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MULTIPLE TESTING UNDER DEPENDENCE VIA
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Large-scale multiple testing tasks often exhibit dependence. Leveraging
the dependence between individual tests is still one challenging and impor-
tant problem in statistics. With recent advances in graphical models, it is fea-
sible to use them to capture the dependence among multiple hypotheses. We
propose a multiple testing procedure which is based on a Markov-random-
field-coupled mixture model. The underlying true states of hypotheses are
represented by a latent binary Markov random field, and the observed test
statistics appear as the coupled mixture variables. The model can be learned
by a novel EM algorithm. The next step is to infer the posterior probabil-
ity that each hypothesis is null (termed local index of significance), and the
false discovery rate can be controlled accordingly. We also provide a semi-
parametric variation of the graphical model which is useful in the situation
where f1 (the density function of the test statistic under the alternative hy-
pothesis) is heterogeneous among multiple hypotheses. This semiparamet-
ric approach exactly generalizes the local FDR procedure [J. Amer. Statist.
Assoc. 96 (2001) 1151–1160] and connects with the BH procedure [J. Roy.
Statist. Soc. Ser. B 57 (1995) 289–300]. Simulations show that the numerical
performance of multiple testing can be improved substantially by using our
procedure. We apply the procedure to a real-world genome-wide association
study on breast cancer, and we identify several SNPs with strong association
evidence.

1. Introduction. Observations from large-scale multiple testing problems of-
ten exhibit dependence in the sense that whether the null hypothesis of one test is
true or not (termed the underlying true state) depends on the underlying true states
of other tests. For instance, in genome-wide association studies, researchers col-
lect hundreds of thousands of highly correlated genetic markers (single-nucleotide
polymorphisms, or SNPs) with the purpose of identifying the subset of mark-
ers associated with a heritable disease or trait. In functional magnetic resonance
imaging studies of the brain, thousands of spatially correlated voxels are collected
while subjects are performing certain tasks, with the purpose of detecting the rel-
evant voxels. The most popular family of large-scale multiple testing procedures
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is the false discovery rate analysis, such as the p-value thresholding procedures
[Benjamini and Hochberg (1995, 2000), Genovese and Wasserman (2004)], the
local false discovery rate procedure [Efron et al. (2001)] and the positive false dis-
covery rate procedure [Storey (2002, 2003)]. However, all these classical multiple
testing procedures ignore the correlation structure among the individual factors,
and the question is whether we can reduce the false nondiscovery rate by lever-
aging the dependence, while still controlling the false discovery rate in multiple
testing.

Graphical models provide an elegant way of representing dependence. With
recent advances in graphical models, especially more efficient algorithms for in-
ference and parameter estimation, it is feasible to use these models to leverage the
dependence between individual tests in multiple testing problems. More specifi-
cally, we can use graphical models to explicitly model the underlying true states
of the hypotheses as random variables to encode the dependence, and then model
the observed test statistics independently given their underlying true states. For
example, one influential paper [Sun and Cai (2009)] uses a hidden Markov model
to represent the dependence structure, and has shown its optimality under certain
conditions and its strong empirical performance. In the model, the underlying true
states of the hypotheses form a Markov chain, and the observed test statistics are
assumed to be independent given the underlying true states. It is the first graphical
model that explicitly specifies the dependence between the hypotheses in multiple
testing problems, and the procedure methodologically differs from other works
on multiple testing under dependence [Benjamini and Yekutieli (2001), Blanchard
and Roquain (2009), Efron (2007), Farcomeni (2007), Finner and Roters (2002),
Owen (2005), Romano, Shaikh and Wolf (2008), Sarkar (2006)] which only ex-
plicitly model either test statistics or p-values.

Nevertheless, the procedure of Sun and Cai (2009) can only deal with a sequen-
tial dependence structure, and the dependence parameters are homogeneous. In
this paper, we propose a multiple testing procedure based on a Markov-random-
field-coupled mixture model which allows arbitrary dependence structures. In our
model, the underlying true states of the hypotheses form a Markov random field,
and the observed test statistics are assumed to be independent given the underly-
ing true states. This extension requires more sophisticated algorithms for param-
eter estimation and inference. For parameter estimation, we design a novel EM
algorithm with MCMC in the E-step and a contrastive divergence style algorithm
[Tieleman (2008)] in the M-step. We show that there is a lower bound of the log
likelihood which nondecreases over the EM iterations except for some MCMC er-
ror introduced in the E-step. We use the MCMC algorithm to infer the posterior
probability that each hypothesis is null (termed local index of significance or LIS).
Finally, the false discovery rate can be controlled by thresholding the LIS.

Another extension to the work of Sun and Cai (2009) is that we design a semi-
parametric variation of the graphical model which nonparametrically estimates the
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f1 function—the density function of the test statistic under the alternative hypoth-
esis. This is particularly important in some practical problems where f1 is hetero-
geneous among multiple hypotheses, and thus cannot be estimated with a simple
parametric distribution. The remainder of the graphical model is still estimated
parametrically. The inference of the posterior probability and the false discovery
rate control in this semiparametric variation remain the same as the parametric pro-
cedure. More importantly, this semiparametric approach exactly generalizes the
local FDR procedure [Efron et al. (2001)] and connects with the BH procedure
[Benjamini and Hochberg (1995)].

The rest of the paper is organized as follows. Section 2 introduces terminology
and previous multiple testing procedures. Sections 3 and 4 introduce the graphical
model-based multiple testing procedures, including the details about the paramet-
ric and semiparametric estimation of the graphical model, the inference of the
posterior probability, the control of the false discovery rate and the connection
with previous procedures. Section 5 evaluates our procedure on a variety of sim-
ulations, and the empirical results show that the numerical performance can be
improved substantially by using our procedure. In Section 6, we apply the semi-
parametric procedure to a real-world genome-wide association study (GWAS) on
breast cancer, and we identify several SNPs with strong association evidence. In
Section 7, we provide the details of the EM algorithm, and show that there is a
lower bound of the log likelihood which nondecreases over the EM iterations. We
finally conclude in Section 8.

2. Terminology and previous procedures. Suppose that we carry out m tests
whose results can be categorized as in Table 1. False discovery rate (FDR), defined
as E(N10/R|R > 0)P (R > 0), depicts the expected proportion of incorrectly re-
jected null hypotheses [Benjamini and Hochberg (1995)]. False nondiscovery rate
(FNR), defined as E(N01/S|S > 0)P (S > 0), depicts the expected proportion of
false nonrejections in those tests whose null hypotheses are not rejected [Genovese
and Wasserman (2002)]. An FDR procedure is valid if it controls FDR at a prespec-
ified level, and optimal if it has the smallest FNR among all valid FDR procedures
[Sun and Cai (2009)].

The effects of correlation on multiple testing have been discussed, under dif-
ferent assumptions, with a focus on the validity issue [Benjamini and Yeku-
tieli (2001), Blanchard and Roquain (2009), Efron (2007), Farcomeni (2007),

TABLE 1
Classification of tested hypotheses

Not rejected Rejected Total

Null N00 N10 m0
Non-null N01 N11 m1
Total S R m
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Finner and Roters (2002), Owen (2005), Romano, Shaikh and Wolf (2008), Sarkar
(2006), Wu (2008)]. The efficiency issue has also been investigated [Benjamini and
Heller (2007), Genovese, Roeder and Wasserman (2006), Yekutieli and Benjamini
(1999), Zhang, Fan and Yu (2011)], indicating FNR could be decreased by consid-
ering dependence in multiple testing. Several approaches have been proposed, such
as dependence kernels [Leek and Storey (2008)], factor models [Friguet, Kloareg
and Causeur (2009)] and principal factor approximation [Fan, Han and Gu (2012)].
Sun and Cai (2009) explicitly use a hidden Markov model (HMM) to represent the
dependence structure over the underlying true states of the hypotheses and ana-
lyze the optimality under the compound decision framework [Sun and Cai (2007)].
However, their procedure and its extensions, SLIS [Wei et al. (2009)], PLIS [Wei
et al. (2009)] and RSPLIS [Xiao, Zhu and Guo (2013)], can only deal with se-
quential dependence. In this paper, we replace the HMM with a Markov-random-
field-coupled mixture model, which allows richer and more flexible dependence
structures.

3. The parametric procedure. Let x = (x1, . . . , xm) be a vector of test statis-
tics from a set of m hypotheses (H1, . . . ,Hm). The underlying true states of these
hypotheses are denoted by a latent Bernoulli vector θ = (θ1, . . . , θm) ∈ {0,1}m,
with θi = 0 denoting that the hypothesis Hi is null and θi = 1 denoting that the hy-
pothesis Hi is non-null. Conditionally on θ , xi ’s are independent. The dependence
among these hypotheses is represented as a binary Markov random field (MRF)
on θ . The structure of the MRF can be described by an undirected graph G(V,E)

with the node set V and the edge set E . The dependence between Hi and Hj is de-
noted by an edge connecting nodei and nodej in E , and the strength of dependence
is parameterized by the potential function �E

l (parametrized by φl , 0 < φl < 1) on
this edge (indexed by l). The degree of prior belief that Hi is null is captured by
the node potential function �V

i (parametrized by πi , 0 < πi < 1). The probability
of θ from the MRF with parameters π and φ is

(3.1) P(θ;π,φ) = 1

Z(π,φ)

m∏
i=1

�V
i (θ;πi)

|E|∏
l=1

�E
l (θ;φl),

where Z(π,φ) is the normalizing constant. Suppose that the probability density
function of the test statistic xi given θi = 0 is f0, and the density of xi given
θi = 1 is f1. Then x is an MRF-coupled mixture. Figure 1 shows the MRF-coupled
mixture model for three dependent hypotheses Hi , Hj and Hk .

For now, let us assume for simplicity that the mixture model is parameterized
by a parameter set ϑ = (π,φ,ψ), where π and φ parameterize the binary MRF,
and ψ parameterizes f0 and f1. For example, if f0 is standard normal N (0,1)

and f1 is noncentered normal N (μ,1), then ψ only contains parameter μ. This
multiple testing procedure is termed the parametric procedure. In Section 4, we in-
troduce the semiparametric procedure which is designed for the situations where
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FIG. 1. The MRF-coupled mixture model for three dependent hypotheses Hi , Hj and Hk with
observed test statistics (xi , xj and xk ) and underlying true states (θi , θj and θk ). The MRF is pa-
rameterized by πi , πj and πk , φu, φv and φw , and the coupled mixtures are parameterized by f0
and f1.

f1 is heterogeneous among multiple hypotheses and needs to be estimated non-
parametrically.

In our MRF-coupled mixture model, x is observable, and θ is hidden. For a
given parameter set ϑ = (π,φ,ψ), the joint probability density over x and θ is

(3.2) P(x, θ |π,φ,ψ) = P(θ;π ,φ)

m∏
i=1

P(xi |θi;ψ).

We define the marginal probability that Hi is null given all observed statistics
x under the parameters in ϑ , Pϑ(θi = 0|x), to be the local index of significance
(LIS) for Hi [Sun and Cai (2009)]. Sun and Cai (2009) insightfully discussed the
properties of LIS and its relationship with the p-value and local FDR [Efron et al.
(2001)].

There are three steps in using this graphical model to capture the dependence
in multiple hypotheses. First, we have to estimate the parameters ϑ = (π,φ,ψ).
Second, we have to compute the posterior marginal distribution of the hidden vari-
ables θi given the test statistics x, namely, LIS for each hypothesis. Last, we have
to link the LIS values with FDR and control FDR. The three steps are introduced
in Sections 3.1, 3.2 and 3.3, respectively. In Section 3.4, the optimality of the pro-
cedure is discussed under the compound decision theoretic framework [Robbins
(1951), Sun and Cai (2007)].

3.1. Parameters and parameter estimation. In our model, the dependence
among these hypotheses is represented by a Markov random field on the latent vec-
tor θ parameterized by π and φ, and the observed test statistics x are represented
by the coupled mixture parameterized by ψ . Estimating (π ,φ,ψ) is difficult for
two reasons. First, parameter estimation is difficult by nature in undirected graph-
ical models due to the global normalization constant Z(π ,φ) in Formula (3.1)
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[Wainwright, Jaakkola and Willsky (2003a), Welling and Sutton (2005)]. Second,
θ is latent and we only have one observed training sample x.

For a given vector x, the log likelihood of the parameters ϑ = (π,φ,ψ) is

(3.3) L(π ,φ,ψ) = logP(x;π ,φ,ψ) = log
∑

θ∈{0,1}m
P (x, θ;π ,φ,ψ).

Since we only have one instantiation (x, θ), we usually have to assume that
πi’s are the same for i = 1, . . . ,m and that φl’s are the same for all edges in the
edge set E , for effective parameter estimation. This homogeneity assumption is
similar to the assumption in the work of Sun and Cai (2009) that the transition
parameter and the emission parameter stay the same for i (i = 1, . . . ,m) in their
HMM model. To alleviate this assumption in GWAS, three improved HMM based
procedures, SLIS [Wei et al. (2009)], PLIS [Wei et al. (2009)] and RSPLIS [Xiao,
Zhu and Guo (2013)], are designed to estimate different parameters for different
chromosomes. In our real-world GWAS application in Section 6, we have different
parameters for SNP pairs with different levels of correlation.

We use an EM algorithm to solve this problem of the hidden vector θ . In the
E-step, we run our MCMC algorithm in Section 3.2 to infer the latent θ based on
the currently estimated parameters ϑ = (π,φ,ψ). In the M-step, we run a gradient
ascent algorithm, similar to the persistent contrastive divergence (PCD) algorithm
[Tieleman (2008)], to estimate π and φ from the currently inferred θ . We also per-
form maximum likelihood estimation of ψ from currently inferred θ and observed
x in the M-step. We run the EM algorithm until both φ and ψ converge. Although
this EM algorithm involves intensive computation in both E-step and M-step, it
converges very quickly in our experiments. Similar to other EM algorithms, our
algorithm only converges to a local maximum of the likelihood L(π,φ,ψ), but
the lower bound nondecreases over the EM iterations (except for some MCMC er-
ror introduced in the E-step). The details of the EM algorithm and the explanation
are provided in Section 7.

3.2. Posterior inference. After we estimate the parameters, we are interested
in calculating Pϑ(θi = 0|x) for a given parameter set ϑ . One popular family of
inference algorithms is the sum-product family [Kschischang, Frey and Loeliger
(2001)], which is also known as belief propagation [Yedidia, Freeman and Weiss
(2000)]. For loop-free graphs, belief propagation algorithms provide exact infer-
ence results with a computational cost linear in the number of variables. In our
MRF-coupled mixture model, the structure of the latent MRF is described by a
graph G(V,E). When G is chain structured, the instantiation of belief propagation
is the forward-backward algorithm [Baum et al. (1970)]. When G is tree structured,
the instantiation of belief propagation is the upward-downward algorithm [Crouse,
Nowak and Baraniuk (1998)]. For graphical models with cycles, loopy belief prop-
agation [Murphy, Weiss and Jordan (1999), Weiss (2000)] and the tree-reweighted
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algorithm [Wainwright, Jaakkola and Willsky (2003b)] can be used for approxi-
mate inference. Other inference algorithms for graphical models include junction
trees [Lauritzen and Spiegelhalter (1988)], sampling methods [Gelfand and Smith
(1990)] and variational methods [Jordan et al. (1999)]. Recent papers [Schraudolph
(2010), Schraudolph and Kamenetsky (2009)] discuss exact inference algorithms
on binary Markov random fields which allow loops. In our simulations, we use
belief propagation when the graph G has no loops. When G has loops (e.g., in the
simulations on genetic data and the real-world application), we use a Markov chain
Monte Carlo (MCMC) algorithm to perform inference for Pϑ(θi = 0|x).

3.3. FDR control. After we calculate the posterior marginal probabilities of θ
(or LIS), we have to decide which of these hypotheses should be rejected. Intu-
itively, we should reject the hypotheses with small LIS values, but we have to
associate these marginal probabilities with FDR and be able to control FDR at a
prespecified level. We use the step-up procedure in the work of Sun and Cai (2009)
to control FDR at the prespecified level α. We first sort LIS from the smallest value
to the largest value. Suppose LIS(1), LIS(2), . . . , and LIS(m) are the ordered LIS,
and the corresponding hypotheses are H(1), H(2), . . . , and H(m). Let

(3.4) k = max

{
i : 1

i

i∑
j=1

LIS(j) ≤ α

}
.

Then we reject H(i) for i = 1, . . . , k.

3.4. Optimality analysis. There are two types of optimality for these graphi-
cal model-based multiple testing procedures. The first optimality is for the oracle
procedure which knows the ground truth of the parameters in the graphical model.
The optimality of the oracle procedure is in the sense that it minimizes the marginal
FNR subject to a constraint on the marginal FDR. By exploring the connection be-
tween multiple testing and weighted classification under the compound decision
theoretic framework [Robbins (1951), Sun and Cai (2007)], Sun and Cai (2009)
proved that their oracle procedure is optimal under a mild monotone ratio condition
(MRC). Although the proof is for hidden Markov models (HMM), it can be easily
generalized to our MRF-coupled mixture model. Therefore, the optimality of the
oracle procedure can be proved under the compound decision framework [Sun and
Cai (2007, 2009)], as long as an exact inference algorithm exists or an approxi-
mate inference algorithm can be guaranteed to converge to the correct marginal
probabilities (see Section 3.2). The second type of optimality is the asymptotic op-
timality of the data-driven parametric procedure in the sense that it attains both the
FDR and FNR levels of the oracle procedure asymptotically (as the number of tests
m → ∞). Such a proof requires that the parameters in the graphical model can be
estimated consistently. To the best of our knowledge, there is no such consistence
guarantee for the estimators of MRF-coupled mixture models in the literature up
to now. Therefore, the asymptotic optimality of the data-driven procedure is still
unknown, and will be an important problem in future work.
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4. The semiparametric procedure. The graphical model in the parametric
procedure is effective to leverage the dependence in multiple testing problems, but
it makes a strong assumption that the f1 function can be estimated parametrically.
The work of Sun and Cai (2009) makes the same assumption. However, a long
tradition in hypothesis testing is to derive test statistics and calculate p-values
all under the null hypothesis H0. Statisticians avoid making assumptions about
f1 because the distribution of the test statistic under H1 sometimes can be diffi-
cult to derive. Take, for instance, a two-proportion z-test, which tests whether two
Bernoulli variables have the same parameter, that is, P(head) in coin-flippings; the
two-proportion z-test is widely used in case-control studies, for example, compar-
ing the minor allele frequencies in cases and controls. Under H0 (the two propor-
tions are the same), the test statistic X asymptotically follows a standard normal
N (0,1). Under H1 (the two proportions are different), X asymptotically follows a
standardized noncentered normal N (μ,1) (μ �= 0), where μ depends on the odds-
ratio of this genetic marker. When there are multiple genetic markers to be tested,
f0 remains N (0,1), but f1 becomes a mixture of Gaussians because these associ-
ated markers can have different odds-ratios and therefore different μ values (i.e.,
different effect sizes). In this situation, f1 is no longer a simple parametric distri-
bution. In a real-world genome-wide association study on breast cancer, we plot
the estimated f1 in Figure 2; obviously, it is inappropriate to estimate f1 with a
simple parametric distribution. Note that this is not a problem for classical multiple
testing procedures such as the BH procedure whose calculations of p-values are
done under H0, but this is a serious problem for the graphical model-based pro-
cedure in Section 3 which requires f1 to be estimated parametrically. Therefore,
the key question is how to use the graphical models to leverage the dependence
among the hypotheses without making assumptions about f1.

In this section, we make one modification to the graphical model—f1 is learned
nonparametrically and the MRF part is learned parametrically by estimating pa-
rameters φ and π . With the learned model, we use the same approach in Sec-
tion 3.2 to perform marginal inference of θ |x, and then use the same step-up pro-
cedure in Section 3.3 to control FDR. This multiple testing procedure is named the
semiparametric procedure. More algorithmic details are introduced in Section 4.1.

FIG. 2. Estimated f1 in a real-world genome-wide association study on breast cancer.
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Section 4.2 further shows that the two widely used multiple testing procedures,
the BH procedure [Benjamini and Hochberg (1995)] and the local FDR procedure
[Efron et al. (2001)], estimate their parameters in the same semiparametric way to
avoid assumptions about f1. This semiparametric procedure exactly reduces to the
local FDR procedure [Efron et al. (2001)] when the tests are independent. This uni-
fication demonstrates that it is sensible to use this semiparametric model to capture
the dependence in multiple testing problems.

4.1. Nonparametric estimation of f1. We cannot directly estimate f1 from
the observed test statistics x because the underlying true state vector θ is hidden.
However, we can estimate f from observed x nonparametrically via kernel den-
sity estimation. Therefore, we can estimate f1 indirectly using the rule of total
probability

(4.1) f (x) = p0f0(x) + (1 − p0)f1(x),

where p0 is the proportion of null hypotheses. Since we know f0 in advance [e.g.,
N (0,1)], we only need to estimate f and p0 so as to estimate f1.

We can estimate p0 with the method in Storey (2002), namely,

(4.2) p̂0(λ) = W(λ)

(1 − λ)m
,

where λ ∈ [0,1) is a tuning parameter, and W(λ) is the total number of hypotheses
whose p-values are above λ. The motivation of this estimation is that the p-values
of null hypotheses are uniformly distributed on the interval (0,1). If we assume
all the hypotheses with p-values greater than λ are from the null hypotheses, then
W(λ)/(1 − λ) is the total number of null hypotheses. Therefore, the right-hand
side of (4.2) is an estimate of p0. Obviously, p̂0(λ) overestimates p0 because there
may be non-null hypotheses whose p-values are greater than λ, especially when λ

is small. Therefore, a bias-variance trade-off presents in the choice of λ—a larger
λ value yields less bias but brings in more variance. Storey, Taylor and Siegmund
(2004) showed that the BH procedure coupled with p̂0(λ) maintains strong control
of FDR under mild conditions. In simulations, we test different λ values, and the
results show that the performance of our multiple testing procedure is insensitive
to different reasonable choices of λ. Note that there are several alternative methods
[Kim and Zhang (2014), Liang and Nettleton (2012)] which can be used to improve
Storey’s estimator of p0 in Formula (4.2).

Since we can observe all the test statistics x, we can estimate f directly via ker-
nel density estimation [Rosenblatt (1956)]. One may choose any kernel function
and bandwidth parameter as long as they provide a reasonable estimate. A Gaus-
sian kernel would be a natural choice. Nevertheless, in our experiments, we use
the Epanechnikov kernel because its computation burden is low, and it is optimal
in a minimum variance sense [Epanechnikov (1969)]. Finally, we can get f̂ , the
nonparametric estimate of f .
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With the estimated p̂0 and f̂ , we estimate f1 as

(4.3) f̂1(x) = f̂ (x) − p̂0f0(x)

1 − p̂0
.

Several iterative and more sophisticated approaches have been proposed to esti-
mate f1 in a similar semiparametric fashion, including the weighed kernel estima-
tor [Guedj et al. (2009), Robin et al. (2007)], the randomly weighed kernel estima-
tor [Nguyen and Matias (2014)] and the maximum smoothed likelihood estimator
[Nguyen and Matias (2014)]. These approaches may produce a better estimate of
f1 at the cost of additional computation.

4.2. Connections with classical multiple testing procedures. We show that
both the local FDR procedure [Efron et al. (2001)] and the BH procedure
[Benjamini and Hochberg (2000), Genovese and Wasserman (2004)] can be re-
garded as semiparametric graphical models which do not consider dependence
among the hypotheses. The local FDR procedure uses Bayes Theorem to calculate
the posterior probability that Hi is null given its observed test statistic xi , namely,

(4.4) P(Hi is null|Xi = xi) = p0f0(xi)

p0f0(xi) + p1f1(xi)
.

This posterior probability is termed the local false discovery rate [Efron and
Tibshirani (2002)]. Note that our LIS reduces to local false discovery rate under
the assumption of independence. Efron and Tibshirani (2002) recommend using
empirical Bayes inference [Robbins (1956)] to calculate local false discovery rate
as

(4.5) P(Hi is null|Xi = xi) = p̂0f0(xi)

f̂ (xi)
,

where f̂ is the empirical density of the test statistic, and p̂0 is an estimate of p0.
If we use θi to denote the underlying true state of Hi , then its local false discov-
ery rate is P(θi = 0|Xi = xi). Therefore, we can use the graphical model in Fig-
ure 3(a) to denote it. Obviously, this model is exactly our semiparametric model

FIG. 3. The plate presentation of the semiparametric graphical models for local FDR and the BH
procedure.
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in Figure 1, except that there are no pairwise potentials capturing the dependence
because the local FDR procedure assumes independence among the hypotheses.
The model for the local FDR procedure is also semiparametric because f1 is non-
parametrically estimated. Also, note that the parameter π in our model reduces to
the prior parameter p0 in this simplified model.

The following shows that the BH procedure is also a semiparametric model, but
the observed statistic is modeled by a cumulative distribution function (CDF). Let
P(1) < · · · < P(m) be the ordered p-values from the m tests and P(0) = 0. The BH
procedure rejects any hypothesis whose p-value satisfies P ≤ P ∗ with

(4.6) P ∗ = max
{
P(i)

∣∣∣P(i) ≤ i

m

α

p0

}
,

which controls FDR at the level α [Benjamini and Hochberg (1995), Genovese and
Wasserman (2002), Storey (2002)]. The inequality in (4.6) can be rewritten as

(4.7)
p0P(i)

i/m
≤ α.

Because a p-value is the CDF of f0 at the value of its test statistic x, and i/m

is the empirical CDF of f at the test statistic of H(i), (4.7) is further rewritten as

(4.8)
p0F0(x)

F̂ (x)
≤ α,

where F0 and F are the CDFs of f0 and f , respectively, and F̂ is an empirical
version of F . Thus, we can present the BH procedure as the graphical model in
Figure 3(b). This model is also semiparametric because F1 is nonparametrically
estimated. Therefore, both the local FDR procedure and the BH procedure are
semiparametric graphical models which do not consider dependence among the
hypotheses.

5. Simulations. We explore the empirical performance of our multiple test-
ing approach and two baseline procedures, the local FDR procedure [Efron et al.
(2001)] and the BH procedure [Benjamini and Hochberg (2000), Genovese and
Wasserman (2004)]. Because we have the ground truth parameters and two differ-
ent ways of estimating the graphical model, there are three versions of our multiple
testing approach, namely, an oracle procedure, a data-driven parametric procedure
and a data-driven semiparametric procedure. The oracle procedure knows the true
parameters in the graphical model (including π , φ and ψ), whereas the data-driven
procedures do not and have to estimate the graphical model in the parametric and
semiparametric ways introduced in Sections 3 and 4.

We choose the setup to be consistent with previous work of Sun and Cai (2009)
when possible. We consider two dependence structures, namely, a chain structure
and a grid structure. For the chain structure, we choose the number of hypotheses
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m = 10,000. For the grid structure, we choose a 100 × 100 grid, which also yields
10,000 hypotheses. We test two levels of dependence strength, that is, φ = 0.8
and φ = 0.6. We set π to be 0.4. We first simulate the underlying true states
of the hypotheses θ from P(θ;φ,π) and then simulate the test statistics x from
P(x|θ;f0, f1). We assume that the observed xi under the null hypothesis (namely,
θi = 0) is from a standard normal N (0,1). We test two different models for xi

under the alternative hypothesis (namely, θi = 1) as follows.

Model 1: xi |θi = 1 comes from a mixture of normals

(5.1)
1

3
N (1,1) + 1

3
N (μ,1) + 1

3
N (5,1).

In total, we test nine values for μ, namely, 1.4, 1.8, 2.2, 2.6, 3.0, 3.4, 3.8, 4.2
and 4.6. Different μ values yield different f1 with different shapes.

Model 2: xi |θi = 1 comes from a Gaussian N (μ,1) and μ has a prior of
Gamma(2.0, β) where β is the scale parameter. We test six different values for β ,
namely, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0. This model is designed to mimic the com-
mon situation in GWAS that common genetic variants have small effect sizes and
rare genetic variants have large effect sizes [Manolio et al. (2009)].

The oracle procedure knows the true parameters in the graphical model, includ-
ing π , φ and ψ . For the data-driven parametric procedure, f1 is assumed to be
a simple Gaussian. For the data-driven semiparametric procedure, f1 is estimated
in the semiparametric way introduced in Section 4 with the Epanechnikov kernel
(bandwidth is 1.0). Both the BH procedure and the local FDR procedure need an
estimate of p0; we use the same estimating method in Formula (4.2) for a fair com-
parison. The local FDR procedure also needs an estimate of f , and we estimate it
in the same way as in our data-driven semiparametric procedure.

We compare three measures from these procedures. First, we check whether the
five procedures are valid, namely, whether the FDR yielded from these procedures
is controlled at the prespecified level α. The prespecified FDR level α is 0.10,
which is consistent with the multiple testing literature [Efron (2010)]. Second, we
compare the FNR yielded by these procedures. The third measure is the average
number of true positives (ATP) of these procedures. Valid procedures with a lower
FNR and a higher ATP are considered to be more efficient (or powerful). In the
simulations, each experiment is replicated 500 times and the average results are
reported.

Performance under chain structure: The performance of the five procedures
under the chain dependence structure is shown in Figures 4 and 5, which cor-
respond to Model 1 and Model 2, respectively. It is observed that all five pro-
cedures are valid. The parametric procedure is conservative. Our semiparametric
data-driven procedure, the BH procedure and the local FDR procedure are slightly
conservative. The oracle procedure slightly outperforms the semiparametric data-
driven procedure based on the plots for FNR and ATP. These two completely dom-
inate the parametric procedure, the BH procedure and the local FDR procedure,
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FIG. 4. Performance of the procedures under Model 1 when (1) φ = 0.8 and (2) φ = 0.6 in terms
of (a) FDR, (b) FNR and (c) ATP when the dependence structure is chain.

indicating the benefit of leveraging dependence among the hypotheses via the
semiparametric graphical model. We also observe that the advantage of the ora-
cle procedure and our semiparametric data-driven procedure over the local FDR
procedure is larger when φ = 0.8 than when φ = 0.6. The reason is that as φ de-
creases from 0.8 to 0.6, the dependence strength among the hypotheses decreases,
and we benefit less from leveraging the dependence. When φ = 0.5, the edge po-
tentials in our graphical model are no longer informative, and the node potentials
become the priors in the local FDR procedure, and our procedure exactly reduces
to the local FDR procedure.

Performance under grid structure: The performance of the five procedures un-
der the grid dependence structure is shown in Figures 6 and 7, which correspond
to Model 1 and Model 2, respectively. All five procedures are valid. The para-

FIG. 5. Performance of the procedures under Model 2 when (1) φ = 0.8 and (2) φ = 0.6 in terms
of (a) FDR, (b) FNR and (c) ATP when the dependence structure is chain.
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FIG. 6. Performance of the procedures under Model 1 when (1) φ = 0.8 and (2) φ = 0.6 in terms
of (a) FDR, (b) FNR and (c) ATP when the dependence structure is grid.

metric procedure is considerably conservative. Again, our semiparametric data-
driven procedure significantly outperforms the three baselines in all configurations,
demonstrating the benefit of leveraging dependence among the hypotheses via the
semiparametric graphical model. The difference between our semiparametric data-
driven procedure and the baselines is even larger compared with simulations under
the chain structure. The reason is that, in the grid structure, each hypothesis has
more neighbors than in the chain structure, and we can benefit more from leverag-
ing the dependence among the hypotheses.

Robustness of λ: In previous simulations, λ is fixed at 0.8. We test another two
values for λ, namely, 0.2 and 0.5, and repeat previous simulations. The perfor-
mance of our semiparametric procedure under the chain dependence structure and
Model 1 with φ = 0.8 is provided in Figure 8. Quite surprisingly, our data-driven

FIG. 7. Performance of the procedures under Model 2 when (1) φ = 0.8 and (2) φ = 0.6 in terms
of (a) FDR, (b) FNR and (c) ATP when the dependence structure is grid.



MULTIPLE TESTING UNDER DEPENDENCE VIA GRAPHICAL MODELS 1713

FIG. 8. Performance of our procedure when λ = 0.2 (dotted lines), 0.5 (dashed lines) and 0.8
(solid lines).

semiparametric procedure is valid for the three values of λ and is slightly conserva-
tive for most of the configurations. However, the FNR and ATP of our data-driven
procedure for the three different values of λ are almost the same. Therefore, our
approach is robust for different choices of λ. The robustness of λ was also observed
in Storey (2002). The sensitivity analysis of λ in other configurations yields similar
observations.

Efficiency of ranking: Although ranking the hypotheses by the probability that
H0 is false is a secondary goal in multiple testing, readers may wonder how well
our semiparametric procedure performs in terms of ranking the hypotheses. For the
oracle procedure, the parametric procedure and the semiparametric procedure, we
rank the hypotheses by the posterior probability that H0 is false, namely, 1 − LIS.
For BH, we use 1 − p-value. For local FDR procedure, we use 1 − lfdr. Here we
plot the ROC curves and PR curves yielded by the five procedures in Figure 9 for
μ = 1.4 and φ = 0.8 in the chain structure under model 1. We observe that the ora-
cle procedure produces the most efficient ranking, followed by the semiparametric
procedure and the parametric procedure. The rankings yielded by the local FDR
and the BH procedure are less efficient. The ROC curves and PR curves of these
procedures under other configurations show similar behavior.

Run time: In the chain-structure simulations, it takes our data-driven procedures
about 10∼20 hours to finish the 500 replications sequentially [for one μ value in

FIG. 9. ROC and PR curves from these procedures.
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(5.1)] on one 3GHz CPU. In the grid-structure simulations, it takes our data-driven
procedures around 30∼50 hours to finish the 500 replications sequentially [for one
μ value in (5.1)] on one 3 GHz CPU.

6. Application. We apply our semiparametric procedure to a real-world
GWAS on breast cancer [Hunter et al. (2007)] which involves 528,173 SNPs for
1145 cases and 1142 controls. In total, we test 528,173 hypotheses, and they are
dependent because SNPs nearby tend to be highly correlated. By using our semi-
parametric procedure, we assume that each of the hypotheses has one of the two
underlying true states, null (the SNP is not associated with breast cancer) or non-
null (the SNP is associated with breast cancer). We assume that the dependence
among the hypotheses is captured by a Markov random field over the underlying
true states of the hypotheses. We build the structure of the MRF from the HapMap
database [International HapMap Consortium (2003)], which quantifies the linkage
disequilibrium (LD) of the human genome, the phenomenon that alleles that are
close together in the genome tend to be inherited together. We assume that two
SNPs in LD of greater strength tend to have a larger probability of sharing the
same underlying true state. We query the squared correlation coefficients (r2 val-
ues, which measures LD) among the SNPs from HapMap [International HapMap
Consortium (2003)], and build the dependence structure as follows. Each SNP be-
comes a node in the graph. For each SNP, we connect it with the SNP having the
highest r2 value with it. We further categorize the edges into a high correlation
edge set Eh (r2 above 0.8), a medium correlation edge set Em (r2 between 0.5
and 0.8) and a low correlation edge set El (r2 between 0.25 and 0.5). We have
three parameters (φh, φm and φl) for the three sets of edges. The probability of the
underlying true state vector θ from the MRF is

P(θ;π,φh,φm,φl) = 1

Z(π,φh,φm,φl)

m∏
i=1

�V
i (θ;π)

(6.1)

×
|Eh|∏
j=1

�
Eh

j (θ;φh)

|Em|∏
j=1

�
Em

j (θ;φm)

|El |∏
j=1

�
El

j (θ;φl),

where Z(π,φh,φm,φl) is the normalizing constant. �V
i and �E

j are the potential
function on node i and the potential function on edge j , respectively.

When we apply our procedure on the dataset, the individual test is a two-
proportion z-test. We set λ = 0.8, and the value of p0 is estimated to be 0.978,
which means that about 2.2% of the SNPs are associated to breast cancer. The es-
timated f1 in this study is plotted in Figure 2. The whole experiment takes around
30 hours on a single processor. Our procedure reports 20 SNPs with LIS value
below 0.01. There are five clusters covering 18 of them, as listed in Table 2. All
18 SNPs have very small p-values from the two-proportion z-test and locate near
one another in the same cluster. The first cluster on Chr2, the cluster on Chr4, the
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TABLE 2
Details of the SNP clusters identified by our semiparametric procedure, including the chromosome
(Chr) and the physical position (PhyPos) they locate, the LIS value yielded by our semiparametric

procedure, the p-value yielded from the individual test and the odds-ratio calculated
on the second GWAS dataset

dbSNP ID Chr PhyPos LIS p-value Odds-ratio

rs2288118 2 86,221,768 0 1.8E−04 1.18
rs1991106 2 86,227,832 0.0048 8.4E−04 1.17
rs1075622 2 86,249,588 0.0040 7.5E−05 1.15
rs2367202 2 86,257,194 0.0025 1.7E−04 1.18
rs1025104 2 86,262,322 0.0025 1.8E−04 1.20

rs4398317 2 13,6817,773 0 5.3E−04 1.17
rs4954580 2 13,6820,035 0.0047 9.4E−04 1.15
rs4440020 2 13,6824,059 0.0039 8.3E−04 1.17
rs4075810 2 13,6836,877 0.0058 8.8E−04 1.15

rs1970801 4 96,427,703 0.0072 1.2E−04 1.02
rs11097457 4 96,433,991 0.0083 1.9E−04 1.02

rs10819865 9 100,730,611 0 3.2E−04 1.06
rs1338733 9 100,737,703 0.0020 1.5E−04 1.08
rs1571581 9 100,738,024 0.0038 1.9E−04 1.07
rs12553370 9 100,756,745 0.0040 7.0E−04 1.07

rs11200014 10 123,324,920 0.0071 2.3E−05 1.20
rs1219648 10 123,336,180 0.0065 2.8E−05 1.15
rs2420946 10 123,341,314 0.0023 2.8E−05 1.15

cluster on Chr9 and the cluster on Chr10 are identified in the works of Hunter
et al. (2007) and Satrom et al. (2009). The second cluster on Chr2 is associated to
a telomere and telomeres are known to be related to breast cancer [Svenson et al.
(2008)].

We further use a second dataset to validate the 18 SNPs. The second GWAS
dataset comes from the Marshfield Clinic. The Personalized Medicine Research
Project [McCarty et al. (2005)], sponsored by the Marshfield Clinic, is used as the
sampling frame to identify 162 breast cancer cases and 162 controls. The project
is reviewed and approved by the Marshfield Clinic IRB. Subjects are selected us-
ing clinical data from the Marshfield Clinic Cancer Registry and Data Warehouse.
Cases are defined as women having a confirmed diagnosis of breast cancer, which
is obtained from the institutional cancer registry. Controls are confirmed through
the Marshfield Clinic electronic medical records as never having had a breast can-
cer diagnosis by ICD-9 diagnosis code. Cases include both invasive breast cancer
and ductal carcinoma in situ. We use an age matching strategy to construct case
and control groups that are similar in age distribution. Specifically, we select a
control whose age is within five years of the age of each case. The DNA samples
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are genotyped using the Illumina HumanHap660 array as part of the eMERGE
(electronic MEdical Records and Genomics) network [McCarty et al. (2011)].

On the second dataset, we calculate the odds ratio of the 18 SNPs, as listed in
Table 2. It turns out that 16 of them show a moderate level of association. The five
SNPs in the first cluster (on chromosome 2) have an odds ratio around 1.17–1.20.
The four SNPs in the second cluster (on chromosome 2) have an odds ratio around
1.15–1.17. The two SNPs in the third cluster (on chromosome 4) have an odds ratio
around 1.02. The four SNPs in the fourth cluster (on chromosome 9) have an odds
ratio around 1.06–1.08. The three SNPs in the last cluster (on chromosome 10)
have an odds ratio around 1.15–1.20.

7. The expectation–maximization algorithm. In this section, we provide
details of the EM algorithm we use for the parametric procedure (in Section 3.1),
and show that the lower bound of the log likelihood function L(π ,φ,ψ) nonde-
creases over the EM iterations (except for some MCMC error introduced in the
E-step).

We begin with the lower bound of the log likelihood function, and then in-
troduce the EM algorithm. Let qθ (θ) be any distribution on θ∈{0,1}m. It is well
known that there exists a lower bound of the log likelihood L(π ,φ,ψ) in (3.3),
which is provided by an auxiliary function F(qθ (θ), {π,φ,ψ}) defined as follows:

F
(
qθ (θ), {π,φ,ψ}) = ∑

θ∈{0,1}m
qθ (θ) log

P(θ ,x;π,φ,ψ)

qθ (θ)

(7.1)
= L(π,φ,ψ) − KL

[
qθ (θ)|P (

θ |x;π ,φ,ψ
)]

,

where KL[qθ (θ)|P(θ |x;π,φ,ψ)] is the Kullback–Leibler divergence between
qθ (θ) and P(θ |x;π ,φ,ψ), the posterior distribution of the hidden variables. This
Kullback–Leibler divergence is the distance between L(π ,φ,ψ) and F(qθ (θ),

{π,φ,ψ}).
Expectation–maximization: We maximize L(π,φ,ψ) with an EM algorithm

which iteratively maximizes its lower bound F(qθ (θ), {π,φ,ψ}). We first initial-
ize π (0), φ(0) and ψ (0). In the t th iteration, the updates in the expectation (E) step
and the maximization (M) step are

q
(t)
θ = argmax

qθ

F
(
qθ (θ),

{
π (t−1),φ(t−1),ψ (t−1)}) (E),

π (t),φ(t),ψ (t) = argmax
{π,φ,ψ}

F
(
q

(t)
θ , {π,φ,ψ}) (M).

In the E-step, we maximize F(qθ (θ), {θ (t−1),ψ (t−1)}) with respect to qθ (θ).
Because the difference between F(qθ (θ), {π,φ,ψ}) and L(π ,φ,ψ) is
KL[qθ (θ)|P(θ |x;π ,φ,ψ)], the maximizer in the E-step q

(t)
θ is P(θ |x;π (t−1),

φ(t−1),ψ (t−1)), namely, the posterior distribution of θ |x under the current esti-
mated parameters π (t−1), φ(t−1) and ψ (t−1). This posterior distribution can be
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calculated by Markov chain Monte Carlo for general graphs. For graphs with spe-
cial structures (such as trees), exact algorithms with computational cost linear in
the number of variables (such as sum-product algorithm) may be available. Please
refer to Section 3.2 for more details.

In the M-step, we maximize F(q
(t)
θ (θ), {π,φ,ψ}) with respect to {π,φ,ψ},

which can be rewritten as

argmax
{π,φ,ψ}

F
(
q

(t)
θ (θ), {π,φ,ψ})

= argmax
{π,φ,ψ}

∑
θ∈{0,1}m

q
(t)
θ (θ) logP(θ ,x;π,φ,ψ)

= argmax
{π,φ,ψ}

∑
θ∈{0,1}m

q
(t)
θ (θ)

{
logP(θ;π,φ) + logP(x|θ;ψ)

}
.

It is obvious that this function can be maximized with respect to {π ,φ} and ψ
separately as

π (t),φ(t) = argmax
π ,φ

∑
θ∈{0,1}m

q
(t)
θ (θ) logP(θ;π ,φ),

(7.2)
ψ (t) = argmax

ψ

∑
θ∈{0,1}m

q
(t)
θ (θ) logP(x|θ;ψ).

Estimating ψ : Estimating ψ in this maximum likelihood manner is straightfor-
ward because the maximization can be rewritten as follows:

argmax
ψ

∑
θ∈{0,1}m

q
(t)
θ (θ) logP(x|θ;ψ)

(7.3)

= argmax
ψ

m∑
i=1

∑
θi∈{0,1}

q
(t)
θi

(θi) logP(xi |θi;ψ),

where q
(t)
θ (θ) = ∏m

i=1 q
(t)
θi

(θi). Because we usually know the density function of
xi |θi = 0, Formula (7.3) can be simplified as

argmax
ψ

∑
θ∈{0,1}m

q
(t)
θ (θ) logP(x|θ;ψ)

(7.4)

= argmax
ψ

m∑
i=1

q
(t)
θi

(θi = 1) logP(xi |θi = 1;ψ).

For many parametric forms of f1 (such as a Gaussian density), this estimation step
can be solved in a maximum likelihood manner since the likelihood function in
Formula (7.4) is log-concave.

Estimating {π ,φ}: Estimating {π,φ} in Formula (7.2) is difficult due to the in-
tractable Z(π,φ). Some approaches [Celeux, Forbes and Peyrard (2003), Zhang,



1718 J. LIU, C. ZHANG AND D. PAGE

Brady and Smith (2001)] use the pseudo-likelihood [Besag (1975)] to estimate
{π,φ} in the M-step. It can be shown that

∑
θ∈{0,1}m q

(t)
θ (θ) logP(θ;π ,φ) is con-

cave with respect to {π ,φ}. Therefore, we can use the gradient ascent to find the
MLE of {π ,φ}, which is similar to using contrastive divergence [Hinton (2002)]
to learn MRFs, except we have to reweigh it to q

(t)
θ .

We run the EM algorithm until both θ and ψ converge. Therefore, it is easy to
tell that the lower bound of the log likelihood function L(π,φ,ψ) nondecreases
over the EM iterations (except for some MCMC error introduced in the E-step).

8. Discussion. In this paper, we use an MRF-coupled mixture model to lever-
age the dependence in multiple testing problems, and show the improved numer-
ical performance on a variety of simulations and its applicability in a real-world
GWAS problem. We provide two versions of this approach—one parametric proce-
dure which can be used in the situation where f1 can be estimated parametrically,
and one semiparametric procedure which can be used in more general situations.
From the methodological standpoint, the semiparametric approach naturally gen-
eralizes the local FDR procedure and connects with the BH procedure—we show
that both the BH procedure and the local FDR procedure estimate their parameters
in the same semiparametric way to avoid assumptions about f1. The methodologi-
cal unification demonstrates that such a modification is necessary for multiple test-
ing. From the application aspect, the semiparametric approach no longer requires
the investigators to know the parameterization of f1, which is generally unknown
in practical problems. Nevertheless, the semiparametric procedure may not per-
form well when there are only a small number of non-null hypotheses and it is
challenging to reliably estimate f1 (see Appendix). For these reasons, we suggest
that investigators choose the semiparametric approach for their large-scale multi-
ple testing problems if (i) they speculate that there exists dependence among the
hypotheses, (ii) there is no suitable parametric distribution for f1, and (iii) it is
expected there are enough non-null hypotheses (e.g., m1 ≥ 1,000) to estimate f1
reliably. Otherwise, we suggest that investigators choose a proper parametric form
for f1 and use the parametric procedure to leverage the dependence among the
hypotheses.

Theoretically, one question of interest is whether this graphical model-based
procedure is optimal in the sense that it has the smallest FNR among all valid pro-
cedures. The optimality of the oracle procedure can be proved under the compound
decision framework [Sun and Cai (2007, 2009)], as long as an exact inference algo-
rithm exists or an approximate inference algorithm can be guaranteed to converge
to the correct marginal probabilities. The asymptotic optimality of the data-driven
procedures (the FNR yielded by the data-driven procedures approaches the FNR
yielded by the oracle procedure as the number of tests m → ∞) requires con-
sistent estimates of the unknown parameters in the graphical models. Parameter
estimation in undirected graphical models is more complicated than in directed
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graphical models due to the normalization constant. To the best of our knowledge,
asymptotic properties of parameter estimation for MRF-coupled mixture models
have not been investigated. Therefore, we cannot prove the asymptotic optimality
of the data-driven procedure so far, although we can observe its close-to-oracle
performance in the basic simulations. Note that our conclusion here agrees with
the remark from Sun and Cai (2009) that “the optimality of the LIS procedure may
be lost in the estimation step” because “theoretical results (consistency of the esti-
mates) for other dependence structures have not been developed in the literature.”
We believe that the asymptotic optimality of the data-driven procedure in general
dependence structures will be an important problem in future work.

APPENDIX: INVESTIGATION ON SITUATIONS WHEN THERE ARE NOT
ENOUGH NON-NULL HYPOTHESES

In this section, we investigate the performance of our parametric and semipara-
metric procedures when there are only a small number of non-null hypotheses via
additional simulations. In the simulations, we use the grid structure with φ = 0.6.
In order to simulate different proportions of non-null hypotheses, we use six differ-
ent values for π , including 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30, which yield 1.1%,
2.5%, 4.1%, 6.2%, 9.0% and 12.7% non-null hypotheses, respectively. In the sim-
ulations, we test a grid structure of three sizes, namely, 100 × 100, 200 × 200 and
300 × 300, yielding three m values, namely, 10,000, 40,000 and 90,000. For the
null hypotheses, the test statistics are simulated from a standard normal distribu-
tion N (0,1.0). For the non-null hypotheses, the test statistics are simulated from
a normal distribution N (3.0,1.0).

After we simulate the underlying true states of the hypotheses and the test statis-
tics, we apply Storey’s estimator of p0 in Formula (4.2) and our estimator of f1 in
Formula (4.3). In Storey’s estimator of p0, we set λ to be 0.5. Then, we compare
their performance with three measures, as follows:

1. |p̂0 − p0|: the difference between Storey’s estimator of p0 and ground truth
of p0,

2. IMSE(f̂1): integrated mean squared error of the estimator of f1 in our semi-
parametric procedure, and

3. IMSE(f̃1): integrated mean squared error of f̃1, the oracle nonparametric es-
timator of f1 which knows the underlying true states of the hypotheses (i.e.,
f̃1 directly estimates f1 via kernel density estimation from the test statistics of
these non-null hypotheses).

The performance of different estimators is provided in Figure 10. We have three
observations as follows:

1. Storey’s estimator of p0 performs better when there are a smaller proportion of
non-null hypotheses and when there are more hypotheses to test.
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FIG. 10. The performance of different estimators as the true proportion of non-null hypotheses
(denoted by p1) increases, (a) the difference between Storey’s estimator of p0 (denoted by p̂0) and
ground truth of p0. (b) IMSE of f̂1, the estimator of f1 in our semiparametric procedure, and (c)
IMSE of the oracle nonparametric estimator of f1 which knows the underlying true states of the
hypotheses.

2. Our estimator of f1 performs better when there are a larger proportion of non-
null hypotheses and when there are more hypotheses to test.

3. If there are more than 1,000 non-null hypotheses (e.g., 10% of 10,000 hypothe-
ses are non-null), our estimator of f1 yields satisfactory performance (compa-
rable with the performance of the oracle nonparametric estimator f̃1).

Furthermore, we apply the five procedures, including an oracle procedure, lo-
cal FDR procedure, BH procedure, our parametric procedure and our semipara-
metric procedure. The performance (FDR, FNR and ATP) of the five procedures
(m = 10,000) is provided in Figure 11. It is observed that our semiparametric pro-
cedure becomes overliberal, as there are fewer non-null hypotheses. However, it is
observed that our parametric procedure performs well, controlling FDR at the pre-
specified level of 0.10 and reducing FNR (outperforming the local FDR procedure
and BH procedure). Therefore, the numerical results suggest that the semipara-
metric procedure may not perform well when there are only a small number of
non-null hypotheses and it is challenging to reliably estimate f1. In this situation,
the parametric procedure can be considered if f1 can be properly parametrized.

AVAILABLE SOFTWARE

The software implementation of the multiple testing procedure is available via
http://www.cs.wisc.edu/~jieliu/mtd/software.html.

FIG. 11. Performance of different procedures in the new added simulations as the true proportion
of non-null hypotheses (denoted by p1) increases in terms of (a) FDR, (b) FNR and (c) ATP.

http://www.cs.wisc.edu/~jieliu/mtd/software.html
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