
The Unwritten Contract
of Solid State Drives

Jun He, Sudarsun Kannan,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Department of Computer Sciences, University of Wisconsin - Madison

0

5

10

15

2012 2013 2014 2015E 2016E 2017E 2018E 2019E
Year

R
ev

en
ue

 (B
illi

on
 D

ol
la

rs
)

Enterprise HDD Enterprise SSD

Enterprise SSD revenue is expected
to exceed enterprise HDD in 2017

HDD

SSD

Source: Gartner, Stifel Estimates
https://www.theregister.co.uk/2016/01/07/gartner_enterprise_ssd_hdd_revenue_crossover_in_2017/

2017

Storage stack is shifting from
the HDD era to the SSD era

App

FS

Storage stack is shifting from
the HDD era to the SSD era

App

FS

Storage stack is shifting from
the HDD era to the SSD era

App

FS

App

FS

Storage stack is shifting from
the HDD era to the SSD era

App

FS

App

FS

?

?

Storage stack is shifting from
the HDD era to the SSD era

App

FS

App

FS

?

?

?

Storage stack is shifting from
the HDD era to the SSD era

App

FS

App

FS

?

?

?

App
for

SSD

FS
for

SSD

Storage stack is shifting from
the HDD era to the SSD era

App

FS

App

FS

?

?

?

App
for

SSD

FS
for

SSD

Storage stack is shifting from
the HDD era to the SSD era

App

FS

App

FS

?

?

?

?
?

App
for

SSD

FS
for

SSD

Storage stack is shifting from
the HDD era to the SSD era

App

FS

App

FS

?

?

? ?

?
?

The consequences of
misusing SSDs

http://crestingwave.com/sites/default/files/collateral/velobit_whitepaper_ssdperformancetips.pdf
S. Boboila and P. Desnoyers. Write Endurance in Flash Drives: Measurements and Analysis. In Proceedings of the 8th USENIX Symposium on File and Storage

Technologies (FAST ’10), San Jose, California, February 2010

http://crestingwave.com/sites/default/files/collateral/velobit_whitepaper_ssdperformancetips.pdf

The consequences of
misusing SSDs

http://crestingwave.com/sites/default/files/collateral/velobit_whitepaper_ssdperformancetips.pdf
S. Boboila and P. Desnoyers. Write Endurance in Flash Drives: Measurements and Analysis. In Proceedings of the 8th USENIX Symposium on File and Storage

Technologies (FAST ’10), San Jose, California, February 2010

Performance degradation

http://crestingwave.com/sites/default/files/collateral/velobit_whitepaper_ssdperformancetips.pdf

The consequences of
misusing SSDs

http://crestingwave.com/sites/default/files/collateral/velobit_whitepaper_ssdperformancetips.pdf
S. Boboila and P. Desnoyers. Write Endurance in Flash Drives: Measurements and Analysis. In Proceedings of the 8th USENIX Symposium on File and Storage

Technologies (FAST ’10), San Jose, California, February 2010

Performance degradation Performance fluctuation

http://crestingwave.com/sites/default/files/collateral/velobit_whitepaper_ssdperformancetips.pdf

The consequences of
misusing SSDs

http://crestingwave.com/sites/default/files/collateral/velobit_whitepaper_ssdperformancetips.pdf
S. Boboila and P. Desnoyers. Write Endurance in Flash Drives: Measurements and Analysis. In Proceedings of the 8th USENIX Symposium on File and Storage

Technologies (FAST ’10), San Jose, California, February 2010

Early end of device life

Performance degradation Performance fluctuation

http://crestingwave.com/sites/default/files/collateral/velobit_whitepaper_ssdperformancetips.pdf

What is the right way to achieve
high performance on SSDs?

What is the right way to achieve
high performance on SSDs?

Block Device Interface: read(range), write(range), discard(range)

What is the right way to achieve
high performance on SSDs?

Block Device Interface: read(range), write(range), discard(range)

• Sequential accesses are best
• Nearby accesses are more

efficient than farther ones

MEMS-based storage devices and standard disk
interfaces: A square peg in a round hole?

Steven W. Schlosser, Gregory R. Ganger
FAST’04

Unwritten Contract of HDDs

What is the right way to achieve
high performance on SSDs?

Block Device Interface: read(range), write(range), discard(range)

• Sequential accesses are best
• Nearby accesses are more

efficient than farther ones

MEMS-based storage devices and standard disk
interfaces: A square peg in a round hole?

Steven W. Schlosser, Gregory R. Ganger
FAST’04

Unwritten Contract of HDDs Unwritten Contract of SSDs

?

What is the right way to achieve
high performance on SSDs?

What is the right way to achieve
high performance on SSDs?

• Existing studies

What is the right way to achieve
high performance on SSDs?

• Existing studies
• Experience of implementing a detailed SSD

simulator

What is the right way to achieve
high performance on SSDs?

• Existing studies
• Experience of implementing a detailed SSD

simulator
• Analysis of experiments

What is the right way to achieve
high performance on SSDs?

• Existing studies
• Experience of implementing a detailed SSD

simulator
• Analysis of experiments

The Unwritten Contract of SSDs

Do the current apps/FSes comply
with the unwritten contract of SSDs?

Do the current apps/FSes comply
with the unwritten contract of SSDs?

LevelDB RocksDB
SQLite
(RollBack)

SQLite
(WAL) Varmail5 apps

for
SSD

Do the current apps/FSes comply
with the unwritten contract of SSDs?

LevelDB RocksDB
SQLite
(RollBack)

SQLite
(WAL) Varmail5 apps

for
SSD

ext4 F2FS XFS
for

SSD

3 file systems

Do the current apps/FSes comply
with the unwritten contract of SSDs?

LevelDB RocksDB
SQLite
(RollBack)

SQLite
(WAL) Varmail5 apps

for
SSD

ext4 F2FS XFS
for

SSD

3 file systems

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5Contract

Do the current apps/FSes comply
with the unwritten contract of SSDs?

LevelDB RocksDB
SQLite
(RollBack)

SQLite
(WAL) Varmail5 apps

for
SSD

ext4 F2FS XFS
for

SSD

3 file systems

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5Contract

Do the current apps/FSes comply
with the unwritten contract of SSDs?

LevelDB RocksDB
SQLite
(RollBack)

SQLite
(WAL) Varmail5 apps

for
SSD

ext4 F2FS XFS
for

SSD

3 file systems

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5Contract

To study the contract, we built a sophisticated
SSD simulator and workload analyzer

In the paper

We made 24 detailed observations

In the paper

We made 24 detailed observations

We learned several high-level lessons

In the paper

Outline

Overview
SSD Unwritten Contract
Violations of the Unwritten Contract
Conclusions

Outline

Overview
SSD Unwritten Contract
Violations of the Unwritten Contract
Conclusions

SSD Background

SSD Background

P

SSD Background

P

P

P

Block

…

SSD Background

P

P

P

Block

…

P

P

P
…

P

P

P
… …

SSD Background

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

SSD Background

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

SSD Background

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

…

SSD Background

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

…

SSD Background

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

…

SSD Background

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

…

Controller

SSD Background

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

…

Controller

FTL

SSD Background

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

…

Controller

FTL
- address mapping
- garbage collection
- wear-leveling

SSD Background

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

…

Controller RAM

FTL
- address mapping
- garbage collection
- wear-leveling

SSD Background

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

P

P

P

Block

…

P

P

P
…

P

P

P
… …

Channel

…

Controller RAM

FTL Mapping Table
Data Cache

- address mapping
- garbage collection
- wear-leveling

Rules of the Unwritten
Contract

#1 Request Scale
#2 Locality
#3 Aligned Sequentiality
#4 Grouping by Death Time
#5 Uniform Data Lifetime

Rule #1: Request Scale
SSD clients should issue large data requests or multiple

outstanding data requests.

Rule #1: Request Scale
SSD clients should issue large data requests or multiple

outstanding data requests.

Channel Channel Channel Channel

SSD

Rule #1: Request Scale
SSD clients should issue large data requests or multiple

outstanding data requests.

Channel Channel Channel Channel

SSD

Request

Rule #1: Request Scale
SSD clients should issue large data requests or multiple

outstanding data requests.

Channel Channel Channel Channel

SSD

Rule #1: Request Scale
SSD clients should issue large data requests or multiple

outstanding data requests.

Channel Channel Channel Channel

SSD

High internal parallelism

Rule #1: Request Scale
Violation

Rule #1: Request Scale
Violation

Channel Channel Channel Channel

SSD

Rule #1: Request Scale
Violation

Channel Channel Channel Channel

SSD

Rule #1: Request Scale
Violation

Channel Channel Channel Channel

SSD

Wasted

Rule #1: Request Scale
Violation

Channel Channel Channel Channel

SSD

Wasted

If you violate the rule:
- Low internal parallelism

Rule #1: Request Scale
Violation

Channel Channel Channel Channel

SSD

Wasted

If you violate the rule:
- Low internal parallelism

Performance impact:
18x read bandwidth
10x write bandwidth

F. Chen, R. Lee, and X. Zhang. Essential Roles of Exploit- ing Internal Parallelism
of Flash Memory Based Solid State Drives in High-speed Data Processing. In
Proceedings of the 17th International Symposium on High Performance Com-

puter Architecture (HPCA-11), pages 266–277, San Antonio, Texas, February 2011.

Translation Cache

Rule 2: Locality
SSD clients should access with locality

RAM

FLASH

Logical
to
Physical
Mapping
Table

SSD

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

Translation Cache

Rule 2: Locality
SSD clients should access with locality

RAM

FLASH

Logical
to
Physical
Mapping
Table

SSD

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P
P P

Translation Cache

Rule 2: Locality
SSD clients should access with locality

RAM

FLASH

Logical
to
Physical
Mapping
Table

SSD

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

Translation Cache

Rule 2: Locality
SSD clients should access with locality

RAM

FLASH

Logical
to
Physical
Mapping
Table

SSD

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P PHit

Translation Cache

Rule 2: Locality
SSD clients should access with locality

RAM

FLASH

Logical
to
Physical
Mapping
Table

SSD

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P PHit

High Cache Hit Ratio

Logical
to
Physical
Mapping
Table

Rule 2: Locality Violation
SSD clients should access with locality

RAM

FLASH

SSD

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

Logical
to
Physical
Mapping
Table

Rule 2: Locality Violation
SSD clients should access with locality

RAM

FLASH

SSD

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P P P P P P PP P P P P P P PP P

Logical
to
Physical
Mapping
Table

Rule 2: Locality Violation
SSD clients should access with locality

RAM

FLASH

SSD

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P P P P P P PP P P P P P P PP P

If you violate the rule:
- Translation cache misses
- More translation entry reads/writes

Logical
to
Physical
Mapping
Table

Rule 2: Locality Violation
SSD clients should access with locality

RAM

FLASH

SSD

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P P P P P P PP P P P P P P PP P

If you violate the rule:
- Translation cache misses
- More translation entry reads/writes

Performance impact:
2.2x average response time

Y. Zhou, F. Wu, P. Huang, X. He, C. Xie, and J. Zhou. An Efficient Page-level FTL to
Optimize Address Translation in Flash Memory. In Proceedings of the EuroSys

Conference (EuroSys ’15), Bordeaux, France, April 2015.

Rule 3: Aligned Sequentiality

Details in the paper

Rule 4: Grouping By Death Time
Data with similar death times should be

placed in the same block.

Rule 4: Grouping By Death Time
Data with similar death times should be

placed in the same block.

1pm

1pm

1pm

1pm

2pm

2pm

2pm

2pm

Rule 4: Grouping By Death Time
Data with similar death times should be

placed in the same block.

1pm

1pm

1pm

1pm

2pm

2pm

2pm

2pm
Time 1pm 2pm

Rule 4: Grouping By Death Time
Data with similar death times should be

placed in the same block.

1pm

1pm

1pm

1pm

2pm

2pm

2pm

2pm
Time 1pm 2pm

Rule 4: Grouping By Death Time
Data with similar death times should be

placed in the same block.

1pm

1pm

1pm

1pm

2pm

2pm

2pm

2pm
Time 1pm 2pm

1pm

1pm

1pm

1pm

Rule 4: Grouping By Death Time
Data with similar death times should be

placed in the same block.

1pm

1pm

1pm

1pm

2pm

2pm

2pm

2pm
Time 1pm 2pm

1pm

1pm

1pm

1pm

Rule 4: Grouping By Death Time
Data with similar death times should be

placed in the same block.

1pm

1pm

1pm

1pm

2pm

2pm

2pm

2pm
Time 1pm 2pm

1pm

1pm

1pm

1pm

😀

Rule 4: Grouping By Death Time
Violation

1pm

1pm

2pm

2pm

1pm

1pm

2pm

2pm
Time 1pm 2pm

Rule 4: Grouping By Death Time
Violation

1pm

1pm

2pm

2pm

1pm

1pm

2pm

2pm
Time 1pm 2pm

Rule 4: Grouping By Death Time
Violation

1pm

1pm

2pm

2pm

1pm

1pm

2pm

2pm
Time 1pm 2pm

1pm

1pm

2pm

2pm

1pm

1pm

2pm

2pm

1pm

1pm

2pm

2pm

1pm

1pm

2pm

2pm
Time 1pm 2pm

1pm

1pm

2pm

2pm

Rule 4: Grouping By Death Time
Violation

2pm

2pm

1pm

1pm

2pm

2pm

1pm

1pm

2pm

2pm
Time 1pm 2pm

1pm

1pm

2pm

2pm

Rule 4: Grouping By Death Time
Violation

2pm

2pm

1pm

1pm

2pm

2pm
Time 1pm 2pm

1pm

1pm

2pm

2pm

Rule 4: Grouping By Death Time
Violation

2pm

2pm

1pm

1pm

2pm

2pm
Time 1pm 2pm

1pm

1pm

2pm

2pm

Rule 4: Grouping By Death Time
Violation

Data movement!!!

2pm

2pm

1pm

1pm

2pm

2pm
Time 1pm 2pm

1pm

1pm

2pm

2pm

Rule 4: Grouping By Death Time
Violation

Data movement!!!

2pm

2pm

😞

1pm

1pm

2pm

2pm
Time 1pm 2pm

1pm

1pm

2pm

2pm

Rule 4: Grouping By Death Time
Violation

Data movement!!!

2pm

2pm

😞

If you violate the rule:
- Performance penalty
- Write amplification

1pm

1pm

2pm

2pm
Time 1pm 2pm

1pm

1pm

2pm

2pm

Rule 4: Grouping By Death Time
Violation

Data movement!!!

2pm

2pm

😞

If you violate the rule:
- Performance penalty
- Write amplification

Performance impact:
4.8x write bandwidth

1.6x throughput
1.8x block erasure count

C. Lee, D. Sim, J.-Y. Hwang, and S. Cho. F2FS: A New File System for Flash Storage. In Proceedings of the 13th USENIX Conference on File
and Storage Technologies (FAST ’15), Santa Clara, California, February 2015.

J.-U. Kang, J. Hyun, H. Maeng, and S. Cho. The Multi- streamed Solid-State Drive. In 6th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage ’14), Philadelphia, PA, June 2014.

. Y. Cheng, F. Douglis, P. Shilane, G. Wallace, P. Desnoyers, and K. Li. Erasing Belady’s Limitations: In Search of Flash Cache Offline
Optimality. In 2016 USENIX Annual Technical Conference (USENIX ATC 16), pages 379–392, Denver, CO, 2016. USENIX Association.

Rule 5: Uniform Data Lifetime
Clients of SSDs should create data with similar lifetimes

Rule 5: Uniform Data Lifetime
Clients of SSDs should create data with similar lifetimes

Lifetime

 1 Day

Rule 5: Uniform Data Lifetime
Clients of SSDs should create data with similar lifetimes

Usage Count: 0 0 0 0

SSD

Lifetime

 1 Day

Rule 5: Uniform Data Lifetime
Clients of SSDs should create data with similar lifetimes

Usage Count: 3 3 3 3

SSD

Lifetime

 1 Day

Rule 5: Uniform Data Lifetime
Clients of SSDs should create data with similar lifetimes

Usage Count: 3 3 3 3

No wear-leveling needed

SSD

Lifetime

 1 Day

Lifetime

 1 Day

 1000 Years

Rule 5: Uniform Data Lifetime
Violation

SSD

0 0 0 0Usage Count:

Lifetime

 1 Day

 1000 Years

Rule 5: Uniform Data Lifetime
Violation

SSD

1 1365*1000 365*1000Usage Count:

Lifetime

 1 Day

 1000 Years

Rule 5: Uniform Data Lifetime
Violation

SSD

1 1365*1000 365*1000Usage Count:

Some blocks wear out sooner

Frequent wear-leveling needed!!!

Lifetime

 1 Day

 1000 Years

Rule 5: Uniform Data Lifetime
Violation

SSD

1 1365*1000 365*1000Usage Count:

Some blocks wear out sooner

Frequent wear-leveling needed!!!

If you violate the rule:
- Performance penalty
- Write amplification

Lifetime

 1 Day

 1000 Years

Rule 5: Uniform Data Lifetime
Violation

SSD

1 1365*1000 365*1000Usage Count:

Some blocks wear out sooner

Frequent wear-leveling needed!!!

If you violate the rule:
- Performance penalty
- Write amplification

Performance impact:
1.6x write latency

S. Boboila and P. Desnoyers. Write Endurance in Flash Drives: Measurements and
Analysis. In Proceedings of the 8th USENIX Symposium on File and Storage

Technologies (FAST ’10), San Jose, California, February 2010.

Outline

Overview
SSD Unwritten Contract
Violations of the Unwritten Contract
Conclusions

Do applications/file systems comply with
the unwritten contract?

We conduct vertical analysis to
find violations of SSD contract

We conduct vertical analysis to
find violations of SSD contract

App

FS
+

SSD

We conduct vertical analysis to
find violations of SSD contract

Block Trace

App

FS
+

SSD

We conduct vertical analysis to
find violations of SSD contract

Block Trace

SSD Simulator:
WiscSim

App

FS
+

SSD

We conduct vertical analysis to
find violations of SSD contract

Block Trace

SSD Simulator:
WiscSim

App

FS
+

SSD Rule violation?

Analyzer:
WiscSee

We conduct vertical analysis to
find violations of SSD contract

Block Trace

Root Cause

SSD Simulator:
WiscSim

App

FS
+

SSD Rule violation?

Analyzer:
WiscSee

2 of Our 24 Observations

1. Linux page cache limits request scale
2. F2FS incurs more GC overhead than traditional file systems

2 of Our 24 Observations

1. Linux page cache limits request scale
2. F2FS incurs more GC overhead than traditional file systems

leveldb rocksdb sqlite−rb sqlite−wal varmail

0

10

20

30

0

10

20

30

read
w

rite

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

sm
al

l
la

rg
e

m
ix

N
um

 o
f C

on
cu

rr
en

t R
eq

ue
st

s

ext4 f2fs xfs

leveldb rocksdb sqlite−rb sqlite−wal varmail

0

400

800

1200

0

400

800

1200

read
w

rite

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

sm
al

l
la

rg
e

m
ix

R
eq

ue
st

 S
iz

e
(K

B
)

ext4 f2fs xfs

We evaluate request scale by request
size and number of concurrent requests

leveldb rocksdb sqlite−rb sqlite−wal varmail

0

10

20

30

0

10

20

30

read
w

rite

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

sm
al

l
la

rg
e

m
ix

N
um

 o
f C

on
cu

rr
en

t R
eq

ue
st

s

ext4 f2fs xfs

leveldb rocksdb sqlite−rb sqlite−wal varmail

0

400

800

1200

0

400

800

1200

read
w

rite

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

sm
al

l
la

rg
e

m
ix

R
eq

ue
st

 S
iz

e
(K

B
)

ext4 f2fs xfs

We evaluate request scale by request
size and number of concurrent requests

leveldb rocksdb sqlite−rb sqlite−wal varmail

0

10

20

30

0

10

20

30

read
w

rite

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

sm
al

l
la

rg
e

m
ix

N
um

 o
f C

on
cu

rr
en

t R
eq

ue
st

s

ext4 f2fs xfs

leveldb rocksdb sqlite−rb sqlite−wal varmail

0

400

800

1200

0

400

800

1200

read
w

rite

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

sm
al

l
la

rg
e

m
ix

R
eq

ue
st

 S
iz

e
(K

B
)

ext4 f2fs xfs

LevelDB & RocksDB:
Insertions
Background Compactions

We evaluate request scale by request
size and number of concurrent requests

leveldb rocksdb sqlite−rb sqlite−wal varmail

0

10

20

30

0

10

20

30

read
w

rite

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

sm
al

l
la

rg
e

m
ix

N
um

 o
f C

on
cu

rr
en

t R
eq

ue
st

s

ext4 f2fs xfs

leveldb rocksdb sqlite−rb sqlite−wal varmail

0

400

800

1200

0

400

800

1200

read
w

rite

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

sm
al

l
la

rg
e

m
ix

R
eq

ue
st

 S
iz

e
(K

B
)

ext4 f2fs xfs

LevelDB & RocksDB:
Insertions
Background Compactions

Median: ~100KB

We evaluate request scale by request
size and number of concurrent requests

leveldb rocksdb sqlite−rb sqlite−wal varmail

0

10

20

30

0

10

20

30

read
w

rite

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

sm
al

l
la

rg
e

m
ix

N
um

 o
f C

on
cu

rr
en

t R
eq

ue
st

s

ext4 f2fs xfs

leveldb rocksdb sqlite−rb sqlite−wal varmail

0

400

800

1200

0

400

800

1200

read
w

rite

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

sm
al

l
la

rg
e

m
ix

R
eq

ue
st

 S
iz

e
(K

B
)

ext4 f2fs xfs

LevelDB & RocksDB:
Insertions
Background Compactions

Median: ~100KB Median: ~2

We evaluate request scale by request
size and number of concurrent requests

LevelDB and RocksDB can access files in large sizes.

Why was the request scale low?

Buffered read(): Page cache implementation
splits and serializes user requests

App

Page Cache

Block Layer

SSD

Buffered read(): Page cache implementation
splits and serializes user requests

App

Page Cache

Block Layer

SSD

read() 2MB

Buffered read(): Page cache implementation
splits and serializes user requests

App

Page Cache

Block Layer

SSD

read() 2MB

128KB 128KB 128KB …

Buffered read(): Page cache implementation
splits and serializes user requests

App

Page Cache

Block Layer

SSD

read() 2MB

128KB 128KB 128KB … One request at a time

Buffered read(): Page cache implementation
splits and serializes user requests

App

Page Cache

Block Layer

SSD

read() 2MB

128KB 128KB 128KB …

Surprise! Even reading 2MB in your
app will not utilize SSD well.

One request at a time

Cause of Violation
Large reads are throttled by small

prefetching (readahead).

2 of Our 24 Observations

1. Linux page cache limits request scale
2. F2FS incurs more GC overhead than traditional file systems

2 of Our 24 Observations

1. Linux page cache limits request scale
2. F2FS incurs more GC overhead than traditional file systems

We study GC (rule #3: grouping
by death time) by zombie curves

What’s a zombie curve??

We study GC (rule #3: grouping
by death time) by zombie curves

We study GC (rule #3: grouping
by death time) by zombie curves

What’s a zombie curve?

We study GC (rule #3: grouping
by death time) by zombie curves

What’s a zombie curve?
Run workloads with infinite space over-provisioning

We study GC (rule #3: grouping
by death time) by zombie curves

What’s a zombie curve?
Run workloads with infinite space over-provisioning

We study GC (rule #3: grouping
by death time) by zombie curves

What’s a zombie curve?
Run workloads with infinite space over-provisioning

Valid

We study GC (rule #3: grouping
by death time) by zombie curves

What’s a zombie curve?
Run workloads with infinite space over-provisioning

Valid
Invalid

Valid ratio 1.0 0.25 0.75 0 0.75

We study GC (rule #3: grouping
by death time) by zombie curves

Valid ratio 1.0 0.250.75 00.75

We study GC (rule #3: grouping
by death time) by zombie curves

Valid ratio 1.0 0.250.75 00.75

We study GC (rule #3: grouping
by death time) by zombie curves

Valid ratio 1.0 0.250.75 00.75

We study GC (rule #3: grouping
by death time) by zombie curves

Valid ratio 1.0 0.250.75 00.75

We study GC (rule #3: grouping
by death time) by zombie curves

Valid ratio 1.0 0.250.75 00.75

We study GC (rule #3: grouping
by death time) by zombie curves

Valid ratio 1.0 0.250.75 00.75

We study GC (rule #3: grouping
by death time) by zombie curves

What’s a good zombie curve?

Over-provisionedOver-provisioned

What’s a good zombie curve?

Over-provisionedOver-provisioned

Ready to be usedReady to be used

What’s a bad zombie curve?

Over-provisioned

What’s a bad zombie curve?

Over-provisioned

Move data before use

BTW, zombie curve helps you
choose over-provisioning ratio

Over-provisioned

BTW, zombie curve helps you
choose over-provisioning ratio

Over-provisioned

F2FS incurs a worse zombie curve (higher
GC overhead) than ext4 for SQLite

Over-Provisioned

Flash Space
0 10.5 1.5 2

0

0.25

0.5

0.75

1.0

Va
lid

 R
at

io

Animations cannot be displayed in PDF.
Please see the animations at

http://pages.cs.wisc.edu/~jhe/zombie.html

http://pages.cs.wisc.edu/~jhe/zombie.html

F2FS incurs a worse zombie curve (higher
GC overhead) than ext4 for SQLite

Over-Provisioned

Flash Space
0 10.5 1.5 2

0

0.25

0.5

0.75

1.0

Va
lid

 R
at

io

Animations cannot be displayed in PDF.
Please see the animations at

http://pages.cs.wisc.edu/~jhe/zombie.html

http://pages.cs.wisc.edu/~jhe/zombie.html

F2FS incurs a worse zombie curve (higher
GC overhead) than ext4 for SQLite

Over-Provisioned

Flash Space
0 10.5 1.5 2

0

0.25

0.5

0.75

1.0

Va
lid

 R
at

io

ext4 Animations cannot be displayed in PDF.
Please see the animations at

http://pages.cs.wisc.edu/~jhe/zombie.html

http://pages.cs.wisc.edu/~jhe/zombie.html

F2FS incurs a worse zombie curve (higher
GC overhead) than ext4 for SQLite

F2FS Over-Provisioned

Flash Space
0 10.5 1.5 2

0

0.25

0.5

0.75

1.0

Va
lid

 R
at

io

ext4 Animations cannot be displayed in PDF.
Please see the animations at

http://pages.cs.wisc.edu/~jhe/zombie.html

http://pages.cs.wisc.edu/~jhe/zombie.html

F2FS incurs a worse zombie curve (higher
GC overhead) than ext4 for SQLite

F2FS Over-Provisioned

Flash Space
0 10.5 1.5 2

0

0.25

0.5

0.75

1.0

Va
lid

 R
at

io

ext4

Stable-state curves
characterize workloads.

Animations cannot be displayed in PDF.
Please see the animations at

http://pages.cs.wisc.edu/~jhe/zombie.html

http://pages.cs.wisc.edu/~jhe/zombie.html

F2FS incurs a worse zombie curve (higher
GC overhead) than ext4 for SQLite

F2FS Over-Provisioned

Flash Space
0 10.5 1.5 2

0

0.25

0.5

0.75

1.0

Va
lid

 R
at

io

ext4

Stable-state curves
characterize workloads.

Animations cannot be displayed in PDF.
Please see the animations at

http://pages.cs.wisc.edu/~jhe/zombie.html

http://pages.cs.wisc.edu/~jhe/zombie.html

Why did F2FS incur a worse
zombie curve (GC overhead)?

Why did F2FS incur a worse
zombie curve (GC overhead)?

• SQLite fragmented F2FS

Why did F2FS incur a worse
zombie curve (GC overhead)?

• SQLite fragmented F2FS
• F2FS did not discard data that was deleted by SQLite

Why did F2FS incur a worse
zombie curve (GC overhead)?

• SQLite fragmented F2FS
• F2FS did not discard data that was deleted by SQLite
• F2FS was not able to stay log-structured for SQLite’s I/O pattern

More Observations

More Observations

Legacy file system allocation policies break locality

More Observations

Legacy file system allocation policies break locality

Application log structuring does not reduce GC

More Observations

Legacy file system allocation policies break locality

Application log structuring does not reduce GC

24 observations in the paper

Lessons Learned

Lessons Learned
The SSD contract is multi-dimensional

• Optimizing for one dimension is not enough
• We need more sophisticated tools to analyze

workloads

Lessons Learned
The SSD contract is multi-dimensional

• Optimizing for one dimension is not enough
• We need more sophisticated tools to analyze

workloads

Although not perfect, traditional file systems
perform surprisingly well upon SSDs

Lessons Learned
The SSD contract is multi-dimensional

• Optimizing for one dimension is not enough
• We need more sophisticated tools to analyze

workloads

Although not perfect, traditional file systems
perform surprisingly well upon SSDs

Myths spread if the unwritten contract is not
clarified

• “Random writes increase GC overhead”

Conclusions

Conclusions
Understanding the unwritten contract is crucial
for designing high performance application and
file systems

Conclusions
Understanding the unwritten contract is crucial
for designing high performance application and
file systems

System designing demands more vertical
analysis

Conclusions
Understanding the unwritten contract is crucial
for designing high performance application and
file systems

System designing demands more vertical
analysis

WiscSee (analyzer) and WiscSim (SSD simulator) are available at:
http://research.cs.wisc.edu/adsl/Software/wiscsee

http://research.cs.wisc.edu/adsl/Software/wiscsee

