
• A step towards unifying optical flow and stereo
• Combines high accuracy with competitive runtimes

• 3x downsampling
• ~25,000 labels per pixel
• Embedding and regularity enable

efficient construction

Accurate Optical Flow via Direct Cost Volume Processing
Jia Xu René Ranftl Vladlen Koltun

Intel Labs

Code here

https://github.com/IntelVCL/DCFlow

Introduction
• Optical Flow: dense motion of pixels between two images
• Key building block for many computer vision systems
• Challenges: large displacement, computational complexity

Stereo Optical Flow

Search
space

64-256
locations

4,000-65,000
locations

Previous
work

Direct cost volume
processing,

high accuracy

Continuous optimization
methods, NN search,

coarse-to-fine
approximation,
low accuracy

Our Approach

We show that direct cost volume processing is feasible:
• With moderate amount of downsampling
• Incorporate best practices from stereo estimation [1]
• Combine with modern interpolation schemes

 Embedding

Cost Volume

Smoothing + WTA

Postprocess

 Embedding

Pixel-level Feature Embedding

Positive patch Anchor patch Negative patch

conv+relu

conv+relu

...

conv

norm

conv+relu

conv+relu

...

conv

norm

conv+relu

conv+relu

...

conv

norm

Learning with triplet loss

x

p

x

a

x

n

4-D Cost Volume

Regular structure of size MxNxRxR

Cost Volume Processing
• Smooth cost volume to propagate

information to textureless regions
• Modified SGM energy:

• Compact network (4 layers,112K
parameters)

• Can be trained from ~200 ground
truth images

• Euclidean embedding

Here we take advantage of the connection between the Eu-
clidean distance and the dot product. Since the feature vec-
tors F1

p and F

2

p+v are normalized,

1�
�
F

1

p

�>
F

2

p+v =

1

2

��
F

1

p � F

2

p+v

��2 . (3)

This allows us to populate the cost volume using vector
products, which can be evaluated in parallel.

It is easy to see that each entry in the cost volume can be
computed in time O(d) and the cost volume as a whole can
be constructed in time O(MNR2d) (without taking paral-
lelism into account). The dimensionality d of the feature
space thus has a direct effect on the computational cost of
cost volume construction: reducing the dimensionality by
an order of magnitude accelerates cost volume construction
by an order of magnitude.

5. Cost Volume Processing

Recent work has shown that approximate global opti-
mization over the full 4D cost volume can be performed us-
ing parallelized message passing and nested distance trans-
forms [7]. However, the cost of this approach is still pro-
hibitive: minutes per image after optimization [7]. We
develop an alternative solution based on SGM, a tech-
nique that has been widely adopted in stereo process-
ing [16]. SGM has become a common stand-in for more
costly Markov random field optimization in stereo process-
ing pipelines, due to its robustness and parallelism. For
example, it is a core part of the successful recent pipeline
of Žbontar and LeCun, which significantly advanced the
state of the art in the area [39]. A strong connection be-
tween SGM and full Markov random field optimization is
known, providing theoretical backing for what was origi-
nally a heuristic [10].

While restricted forms of SGM have been applied to op-
tical flow before [15, 2], we are not aware of work that
shows that SGM is tractable, efficient, and accurate when
applied to the full four-dimensional cost volume. We now
describe our adaptation of SGM, which we refer to as Flow-
SGM. Let N (p) denote the set of spatial neighbors of pixel
p. We adopt a simple 4-connected neighborhood structure.
Define the discrete energy of the optical flow field V as

E(V) =

X

p

✓ X

q2N (p)

P
1

[kVp �Vqk
1

= 1]

+

X

q2N (p)

P p,q
2

[kVp �Vqk
1

> 1] +C(p,Vp)

◆
, (4)

where [·] denotes the Iverson bracket, and P
1

and P p,q
2

are
regularization parameters. We set P

1

to a fixed constant

value and set

P p,q
2

=

(
P
2

/Q if
��
I

1

p � I

1

q

�� � T

P
2

else,
(5)

where the threshold T together with the constants P
2

and Q
are used to support edge-aware smoothing of the cost vol-
ume. Energy (4) is similar to the classical definition of the
SGM objective [16]. The difference is that the displacement
Vp is two-dimensional rather than scalar. In turn the defini-
tion of the regularization terms is based on two-dimensional
neighborhoods, which is reflected in the `

1

-norm based dis-
tance kVp �Vqk

1

. The similarity to the classical SGM
objective is intentional since this type of energy can be pro-
cessed efficiently using scanline optimization, even in the
case of 2D displacements.

Flow-SGM approximately minimizes energy (4) by
breaking the energy into independent paths, which can be
globally minimized using dynamic programming. For each
path, a cost Lr(p,Vp) is computed as

Lr(p,Vp) = C(p, Vp) + S(p,Vp)

�min

i

�
Lr(p� r, i) + P p,p�r

2

�
, (6)

where the contribution of the smoothness penalty S(p,Vp)

is recursively computed as

S(p,Vp) = min

8
><

>:

Lr(p� r,Vp)

min

ˆv2N (Vp)
Lr(p� r, ˆv)+P

1

mini Lr(p� r, i)+P p,p�r
2

.

(7)

Here r denotes the direction of traversal of the path. Note
that in contrast to classical SGM, the computation of the
penalty for switching by one discretization step is com-
puted over a two-dimensional neighborhood. In practice,
multiple path directions r are used and the corresponding
costs Lr(p,Vp) are accumulated into a filtered cost volume
L(p,Vp). We use the four cardinal path directions: two
horizontal and two vertical. The final optical flow estimate
is given by picking the flow corresponding to the smallest
cost in the filtered cost volume for each pixel. We compute
the flow in both directions and use a consistency check to
prune occluded or unreliable matches. The resulting high-
quality matches are then passed on for postprocessing as
described in the next section.

We implemented Flow-SGM on the GPU to make use of
the massive amount of parallelism inherent in the algorithm.
Because of the size of the cost volume, economical use of
memory is important. To this end, we rescale and bin the
values C(p,Vp) to an 8-bit integer range. Since the max-
imal value of L(p,Vp) is bounded [16], we can store the
filtered cost volume using 16 bits per entry.

• Highly efficient implementation

Post-processing
• Forward-backward consistency check
• Edge-preserving interpolation using

EpicFlow [2]
• Local homography fitting

KITTI 2015

Summary

Left Image Right Image

First Image Second Image

Stereo

Optical Flow

Sintel

Runtime breakdown

References
[1] Zbontar and LeCun, Stereo matching by training a convolutional neural network to compare
image patches. JMLR 2016

[2] Revaud et. al., EpicFlow: Edge-preserving interpolation of correspondences for optical flow.
CVPR 2015

