwidth

1.6x throughput
1.8x block erasure count

C. Lee, D. Sim, J.-Y. Hwang, and S. Cho. F2FS: A New File System for Flash Storage. In Proceedings of the 13th USENIX Conference on File 
and Storage Technologies (FAST ’15), Santa Clara, California, February 2015. 

J.-U. Kang, J. Hyun, H. Maeng, and S. Cho. The Multi- streamed Solid-State Drive. In 6th USENIX Workshop on Hot Topics in Storage and File 
Systems (HotStorage ’14), Philadelphia, PA, June 2014. 

. Y. Cheng, F. Douglis, P. Shilane, G. Wallace, P. Desnoyers, and K. Li. Erasing Belady’s Limitations: In Search of Flash Cache Offline 
Optimality. In 2016 USENIX Annual Technical Conference (USENIX ATC 16), pages 379–392, Denver, CO, 2016. USENIX Association. 
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Rule 5: Uniform Data Lifetime 
Violation

SSD

1 1365*1000 365*1000Usage Count:

Some blocks wear out sooner

Frequent wear-leveling needed!!!

If you violate the rule: 
- Performance penalty
- Write amplification

Performance impact: 
1.6x write latency

S. Boboila and P. Desnoyers. Write Endurance in Flash Drives: Measurements and 
Analysis. In Proceedings of the 8th USENIX Symposium on File and Storage 

Technologies (FAST ’10), San Jose, California, February 2010.
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LevelDB and RocksDB can access files in large sizes.

Why was the request scale low?
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Buffered read(): Page cache implementation 
splits and serializes user requests

App

Page Cache

Block Layer

SSD

read() 2MB

128KB 128KB 128KB …

Surprise! Even reading 2MB in your 
app will not utilize SSD well.

One request at a time



Cause of Violation 
Large reads are throttled by small 

prefetching (readahead).
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Over-provisionedOver-provisioned
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What’s a bad zombie curve?

Over-provisioned

Move data before use



BTW, zombie curve helps you 
choose over-provisioning ratio

Over-provisioned



BTW, zombie curve helps you 
choose over-provisioning ratio

Over-provisioned



F2FS incurs a worse zombie curve (higher 
GC overhead) than ext4 for SQLite

Over-Provisioned

Flash Space
0 10.5 1.5 2

0 

0.25

0.5

0.75

1.0

Va
lid

 R
at

io

Animations cannot be displayed in PDF. 
Please see the animations at 

http://pages.cs.wisc.edu/~jhe/zombie.html

http://pages.cs.wisc.edu/~jhe/zombie.html


F2FS incurs a worse zombie curve (higher 
GC overhead) than ext4 for SQLite

Over-Provisioned

Flash Space
0 10.5 1.5 2

0 

0.25

0.5

0.75

1.0

Va
lid

 R
at

io

Animations cannot be displayed in PDF. 
Please see the animations at 

http://pages.cs.wisc.edu/~jhe/zombie.html

http://pages.cs.wisc.edu/~jhe/zombie.html


F2FS incurs a worse zombie curve (higher 
GC overhead) than ext4 for SQLite

Over-Provisioned

Flash Space
0 10.5 1.5 2

0 

0.25

0.5

0.75

1.0

Va
lid

 R
at

io

ext4 Animations cannot be displayed in PDF. 
Please see the animations at 

http://pages.cs.wisc.edu/~jhe/zombie.html

http://pages.cs.wisc.edu/~jhe/zombie.html


F2FS incurs a worse zombie curve (higher 
GC overhead) than ext4 for SQLite

F2FS Over-Provisioned

Flash Space
0 10.5 1.5 2

0 

0.25

0.5

0.75

1.0

Va
lid

 R
at

io

ext4 Animations cannot be displayed in PDF. 
Please see the animations at 

http://pages.cs.wisc.edu/~jhe/zombie.html

http://pages.cs.wisc.edu/~jhe/zombie.html


F2FS incurs a worse zombie curve (higher 
GC overhead) than ext4 for SQLite

F2FS Over-Provisioned

Flash Space
0 10.5 1.5 2

0 

0.25

0.5

0.75

1.0

Va
lid

 R
at

io

ext4

Stable-state curves 
characterize workloads.

Animations cannot be displayed in PDF. 
Please see the animations at 

http://pages.cs.wisc.edu/~jhe/zombie.html

http://pages.cs.wisc.edu/~jhe/zombie.html


F2FS incurs a worse zombie curve (higher 
GC overhead) than ext4 for SQLite

F2FS Over-Provisioned

Flash Space
0 10.5 1.5 2

0 

0.25

0.5

0.75

1.0

Va
lid

 R
at

io

ext4

Stable-state curves 
characterize workloads.

Animations cannot be displayed in PDF. 
Please see the animations at 

http://pages.cs.wisc.edu/~jhe/zombie.html

http://pages.cs.wisc.edu/~jhe/zombie.html


Why did F2FS incur a worse 
zombie curve (GC overhead)?



Why did F2FS incur a worse 
zombie curve (GC overhead)?

• SQLite fragmented F2FS



Why did F2FS incur a worse 
zombie curve (GC overhead)?

• SQLite fragmented F2FS
• F2FS did not discard data that was deleted by SQLite



Why did F2FS incur a worse 
zombie curve (GC overhead)?

• SQLite fragmented F2FS
• F2FS did not discard data that was deleted by SQLite
• F2FS was not able to stay log-structured for SQLite’s I/O pattern
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More Observations

Legacy file system allocation policies break locality

Application log structuring does not reduce GC

24 observations in the paper
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Lessons Learned
The SSD contract is multi-dimensional

• Optimizing for one dimension is not enough 
• We need more sophisticated tools to analyze 

workloads

Although not perfect, traditional file systems 
perform surprisingly well upon SSDs

Myths spread if the unwritten contract is not 
clarified

• “Random writes increase GC overhead”
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WiscSee (analyzer) and WiscSim (SSD simulator) are available at: 
http://research.cs.wisc.edu/adsl/Software/wiscsee

http://research.cs.wisc.edu/adsl/Software/wiscsee

