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Abstract. We develop new algorithms to analyze and exploit the joint
subspace structure of a set of related images to facilitate the process
of concurrent segmentation of a large set of images. Most existing ap-
proaches for this problem are either limited to extracting a single similar
object across the given image set or do not scale well to a large number
of images containing multiple objects varying at different scales. One of
the goals of this paper is to show that various desirable properties of
such an algorithm (ability to handle multiple images with multiple ob-
jects showing arbitary scale variations) can be cast elegantly using simple
constructs from linear algebra: this significantly extends the operating
range of such methods. While intuitive, this formulation leads to a hard
optimization problem where one must perform the image segmentation
task together with appropriate constraints which enforce desired alge-
braic regularity (e.g., common subspace structure). We propose efficient
iterative algorithms (with small computational requirements) whose key
steps reduce to objective functions solvable by maz-flow and/or nearly
closed form identities. We study the qualitative, theoretical, and empiri-
cal properties of the method, and present results on benchmark datasets.

1 Introduction

Image segmentation is among the most widely studied problems in the computer
vision community. The classical setting, which is how this problem is generally
formalized in the literature, is unsupervised: one assumes that the underlying
model requires no user involvement. While a completely automated solution
still remains the de-facto objective, given the difficulty (and ill-posedness) of the
task, in recent years we have seen a small but noticeable shift towards interactive
image segmentation methods [1]. The goal here is to segment a given image with
only nominal user interaction. Clearly, obtaining the best segmentation for one
image is important — but we must note that the proliferation of massive image
sharing platforms have created a significant shift in how image data typically
presents itself. Images today are rarely generated as independent samples, but
rather manifest as ‘collections’. Since shared content is pervasive in such sets,
modern algorithms must clearly go beyond the analysis of one image at a time.
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Fig. 1. A set of images with two actors showing quasi-independent scale variations.

This strategy already works well in image categorization and object recognition
problems [2], where leveraging large training corpora of images for the learning
task is common. On the image segmentation front, the multiple image focused
developments are relatively more recent and fall under the umbrella term of
Cosegmentation [3]. The premise of Cosegmentation is that when many images
containing the same foreground object are available, such shared content may
be able to much reduce the need for user guidance [4].

Cosegmentation refers to segmenting a “similar” object from a set of images
jointly, with an additional global constraint which forces the foreground appear-
ance models to be similar. Both the unsupervised and the supervised versions of
the problem have been actively studied in the last few years [4,5,6,7,8,9,10,11].
On the unsupervised side [3,8], cosegmentation approaches generally operate
under the assumption that the background regions in the images are disparate:
this is essential to rule out the case where the entire image is segmented as the
foreground (the appearance models match trivially and the global constraint
is less meaningful). Supervised (or weakly supervised) cosegmentation meth-
ods [4,10,11,12], on the other hand, address this issue via some interactive user
scribble. In conjunction with the choice of appropriate pixel-wise features and/or
wrapper inference methods, these models account quite well for changes in illu-
mination, shape and scale variations, and reliably segment an object of interest
from multiple images jointly. However, note that this body of work primarily
addresses the setting where the set of images contains a single object of interest.
Heuristic modifications aside, the core mathematical justification behind most
existing models [11,7,4,13] does not carry through to multiple objects unless we
make the impractical assumption that the scale of all objects varies identically
across the image set. We show an illustrative example and discuss these details
shortly.

Consider the set of images in Fig. 1 which we wish to segment jointly. These
images consist of two actors (a dog and a deer), where each exhibits substantial
scale changes depending on how close it is to the camera. In some images, one
of the actors is temporarily occluded or not in the field of view (i.e., scale is
zero). This example is not atypical — a surprisingly large number of image sets
(including many instances in the popular iCoseg dataset [4]) consist of more
than a single object of interest which co-occur across the image set. Viewing
this as a multi-class Cosegmentation entails running the model for each class,
one by one, which is often cumbersome if user interaction is needed. This is
also an impediment in adapting Cosegmentation in analyzing video data. The
algorithms described in this paper are motivated by some of these issues.

The main contribution of this paper is to make Cosegmentation approaches
applicable to a significantly more general setting. Rather than ask that the fore-
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grounds ‘share’ a parametric (or non-parametric) model [1], impose rank de-
ficiency of the matrix of object appearances [13], or compare images pairwise
[3,7] (a) we propose new formulations to identify the subspace(s) spanned by a
small set of basis appearance models that can best reconstruct the entire set of
composite foregrounds (pertaining to multiple objects) in the images. For such a
strategy to work, three key components, namely, i) sparse basis subset selection,
ii) subspace reconstruction, and iii) image segmentation must happen in tandem.
This leads to an interesting (albeit difficult) optimization model. (b) We show
how effective solutions can be derived for both the supervised and unsupervised
versions based on subspace clustering, sparse representation methods and the
theory of mazximizing submodular functions. This provides an elegant framework
which permits general non-parametric appearance model compositions, that is,
the foreground may include tens of objects, at arbitrary scales.

2 Related Work

Initial methods for cosegmentation performed figure-ground labeling of a given
pair of images, and enforced a matching (mutual consistency) requirement on the
appearance models of the foreground. Various objectives and solution strategies
have since been proposed (see [3] for a technical summary), and shown to work
well when the number of images is limited to two. This special case is restrictive,
and more recent works have extended the ideas to multiple image segmentation.
The first step was taken by [1] which suggested constructing a shared mixture
model to encode the appearance of a similar foreground object in all images. As
noted by [8], this algorithm also shares the background model across the given
set of images — a potential problem when the images do not have a substan-
tial shared baseline. Vicente [8] proposed a solution to this problem for the two
image setting. Contemporary to these results, [9] identified a nice relationship
of Cosegmentation with maximum margin clustering, but the method is com-
putationally quite expensive (especially for a large number of images). Chu [5]
showed a small set of results using a method which looks for common patterns in
a pre-processing step. Recently, [13] and [11] presented multi-image formulations
of the problem. While [13] performs a sequence of iterations involving a segmen-
tation step followed by a rank decomposition of the appearance model matrix,
[11] scores similarities between a large set of proposal segmentations. But neither
framework is directly generalizable to the multi-object instances in the iCoseg
dataset or the type of examples shown in Fig. 1. Finally, a few recent papers
have incorporated co-saliency [14], used cosegmentation for image classification
[15], and extended the algorithms for the cosegmentation of shapes (see [16] for
an example of this line of work). Table 1 summarizes the state of the art for the
problem to place the contribution of this paper in context.

3 Subspaces of Multiple Object Foreground

Most existing cosegmentation literature performs joint segmentation of all im-
ages and simultaneously regularizes the objective based on coherence among



4 Authors Suppressed Due to Excessive Length

Article > 2 objects Images |[[Objective function Solution Method
Rother [3] No 2 Graph-cuts plus £; norm Trust-region method
Mu [6] No 2 Quadratic energy plus genera- Markov Chain Monte Carlo
tive model
Mukherjee [7] No 2 Graph-cuts plus 2 norm Linear Program
Vicente [3] No 2 Graph-cuts plus generative EM like procedure
model
Hochbaum [10]|| Noseebelow 2 Joint segmentation with similar- Pseudoflow
ity reward
Batra [1] No Multiple ||Graph-cuts plus GMM Iterative Graph-cuts
Vicente [11] No Multiple ||Similarity of proposal segmenta- Graph-cuts, A™* inference,
tion pairs Random forests
Joulin [9] Noseebelow  Myltiple || Discriminative clustering Convex relaxation of SDP
Mukherjee [13] No Multiple ||Graph-cuts with a rank one con- Iterative network flow and
straint SVD
Chang [11] No Multiple ||Graph cuts with saliency prior Graph cuts
This work Yes Multiple||— —

Table 1. State of the art for Cosegmentation; note that [5] is not included above be-
cause that method runs an offline common pattern discovery, and then adjusts a unary
term in the segmentation. [9] is potentially applicable to multi-class segmentation, but
is computationally expensive, cf. [9], section 3.2. and so only one object case was tack-
led. Hochbaum [10] does not seem straightforward to adapt for multiple objects. We
very recently learnt of works [17,18] which detects multiple objects. These works are
not discussed and evaluated here.

the segmented foreground appearance models of the respective images. Assume
that Egeq(-) denotes an appropriate segmentation energy (summed over all im-
ages), and C(+) is the cosegmentation regularizer which expresses a measure of
coherence among the foreground appearance models of the images provided. For
example, [3] and [4] use a MRF energy for Egg(-) and a mixture model based
penalty for C(-), but various other options have also been proposed. Since the
common building block of our algorithms is the subspace structure of similar
foreground regions across images, it seems natural to approach this problem by
identifying special forms of C(-) that offer this behavior.

Our first task is to decide on an appropriate representation (i.e., description)
for the objects or foregrounds within the images. For both the object-level ap-
pearance model as well as the descriptor of the entire foreground, we make use
of a visual dictionary over textons (very similar to the object recognition litera-
ture [19]). Filter bank responses, when clustered, provide a “texton histogram”
where cluster centers with their corresponding covariances define a visual word
(or a histogram bin). Distinct objects correspond to distinct distributions over
k texton bins [12]. Based on this construct, assume that the histograms of each
unique object which may appear in the images are provided as {mq,--- ,mg}
for d objects, where for an object I, m; € R¥. With this definition, it follows
directly that the foreground in each to be segmented image (say, f[¥ in image
i) must be a vector in R¥, and can be expressed as il = aymy + ...+ agmy
(note that we are operating on the same set of dictionary of visual words or
texton bins). Clearly, oy = 0 implies that the [-th object is missing in the i-th
image and «; > 0 gives a scaled version of the object-wise texton histogram.
This discussion does not yield an implementable algorithm yet (because neither
the object-wise texton histogram nor the foreground regions are known).
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The Subspace Structure of Foregrounds. Denote the set of foreground
appearance vectors for s images as {F(:,1),---,F(:,s)} = {f, -, fls]}. Let
us consider a simple example (two objects, three images) to see the subspace
structure by focusing on the three respective foregrounds, fI, f?I and fB3I,
assuming that the object models in these foregrounds are indexed by m; and
mo. We have f[l] = 601mq1+0amo, f[2] = 03mq+04mo, and f[3] = O5mq +6gms for
some set of constants {01, ,0¢}. Observe that the three foregrounds share the
same basis in m; and ms, and so we may write f?! as a linear combination of f*!
and f2l. Also, fll is expressable by combining f[?! and fB!, and similarly f2
in terms of flI and f®l (a change of basis argument). Denote the coefficients
of these linear combinations by a matrix, C' whose (j,4)-th entry denotes the
contribution of foreground fU! in expressing fl. So, the requirement that every
foreground appearance model should be expressable as a linear combination of a
set of basis texton histograms can be achieved by asking that each f!? (individual
columns of F') must be reconstructable as a linear combination of all other f U]
where j # i (f [l does not contribute in its own reconstruction). This can be
written as F = FC with the condition that the diagonal entries of C' must
be identically zero, i.e., diag(C) = 0 (where F € R¥*® and C' € R**®). If the
columns of F lie in the same subspace, this constraint is satisfied. However, the
linear form also permits the identification of multiple subspaces into which the
columns of F' can be ‘clustered’. The latter interpretation is strongly related
to recent developments in subspace clustering [20,21]. Finally, to permit small
variations in the appearance models and make the model robust, we have F' =
F+ ¢ where F' is composed of a main component F plus a noise matrix (.

As a final ingredient, we also need to algebraically express the foreground
vectors F(:,4) as a function of the segmentation. For each image, we have the
texton histogram of the entire image where rows (and columns) correspond to
histogram bins (and image pixels) respectively. We denote this as a binary ma-
trix ZI, where ZU(b, p) = 1 implies pixel p is assigned to visual word b (like
the similarity indicator used in [10]). Let the unknown segmentation indicator
variable for image i be x[!l. Then, each entry of Z[!x[? is the dot product of a
row a in ZU! with x[, and provides the number of pixels from bin a assigned
to foreground. So, Zl!xll = F(:,i) = flI. With these components, multi-object
multi-image scale free cosegmentation takes the simple form as in (1):

L 2 B+ e (1)

subject to dlag(C) =0, rank(C) <k (asmall constant).
F=F+¢ F=Fc, zZU"=F(,9),

where the rank constraint offers a regularization on C, with similar motivation
as in the subspace clustering literature [20]. The non-convex rank constraint
is replaced by its convex relaxation: the nuclear norm. We will ensure fidelity
between F and F + ¢ as well as between F and F'C as soft constraints by
penalizing their respective differences in the objective. The constraint F=FC
is a seemingly difficult quadratic form of two matrix variables. But even when
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included in the objective, it has a suprisingly simple solution because of the
structure of C, as described shortly.

For concreteness of the presentation below, we now decide on the form of
Escg(xm) in (1). In this paper, we use the Markov Random Field segmentation,
popular for a variety of computer vision applications, see [22]. Other linear forms
are possible as long as the the optimal real-valued solution can be found in
polynomial time in Step 2 below. The main descent steps of the optimization are:

1) Choose a matrix F based on some initialization (e.g., the matrix of all
ones).

2) With F given, optimize mine 3>, Feeg(x) + ||F — FI* st x€[0,1], to
recover x. We do not solve for C since F is given. Using x, calculate each

column of F as Zlx[i, R
3) Then, optimize (2) to recover F' and C,

.2 . N2
i NnlF = F|" +%|F - FC|" + [|IC], st diag(C) =0  (2)
F,

keeping F' fixed. ||C||. is nuclear norm. The user specified constants 7,
~2 penalize the soft constraints.
4) Repeat Steps 2-3 until convergence (or negligible change in solution).

Properties. It turns out that the core of the procedure (Step 2 and Step 3) can
be performed very efficiently. Let us first analyze Step 2. When E, is MRF,
Step 2 with x € [0,1] is a Quadratic Pseudoboolean function (for which fast
implementations are already available). Interestingly, Step 3 also turns out to be
very easily solvable as shown by [21] (cf. Lemma 2). In fact, in Step 3, the solution
of F and C such that it satisfies the constraints above can be obtained from a
singular value decomposition of F. Since both steps are optimally solvable, we
obtain the following simple result:

Lemma 1. The objective value of the relazed version of (1) is non-increasing
with each iteration.

Beyond Lemma 1, convergence to a stationary point requires making use of
the persistence property from [23,24] to show that the set of solutions is finite.
Then, the stationary point statement follows by arguments similar to results for
convergence of k-means, as shown in [13].

4 Supervised Cosegmentation with Dictionaries of
Appearance Models

The preceding model, while interesting, needs discriminative backgrounds across
the given image set. This criteria is not satisfied in many datasets depicting
multiple objects, where some images may be temporally related and therefore
share a common background. This issue does not have an easy solution in the
unsupervised setup, but can be addressed effectively by endowing the model with
some form of weak supervision to make the problem well posed.
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Consider a situation where the user interacts with the model on a few im-
ages in the set (the level of supervision is comparable to a GrabCut type scribble
interaction [4]), which is then used to derive an approximate texton-based ap-
pearance model of the objects of interest. We call this setup cosegmentation with
a precise dictionary. Note that ‘precise’ refers not to the quality of the appearance
model, rather the fact that the dictionary consists only of appearance models of
objects likely to appear in the set. We also study a more general version of the
problem: it assumes the availability of a larger overcomplete dictionary made up
of a diverse (and redundant) collection of appearance models. We give a brief
overview of the precise dictionary version next, and then discuss its extensions.

Given a small collection of approximate appearances of objects as vectors
(distributions over texture visual words), M = {my, -+ ,mq}, we want to seg-
ment the foreground from unseen images (where objects may appear at arbitrary
scales). This problem can be written out as follows (v is a constant):

min Boeg () + 4[| (:0) = > Al st FGd) = 20x Xl e o, 1),
: myeM

®3)

The objective penalizes the difference of the unknown foreground F(:, ) (for a
fixed ) from a linear combination of the given basis vectors (object appearances).
Since M is known, this problem can be solved very efficiently for the MRF
objective as well as other segmentation functions considered in [25]. For instance,
if we use MRFs for segmentation, we can obtain provably partially optimal
solutions. To do this, we first substitute the basis set M with an orthogonal
basis M (using Gram-Schmidt). Then, the penalty term y[[F = ., o\ Ajm; I?
is interpretable as the distance of the vector F(:,) to the subspace spanned by
the vectors in M or the orthogonal set M'. The advantage of using M’ is that
such a distance can be computed in closed form by projecting F'(:,4) on to this
subspace expressing it as a linear combination of its projection to the orthogonal

basis vectors. That is, projay (F(:, 1)) = 3, en Ajm; where \; = EGi)my pop

mg-m;

any image 4 in a given set, the objective function, therefore, takes the form,

it Fog (<) + 91| P, 1) = projue (FG, ), ()
which can be written as a Pseudoboolean function [23] in x, and permits net-
work flow-based solutions. Next, we build upon the ideas above, where the final
optimization core will solve a problem similar in form to (4) as a module.

4.1 Cosegmentation with Overcomplete dictionary

Knowledge of precisely which basis vectors will be used in representing the un-
known foreground regions, while useful as a first step, restricts applicability of
Cosegmentation in several circumstances. For example, consider a temporal im-
age sequence consisting of two main actors (objects), as shown in Fig. 1. In some
of the frames, one of the actors may be outside the field of view; therefore, it is
not a good idea to use all available basis vectors to segment every image in the
given set. Rather, we would like the algorithm to identify the smallest subset
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of bases that can be linearly combined to define the foreground of the images
(restricting the model complexity). Further, such dictionaries are not difficult
to construct using datasets such as MSRC Object Categories, Pascal VOC, and
iCoseg using just weak supervision. Once a large universe of approximate object
appearance models is available, the goal is to cosegment a given set of images,
where the foreground is composed of a small subset of appearance models A
from our dictionary, D. This problem shares similarities to the dictionary se-
lection problem in [26,27,28], but with salient differences. In [26], the goal is to
identify a sparsifying sub-dictionary by selecting dictionary columns from multi-
ple candidate bases, and then representing the signal as a sparse reconstruction
of the chosen bases.

. i . 2
min 3 B G- Y aml ®)

mjEA,ACD,|A|<B

st. Vi F(,i)=2"%1 0 I elo,1). (6)

But here, the to-be-reconstructed vector F' is not fixed, rather needs to be
solved in conjuction with other terms. Further, finding the sparse representation
standalone is insufficient; instead, it needs to interact with Eseg(x[i]) L
Combinatorial Properties. If we use MRF for Fge.(-), in the current setup
it is a submodular function [29]. So, we focus on the second part of the objec-
tive and define the following function: L(F(:,7), A) = [|[F(:,i) = 3., ca Amy ]|,
Note that, given F', the subset of D which best approximates it, can be writ-
ten as A = argmingep, jaj<p 2_; L(F(:,7), A). Let ¢ be the null set. We define
an additional function G(F(:,i), D) = L(F'(:,i),¢) —mingep, jaj<g L(F(:,7), A)
which reduces variance between the linear combination of the chosen bases and
the signal to be approximated. This function, when maximized also provides an
equivalent sparse representation of the signal. It turns out that such a function is

approximately sub-modular (see [20]) and its ‘deviation’ from submodularity is
a function of the maximum incoherency p =  Jaax (M, my). With these tools
UV, uFv

in hand, we can directly make the following observation.

Observation 1 The model in (5) can be expressed in the form: min E — G,
where E (same as Egeg) is submodular, G is approximately submodular (—G
is approzimately super-modular), and so E — G is a sum of submodular and
(approxzimately) supermodular terms.

Next, we show how the sub-supermodular function approximation method pro-
posed by [30] can be extended to our problem. To do this, we substitute the super-
modular term with its (approximately) modular approximation. This function
is defined, wrt to a fixed subset A, as W(F(:,4), A) = L(F(:,4),¢) — L(F(:,3), A),

! The choice of extracting A C D instead of regularizing the £;-norm of A was driven by
empirical feedback. Using a Lasso penalty (relaxation of £o norm) involves solving
a linear program which may become a bottleneck in vision applications. Second,
while penalizing large values in A (a consequence of ¢1) has the undesirable effect of
making the model less immune to scale changes, giving unsatisfactory performance.
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and can be shown to be approximately modular (see [26]). In our model, the
important advantage is that the term E — ¥ can replace the objective £ — G,
which is now approximately submodular (a sum of submodular and approxi-
mately modular terms). In addition, it is similar in form to (3), since when the
set A is fixed, the problem reduces to a precise dictionary setup. Therefore, ef-
ficient methods from §4 are directly applicable. Based on these properties, we
adopt the following iterative procedure:

1) Solve the function E and get an initial estimate for F; (¢ refers to the
iteration number).

2) Solve Apy = argmaxacp G(Fjy, D). This can be done using the procedure
described in [26]. Note that since G(Fyy, D) = 9 (Fly, Ay), we have £ —
G(Fly, D) = E — 9(Fiy, Apg)-

3) Solve the optimization problem miny, E—(:, Ay) keeping Ay, fixed, using
a procedure similar to §4. Denote the optimal solution by x[;4;) and the
matrix of new foreground vectors as F; 1.

4) Repeat Steps 2-3 until convergence (or negligible change in solution).

We can now prove the following result:

Proposition 1. The objective function value is monotonically non-increasing
with the iterations.

Proof (sketch). Note that after Step 3, we get
Fiy — G(Fly, D) = Epy — ¥(Fly, A) 2 Epqn) — (Fleq, Ap)-

This is because as we are solving the optimization problem in Step 3 to opti-
mality. Further,

Eyv1) — Y(Fug1), Ap) > Epg1) — G(Fleg), D).

This is true because in Step 2, Aj41 = argmaxacp G(Fj41), D); therefore,
G(Fit41), D) > ¥ (Fl41], Ap); otherwise replacing Apyq) by Ap) improves the
solution of G(Fi41), D) trivially and the solution converges. Therefore, we di-
rectly have Ejy —G(Fly, D) > Ejpo1)—(Fleya), Ayg) = By — G (Flega), D), and
so the iterations either decrease the objective value at each step or the iterations
converge.

Generating class specific labels: The reader will notice that while our algo-
rithms identifies multiple objects at arbitary scale variations in a set of images,
the output is in the form of a joint foreground indicator vector, rather than class
specific indicator vectors. But class specific indicators can be obtained from such
an output, if desired. The main task is to divide the joint foreground indicator
vector F'(:,1) of image 4, into the constituent class specific indicator vectors. To
do this, we project the foreground indicator vector F(:, i) on to the basis vectors,
to obtain foreground appearance model for each object individually (say Fy(:,1%)
for object class d). We can then decompose the indicator vector x’, into an

indicator vector for each object class Xt[ii], satisfying the property that they agree

with the object-wise models above, i.e., Z[i]xg] ~ Fy(:,1). This is essentially a
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least squares problem of the form Az ~ b. It turns out the the LHS coefficient
matrix (A) of this form has a totally unimodular property, therefore if we round
the RHS (b) to integral values, such a least squares problem will have an exact
solution.

5 Evaluations

Our experiments were designed to assess the model’s performance on several
benchmark datasets, using existing methods as a baseline. Broadly, the setup
consists of: evaluation of (a) the unsupervised algorithms in §3, and (b) the su-
pervised algorithms with exact and overcomplete dictionaries in §4 — §4.1. We
demonstrate some examples for the unsupervised model, but mainly focus our
attention to the more broadly applicable methods from Section 4.1, which were
evaluated on the entire iCoseg dataset [4] and a subset of MSRC object cate-
gories . In addition, we also include comparison of our supervised method with
fully supervised SVM. We used texture-based appearance models as described in
Section 3 using agglomerative information bottleneck from [19]. The unary terms
for the MRF objective were created using the GMMs from the Grabcut imple-
mentation in OpenCV using the training data (when available) or by specifying
a box centered on the image covering 60% area (in the unsupervised setting).
All segmentations were done at the pixel level (no superpixels were used).
Subspace Cosegmentation of Multiple Objects. We performed a prelimi-
nary evaluation of this model using a small number of examples collected from
the internet.

Since the algorithm as-

regions are similar (and the
background is disparate), we
extracted images from sev-
eral video sequences which
were temporally separated.
Representative examples (from
Toy Story) are shown in Fig.
2 where there is significant

pose/shape variation in the Fig. 2. Results of the algorithm in Section 3 (Row
objects; further two of the 2) relative to segmentation obtained from [9] (Row 3).
images consist of only one

character. The model performs favorably relative to [9] (also an unsupervised
approach).

Cosegmentation with appearance dictionaries. These experiments are a
rigorous assessment of the model because the dataset includes deformable ob-
jects, and significant variations in pose, viewpoint, as well as scale. Interestingly,
not all images contain all objects which allow properly evaluating all properties
of our algorithm in §4.1.

ICoseg. The iCoseg dataset contains 38 image categories with up to 40 im-
ages in each class. For each class, we created a small training set consisting of
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up to 2 training examples (from the ground truth) to generate the dictionary
(this can also be derived from scribble guidance [1]). We illustrate comparisons
of our approach with three other methods from [11], [8], and [9]. Among these
the cosegmentation method of [11] uses training data but by a very different
procedure. Since the performance of any cosegmentation method varies among
different classes, similar to other papers [1] we report the results for each class.
Also, consistent with common practice [11,4,13], we report accuracy as the per-
centage of pixels in the image (both foreground and background) which were
correctly classified. (note that results in [11] included a subset of all images in
each class). Since the model decomposes into independent runs in §4.1, it is not
limited by how many images can be segmented at once. In Table 2, we summa-

Fig. 3. Some results of the model in §4.1 on multi-object Liverpool (cols 1-4) and
Soccer sets (cols 5-8)

rize our accuracy summaries after segmenting all ~ 640 images from all classes
in iCoseg. Overall, compared to the accuracy numbers reported for each class
in [11] (and also [8], [9]), our model performs well and yields better accuracy in
all but two classes. Some visual results are presented in Figure 3 to illustrate its
qualitative performance on images with multiple objects (including scenes where
an object is missing). Note that for the Liverpool and the Women Soccer images
shown, the ground truth provided in iCoseg only asks for detecting one object.
To detect all objects, we created a dictionary with only one training example
for each team (by running a Grabcut with a few scribbles, and retaining results
from the first iteration). Even though the training examples were not perfect,
the results in Fig. 3 indicate the algorithm can identify multiple objects with
relative ease, and is mostly immune to situations where one or more objects are
not visible in a scene.

class Ours [11] [8] [9] class Ours [11] 18] 19]

Balloon [95.17% 90.10% 89.30% 85.20% || Kite Panda [93.37% 90.20% 70.70% 73.20%
Baseball [95.66% 90.90% 69.90% 73.0% Panda 92.83% 92.70% 80.00% 84.00%
Brown bear|88.52% 95.30% 87.3% 74.0% Skating [96.64% 77.50% 69.9% 82.1%
Elephants [87.65% 43.10% 62.3% 70.1% Statue 96.64% 93.80% 89.3% 90.6%
Ferrari [89.95% 89.90% 77.7% 85.0% ||Stonehengel[92.67% 63.30% 61.1% 56.6%
Gymnastics[92.18% 91.70% 83.4% 90.9% [|Stonchenge2[84.87% 88.80% 66.9% 86.0%

Kite 94.63% 90.3% 87.0% 87.0% || Taj Mahal [94.07% 91.1% 79.6% 73.7%

Table 2. Segmentation accuracy summaries for image classes from iCoseg
dataset.

MSRC Object Cat- Approach |Sheep Car Cow  FlowersPlane Dog Bird
. he MSRC Ours 89.0% 80.1% 87.8% 86.5% 87.1% 93.5% 94.8%
egories. The R [11] 93.0% 79.6% 94.2% — 83.0% 93.1% 95.3%

dataset contains sev-
eral categories of ob-
jects, but in each object class, the constituent images are much more diverse

Fig.4. Segmentation accuracy on MSRC.
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compared to ICoseg. For example, the Flowers class includes flowers of different
colors and shapes: in such cases, for cosegmentation to yield very high accuracy,
far richer visual features may be needed. To make our models applicable, we
created a dictionary having one representative image of each unique type which
provided 4 — 5 training examples per class — all other images in the class were
then presented to the model for segmentation. The accuracy is summarized for
the subset of classes tested are shown in Fig. 4 using the recent work of [11]
(which also used training) as a baseline. Overall, this suggests that the perfor-
mance of our algorithm is similar to [11]. Finally, we observe that both methods
are limited only by the underlying visual features that enable (a) comparing pro-
posal segmentations in [11] and (b) comparing appearance descriptors in ours.
Examples from MSRC and iCoseg is shown in Fig. 5.

Results on comparison with fully supervised SVM. Since the algorithms
described in Sections 4 and 5 are essentially supervised, we compare our method
with a fully supervised algorithm such as SVM. SVMs were run on images from
the ICoseg dataset, since the background and foregrounds are both fixed for such
images. For each image group, we select five images as the training set (note
that for experiments using our method, we used no more than two training
image). For each training image, we compute a texton feature descriptor (17
features) for each pixel and train a classifier based on that (we use the built-
in svmtrain function in Matlab with SMO as the solver). After that, we use
the learned classifier and test it on the remaining image set. Figure 6 shows
some representative images. In general, the results of SVM are about 10 — 15%
worse than our method and also worse than any other baseline used in the main
paper. This is somewhat expected as our algorithm imposes an appearance model
constraint on the entire set of pixels labeled as foreground by asking that they
span a subspace given by a subset of known appearances. But similar patches
routinely co-occur in the foreground and background, which throws off the results
of SVM substantially in the absence of any terms that make the solution behave
like a valid segmentation (e.g., homogeneity).

Other Comments. Our results above show that the model yields results that
are superior or competitive with the state of the art on two benchmark datasets.
The run-time increases near linearly with each image; the main cost is minimizing

Fig. 5. Results of the algorithm in §4.1 on the ICoseg (cols 1-5) and MSRC (cols 6-8)



Title Suppressed Due to Excessive Length 13

P

-]

":; L
Fig. 6. Results of the comparison of our algorithm with fully supervised SVM on

three datasets from Icoseg: Rows 1 shows the original images, Rows 2 shows the results
of our approach and Rows 3 shows the results using SVM

a QPB function which takes 5 — 20s per image per iteration (convergence in 5
iterations). Other than these experiments, we evaluated how often the “correct”
basis vectors A C D are chosen by the algorithm during segmentation. To do
this, we manually found correspondences between each image in the test and
training class for MSRC data. The number of histogram bin centers in [19] was
fixed to 500. Feedback for MSRC experiments suggested that for the 125 images
in Fig. 4, the model identified the correct basis subset over 90% of the time.

6 Discussion

We propose new algorithms for simultaneous segmentation of multiple objects
from image collections, by analyzing and exploiting their shared subspace struc-
ture. Our models, for both unsupervised and supervised setting, extend the cur-
rent state of the art for such approaches, which until now, has been limited to
identifying a single common object. We believe this makes idea of cosegmenta-
tion applicable to a much wider class of problems, therefore significantly extends
the operating range of such methods. Experiments on benchmark datasets show
that algorithm performs well on a variety of image sets.
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