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Abstract

Structure learning of Markov random fields
(MRFs) is generally NP-hard (Karger & Sre-
bro, 2001). Many structure learners and the-
oretical results are under the correlation de-
cay assumption in the sense that for any
two nodes i and k, the information about
node i captured by node k is less than that
captured by node j where j is the neigh-
bor of i on the shortest path between i
and k (Netrapalli et al., 2010). In this pa-
per, we propose to learn structure of MRFs
with contrastive divergence (Hinton, 2002)
and demonstrate that our structure learner
can recover the structures of these correla-
tion non-decay MRFs.

1. Introduction

Markov random fields (MRFs) are useful probabilis-
tic graphical models for capturing conditional indepen-
dence among variables. However, learning MRF struc-
ture from data is generally NP-hard (Karger & Srebro,
2001). So far, the structure of MRFs can be learned by
combinatorial search (Bresler et al., 2008; Bromberg
et al., 2009; Netrapalli et al., 2010), or by convex re-
laxation (Ravikumar et al., 2010; Banerjee et al., 2008;
Lee et al., 2006; Lin et al., 2009), or by feature extrac-
tion (Della Pietra et al., 1997; Lowd & Davis, 2010;
Davis & Domingos, 2010; Van Haaren & Davis, 2012).
Some theoretical properties such as time complexity
and sample complexity are also known (Karger & Sre-
bro, 2001; Bogdanov et al., 2008; Bresler et al., 2008;
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Figure 1. The structure of the correlation non-decay MRF
in the work of Netrapalli et al. (2010).

Abbeel et al., 2006; Ravikumar et al., 2010; Anand-
kumar et al., 2012). However, many of the structure
learners and theoretical results are under the correla-
tion decay assumption in the sense that for any two
connected nodes i and k in the graph, the informa-
tion about node i captured by node k is less than that
captured by node j where j is the neighbor of i on
the shortest path between i and k (Netrapalli et al.,
2010). One typical counterexample given in the work
of Netrapalli et al. (2010) is as follows.

Suppose that the ground truth structure of the MRF
is given in Figure 1. There are in total D + 2
nodes in the node set V , and Xi ∈ {−1, 1} for
∀i ∈ V . The edge set E = {(0, i), (i,D + 1)|1 ≤ i ≤
D}. The probability density function is P (X; θ) =

1
Z(θ)

∏
(i,j)∈E exp{θxixj}, where Z(θ) is the normaliz-

ing constant. It can be shown that for a given θ, there
is a Dthres such that if D > Dthres, the correlation be-
tween the node 0 and the node D + 1 is the strongest
among all potential pairs, and most structure learners
tend to add the edge (0, D+ 1) in the first place, even
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if a sufficiently large number of training samples are
provided. However, the edge (0, D + 1) does not exist
in the ground truth structure.

In this paper, we propose a structure learning al-
gorithm with contrastive divergence (Hinton, 2002)
which recovers a distribution by iteratively comparing
the current estimated distribution with training data.
Our structure learner estimates that the edge (0, D+1)
exists in the beginning, as other structure learners
do. However, when it gradually recovers the poten-
tial functions on edges {(0, i), (i,D+ 1)|1 ≤ i ≤ D}, it
removes the edge (0, D + 1) eventually. Section 2 in-
troduces contrastive divergence. Section 3 introduces
our contrastive divergence structure learner. Section 4
demonstrates the performance of our structure learner
and explains why our structure learner can deal with
correlation non-decay situations. Finally, we conclude
in Section 5.

2. Contrastive Divergence

Contrastive divergence (Hinton, 2002) is an effective
parameter learner for MRFs, and we build our MRF
structure learner on contrastive divergence by remov-
ing an edge during learning if its associated parameter
is estimated to be close to zero. In order to present
our structure learner in full detail in Section 3, we first
review the details of contrastive divergence in this sec-
tion.

Suppose for simplicity that we have a pairwise Markov
random field on a random vector X ∈ X d described by
an undirected graph G(V,E) with node set V and edge
set E. X = {0, 1, ...,m− 1} is a discrete space, and in
this paper we focus the binary situations for simplicity,
namely m = 2. The probability of a sample x given
a known parameter vector θ = {θα|α ∈ I} (I is some
index set) is

P (x;θ) = exp
{
θTψ(x)−A(θ)

}
, (1)

where ψ = {ψα|α ∈ I} is a vector of sufficient statis-
tics, and A(θ) is the log partition function as follows,

A(θ) = log
∑
x∈Xd

exp
{
θTψ(x)

}
. (2)

Assume that we have s independent samples X =
{x1,x2, ...,xs} generated from (1), and we want to find
the maximum likelihood estimate (MLE) of θ which
maximizes the log-likelihood function

L(θ|X) ∝ 1

s

s∑
j=1

θTψ(xj)−A(θ). (3)

It can be shown that L(θ|X) is concave. Therefore, we
can use gradient ascent to find the global maximum of
the likelihood function and find the MLE of θ. The
partial derivative of L(θ|X) with respect to θα is

∂L(θ|X)

∂θα
=

1

s

s∑
j=1

ψα(xj)− Eθψα = EXψα − Eθψα.

(4)

Therefore, the key question is to calculate Eθψα, the
moment of statistic under a specific parameter vector
θ. Exact computation of Eθψα takes time that is ex-
ponential in the treewidth of the graph. Contrastive
divergence (CD) methods generate samples (particles)
according to θ using a Markov chain. Usually, the
chain needs to reach equilibrium to generate an accu-
rate sample, but CD’s rationale is that only a rough
estimate of the gradient is sufficient to determine the
direction to update the parameters. Accordingly, two
versions of CD methods have been proposed. One is
CD-n which generates a sample by running Markov
chain for n steps under parameter θ(i) (starting from
a training sample) in iteration i. The other one is
persistent contrastive divergence or PCD-n (Tieleman,
2008) which will advance the particles (from last itera-

tion) for n step under the new parameters θ(i). Since n
is usually chosen to be 1 in CD-n, the Markov chains
for generating particles are usually far from equilib-
rium. Because θ(i) is close to θ(i+1) when the learning
rate is small, persistent Markov chains are attractive.

3. Contrastive Divergence Structure
Learning

The reason that we can use contrastive divergence to
learn MRF structure is that edge (i, j) does not exist in
the structure if and only if its corresponding parame-
ter θ(i,j) = 0. Therefore, when we perform contrastive
divergence to learn a MRF from data, we can initially
include all the possible edges and gradually remove
the edges when the corresponding parameters are es-
timated to be close to 0. The pseudocode is provide
in Algorithm 1.

Initially, we build a candidate edge set E∗ (via screen-
ing every pair of two nodes by some correlation test)
which includes all the potential edges, and associate
each potential edge with one parameter. Then we per-
form standard contrastive divergence (Hinton, 2002)
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Algorithm 1 Contrastive Divergence Structure
Learning

1: Input: independent samples X = {x1,x2, ...,xs},
maximum iteration number T , MCMC step num-
ber n, threshold θthreshold

2: Output: estimated edge set Ê
3: Procedure:
4: Create E∗ which contains all potential edges

and the corresponding parameter set θ =
{θ1, θ2, ..., θ|E∗|}

5: Initialize θ(1) and initialize particles
6: Calculate EXψ from X
7: for i = 1 to T do
8: Advance particles for n steps under θ(i)

9: Calculate Eθ(i)ψ from the particles

10: θ(i+1) = θ(i) + η(EXψ − Eθ(i)ψ)
11: for j = 1 to |E∗| do
12: If the estimated parameter for edge j is less

than θthreshold, then fix the parameter esti-
mate at 0 from the current iteration on

13: end for
14: Adjust η
15: end for
16: Set Ê to be empty
17: for j = 1 to |E∗| do
18: Add edge j to Ê if the corresponding estimated

parameter is nonzero.
19: end for

or persistent contrastive divergence (Tieleman, 2008)
to estimate the parameters. During learning, we keep
monitoring the estimate of the parameters and fix
some of the estimated parameters at 0 if they are
close to 0 such as in the interval [−θthreshold, θthreshold]
where θthreshold is a small positive real number. Even-
tually, the recovered edges in the MRFs are these edges
whose corresponding parameters are estimated to be
nonzero.

4. Experiments and Results

In this section, we demonstrate the performance of
our contrastive divergence structure learner and ex-
plain why it can deal with correlation non-decay sit-
uations. We use the example in the work of Netra-
palli et al. (2010), as mentioned in Section 1. We
set D = 8 and we have an MRF of 10 variables with
its ground truth structure in Figure 2. All the vari-
ables take either 1 or −1. The pairwise potential func-
tion on each edge parameterized by β (0 < β < 1) is(

β 1− β
1− β β

)
. Note that after we rewrite the prob-

ability density function into the canonical exponential
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Figure 2. The structure of the MRF in the experiment.

family form, θ = log β
1−β and ψ(Xi, Xj) = I(Xi = Xj)

where I(Xi = Xj) is the indicator variable that indi-
cates whether Xi and Xj take the same value. Note
that θ = 0 if and only if β = 0.5. We generate s
training samples and monitor how the contrastive di-
vergence structure learner recovers the MRF structure
from the data. In our simulations, we set β = 0.6
and s = 5,000. We start our structure learner with a
candidate edge set E∗ which includes all the 45 possi-
ble edges. There are essentially three types of edges.
The first type of edges are {(0, i), (i, 9)|1 ≤ i ≤ 8},
namely the 16 edges in the ground truth. The sec-
ond type only consists of the edge (0, 9) which has the
strongest correlation in the data, but the edge is not
in the ground truth structure. The last type includes
28 edges {(i, j)|1 ≤ i < j ≤ 8}, which are not included
in the ground truth. A consistent structure learner
should be able to recover only the first type of edges
when given enough data.

We monitor the estimated parameters that are asso-
ciated with the three types of edges. Specifically, we
monitor the estimate of β(0,1), β(0,9) and β(1,2) dur-
ing contrastive divergence learning, and the results are
presented in Figure 3. The parameter estimate for
edge (1, 2) quickly became 0.5 (equivalently θ̂(1,2) = 0)
at the second iteration and the edge (1, 2) was re-
moved. In the first 30 iterations, the parameter for
edge (0, 9) was estimated to be higher than that for
edge (0, 1) and the reason is that node 0 shows a
higher level of sample correlation with node 9 than
with node 1. However, as the parameter estimate for
edge (0, 1) continued to increase, the parameter esti-
mate for edge (0, 9) continued to decrease. At the 388-
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Figure 3. The parameter estimation from contrastive di-
vergence.

th iteration, the parameter estimate for edge (0, 9) was
below the threshold 0.501, and the edge (0, 9) was re-
moved. Therefore in the end, we successfully recovered
all the edges correctly.

5. Conclusion

In this paper, we propose a new structure learning al-
gorithm for MRFs. The new structure learner is based
on contrastive divergence which makes the structure
learner different from previous structure learners via
combinatorial search (Bresler et al., 2008; Bromberg
et al., 2009; Netrapalli et al., 2010), or via convex re-
laxation (Ravikumar et al., 2010; Banerjee et al., 2008;
Lee et al., 2006; Lin et al., 2009), or via feature extrac-
tion (Della Pietra et al., 1997; Lowd & Davis, 2010;
Davis & Domingos, 2010; Van Haaren & Davis, 2012).
The contrastive divergence structure learner can han-
dle correlation non-decay situations which cannot be
handled by previous structure learners. Contrastive
divergence, which uses the concavity of MRF’s log
likelihood function and uses MCMC based gradient
ascent to bypass the intractable normalizing constant,
is currently one of the most effective parameter esti-
mation methods for undirected graphical models. We
hope this technique can be further employed for MRF
structure learning.
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