
BadgerDB::Btree
• Goal:	Build	key	components	of	a	RDBMS	

– First	hand	experience	building	the	internals	of	a	simple	
database	system

– And	have	some	fun	doing	so!

• Two	parts
– Buffer	manager		[✔]
– B+tree	(Due	Date	:	Mar	27	by	2PM)

• First	class	day	after	the	Spring	break

All	projects	are	individual	assignments

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 1

Structure	of	Database

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 2

Query	optimizer	and	execution

Relational	operators

File	and	access	methods

Buffer	manager

I/O	manager

Plan	for	today

• Review	of	C++	templates	and	helpful	functions
– memset,	memcpy and	reinterpret_cast

• B+	tree:	insertion	
• <break>
• BadgerDB::Btree

– Project	specifications	
– Code	

• Q&A

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 3

C++	templates

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 4

Human	misery	of	duplicate	codes

• Suppose	you	write	a	function	printData:

• later	you	want	to	print	double	and	std::string

void printData(int value) {
std::cout << "The value is "<< value;

}

void printData(double value) {
std::cout << "The value is "<< value;

}

void printData(std::string value) {
std::cout << "The value is "<< value;

}2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 5

And	Stroustrup said	- let	there	be	templates

•

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 6

template<typename T>
void printData(T value) {

std::cout << "The value is ” << value;
}

And	Stroustrup said	- let	there	be	templates

•

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 7

template<typename T>
void printData(T value) {

std::cout << "The value is ” << value;
}

Template	semantics

• The	syntax	is	simple:	
template< typename name ó class name >

• Function	templates
• Class	templates		

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 8

Function	templates

•

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 9

template<typename T>
void func() {
}

int main() {
func<int>();
func<double>();

}

Function	templates

•

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 10

template<typename T>
void func() {
}

int main() {
func<int>();
func<double>();

}

template<typename T>
void func(T value) {
}
template<typename T, typename U>
T func2(U value) {

return T(value);
}

int main() {
// T=int
func(3);
// T=double
func(3.5);

// T=int, U=double
func2(3.5);
// T=std::vector, U=int
func2<std::vector> (5);
// specify both T and U
// T=std::vector, U=int
func2<std::vector, int>(5.7);

}

Class	templates
• Also	works	on	structs

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 11

template<typename T, int i>
struct FixedArray {

T data[i];
};

FixedArray<int, 3> a;
// array of 3 integers

Class	templates
• Also	works	on	structs

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 12

template<typename T, int i>
struct FixedArray {

T data[i];
};

FixedArray<int, 3> a;
// array of 3 integers

template<typename T>
class MyClass {
};

template<typename T1, typename T2=int>
class MyClass{};

// specify all parameters
MyClass<double, std::string> mc1;

// default value for T2
MyClass<int> mc4;

Template	requirements
• Templates	implicitly	impose	requirements	on	their	
parameters

• Type	T	has	to	be:
– Copy-Constructible if

T a(b);
– Assignable	i.e. defines	operator=() if:	

a	=	b;
– etc

• For	this	project:	operations	such	as	a < b could	
mean	different	for	int and	std::string		

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 13

Pointers	and	arrays

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 14

Pointers	and	arrays

• arrays	work	very	much	like	pointers	to	their	first	
elements
int myarray [20];
int * mypointer;

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 15

Pointers	and	arrays

• arrays	work	very	much	like	pointers	to	their	first	
elements
int myarray [20];
int * mypointer;

Can	you	do?
mypointer = myarray;

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 16

Pointers	and	arrays
• arrays	work	very	much	like	pointers	to	their	first	
elements
int myarray [20];
int * mypointer;

Can	you	do?
mypointer = myarray;

Can you do?
myarray = mypointer;

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 17

Pointers	and	arrays
• arrays	work	very	much	like	pointers	to	their	first	
elements
int myarray [20];
int * mypointer;

Can	you	do?
mypointer = myarray; ç Yes

Can you do?
myarray = mypointer; ç No

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 18

Example
// more pointers
#include <iostream>
using namespace std;
int main () {

int numbers[5];
int * p;
p = numbers; *p = 10;
p++; *p = 20;
p = &numbers[2]; *p = 30;
p = numbers + 3; *p = 40;
p = numbers; *(p+4) = 50;
for (int n=0; n<5; n++)

cout << numbers[n] << ", ";
return 0;

}2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 19

Example
// more pointers
#include <iostream>
using namespace std;
int main () {

int numbers[5];
int * p;
p = numbers; *p = 10;
p++; *p = 20;
p = &numbers[2]; *p = 30;
p = numbers + 3; *p = 40;
p = numbers; *(p+4) = 50;
for (int n=0; n<5; n++)

cout << numbers[n] << ", ";
return 0;

}

Prints:
10, 20, 30, 40, 50,

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 20

Pointers	and	string	literal

• const char	*	foo	=	"hello";	

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 21

Pointers	and	string	literal

• const char	*	foo	=	"hello";	

• Foo	contains	the	value	1702,	and	not	'h',	nor	"hello“
• What	is	the	output	of?

*(foo+4)
foo[4]

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 22

C/C++	helpful	fuctions

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 23

memset
• void * memset (void * ptr, int value, size_t num);
• Fill	block	of	memory

– Sets	the	first num bytes	of	the	block	of	memory	pointed	by ptr to	the	
specified value (interpreted	as	an unsigned	char)	

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 24

int main () {
char str[] = "almost every programmer should know memset!";
memset (str,'-',6);
print(str);
return 0;

}

memcpy
• void	*	memcpy (void	*	dest,	const void	*	source,	size_t num);
• Copy	block	of	memory

– Copies	the	values	of num bytes	from	the	location	pointed	to	
by source directly	to	the	memory	block	pointed	to	by destination.	

• std::memcpy is	meant	to	be	the	fastest	library	routine	for	memory-
to-memory	copy	(usually	more	efficient	than std::strcpy)

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 25

struct { char name[40]; int age; } person, person_copy;

int main () {
char myname[] = ”Bucky Badger";
/* using memcpy to copy string: */
memcpy (person.name, myname, strlen(myname)+1);
/* using memcpy to copy structure: */
memcpy (&person_copy, &person, sizeof(person));
return 0;

}

reinterpret_cast<new_type>(expr)
• reinterpret_cast converts	any	pointer	type	to	any	other	pointer	

type,	even	of	unrelated	classes.	
• All	pointer	conversions	are	allowed:	neither	the	content	pointed	

nor	the	pointer	type	itself	is	checked.

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 26

int main () {
int i = 7;
int* p1 = reinterpret_cast<int*>(&i);
assert(p1 == &i);
// type aliasing through pointer
char* p2 = reinterpret_cast<char*>(&i);
// type aliasing through reference
reinterpret_cast<unsigned int&>(i) = 42;
std::cout << i << '\n';

}

B+	tree

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 27

B+	tree

• Occupancy	(d)	
– Minimum	50%	occupancy	(except	for	root)
– Each	node	contains	d	<=	m	<=	2d	entries.

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 28
1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 5

(Ubiquitous)	B+	Tree
• Height-balanced	(dynamic)	tree	structure
• Insert/delete	at	logF N	cost	(F	=	fanout,	N	=	#	leaf	pages)
• Minimum	50%	occupancy	(except	for	root).		

Each	node	contains	d <=		m <=	2d entries.		
The	parameter	d is	called	the	order of	the	tree.

• Supports	equality	and	range-searches	efficiently.

Index Entries
(Direct search)

Data
Entries

Data Entries
Entries in the leaf pages:

(search key value, recordid)

Index Entries
Entries in the index
(i.e. non-leaf) pages:

(search key value, pageid)

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 5

(Ubiquitous)	B+	Tree
• Height-balanced	(dynamic)	tree	structure
• Insert/delete	at	logF N	cost	(F	=	fanout,	N	=	#	leaf	pages)
• Minimum	50%	occupancy	(except	for	root).		

Each	node	contains	d <=		m <=	2d entries.		
The	parameter	d is	called	the	order of	the	tree.

• Supports	equality	and	range-searches	efficiently.

Index Entries
(Direct search)

Data
Entries

Data Entries
Entries in the leaf pages:

(search key value, recordid)

Index Entries
Entries in the index
(i.e. non-leaf) pages:

(search key value, pageid)

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 5

(Ubiquitous)	B+	Tree
• Height-balanced	(dynamic)	tree	structure
• Insert/delete	at	logF N	cost	(F	=	fanout,	N	=	#	leaf	pages)
• Minimum	50%	occupancy	(except	for	root).		

Each	node	contains	d <=		m <=	2d entries.		
The	parameter	d is	called	the	order of	the	tree.

• Supports	equality	and	range-searches	efficiently.

Index Entries
(Direct search)

Data
Entries

Data Entries
Entries in the leaf pages:

(search key value, recordid)

Index Entries
Entries in the index
(i.e. non-leaf) pages:

(search key value, pageid)

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 291/29/17 CS 564: Database Management Systems, Jignesh M. Patel 9

B+-Tree:	Inserting	a	Data	Entry
• Find	correct	leaf	L.
• Put	data	entry	onto	L.

– If	L	has	enough	space,	done!
– Else,	must	split L	(into	L	and	a	new	node	L2)

• Redistribute	entries	evenly,	copy	up middle	key.
• Insert	index	entry	pointing	to	L2	into	parent	of	L.

• This	can	happen	recursively
– To	split	non-leaf	node,	redistribute	entries	evenly,	but	

pushing	up the	middle	key.		(Contrast	with	leaf	splits.)
• Splits	“grow”	tree;	root	split	increases	height.		

– Tree	growth:	gets	wider or	one	level	taller	at	top.

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 301/29/17 CS 564: Database Management Systems, Jignesh M. Patel 10

Inserting	8*	into	B+	Tree
Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Entry to be inserted in parent node
Copied up (and continues to
appear in the leaf)

2* 3* 5* 7* 8*

5

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 31
1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 10

Inserting	8*	into	B+	Tree
Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Entry to be inserted in parent node
Copied up (and continues to
appear in the leaf)

2* 3* 5* 7* 8*

5

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 32

1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 11

Inserting	8*	into	B+	Tree

Insert in parent node.
Pushed up (and only appears once in
the index)

5 24 30

17

13

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 33
1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 12

2* 3*

Root
17

24 30

14*16* 19*20*22* 24*27*29* 33*34*38*39*

135

7*5* 8*

Inserting	8*	into	B+	Tree

• Root	was	split:	height	increases	by	1
• Could	avoid	split	by	re-distributing	entries	with	a	sibling

– Sibling:	immediately	to	left	or	right,	and	same	parent

5	mins	break

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 34

https://www.youtube.com/watch?v=AxSdWhkMB_A

BadgerDB:	Btree

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 35

After	you	untar the	project:
• btree.h:	Add	your	own	methods	and	structures	as	you	see	fit	but	

don’t	modify	the	public	methods	that	we	have	specified.	
• btree.cpp:	Implement	the	methods	we	specified	and	any	others	

you	choose	to	add.
• file.h(cpp):	Implements	the	PageFile and	BlobFile classes.
• main.cpp:	Use	to	test	your	implementation.		Add	your	own	tests	

here	or	in	a	separate	file.	This	file	has	code	to	show	how	to	use	
the	FileScan and	BTreeIdnex classes.

• page.h(cpp):		Implements	the	Page	class.
• buffer.h(cpp),	bufHashTbl.h(cpp):	Implementation	of	the	buffer	

manager.
• Exceptions/*	:	Implementation	of	exception	classes	that	you	

might	need.
• Makefile – makefile for	this	project.

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 36

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 371/29/17 CS 564: Database Management Systems, Jignesh M. Patel 7

B+-tree	Page	Format
Le

af
 P

ag
e

R1 K 1 R2 K 2 K n P n+1

data entries

record 1 record 2

Next
Page
Pointer

Rn

record n

P0

Prev
Page
Pointer

N
on

-le
af

Pa

ge
P1 K 1 P 2 K 2 P 3 K m P m+1

index entries

Pointer to a
page with
Values < K1

Pointer to a page
with values s.t.
K1≤ Values < K2

Pointer to a
page with
values ≥Km

Pointer to a page
with values s.t.,
K2≤ Values < K3

Pm

Index
• the	index will	store	data	entries	in	the	form	<key, rid> pair
• stored	in	a	file	that	is	separate	from	the	data	file
• i.e.	the	index	file	“points	to”	the	data	file	where	the	actual	records	

are	stored

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 38

• stores	all	the	relations	
(actual	data)	as	we	did	
in	the	buffer	manager	
assignment	

• You	don’t	actually	use	
this	one	for	this	project

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 39

File

PageFile BlobFile
• pages	in	the	file	are	not	linked	by	

prevPage/nextPage links
• treats	the	pages	as	blobs	of	8KB	

size	i.e does	not	require	these	
pages	to	be	valid	objects	of	the	
Page	class

• use	the	BlobFile to	store	the	B+	
index	file

• every	page	in	the	file	is	a	node	
from	the	B+tree

• we	can	modify	these	pages	to	
suit	the	particular	needs	of	the	
B+	tree	index

FileScan class
• The	FileScan class	is	used	to	scan	records	in	a	file.	
• FileScan(const std::string	&relationName,	BufMgr *bufMgr)	

– The	constructor	takes	the	relationName and	buffer	manager	instance	
• ~FileScan()

– Shutsdown the	scan	and	unpins	any	pinned	pages.
• void scanNext(RecordId& outRid)

– Returns	(via	the	outRid parameter)	the	RecordId of	the	next	record	
from	the	relation	being	scanned.	It	throws	EndOfFileException()	when	
the	end	of	relation	is	reached.

• std::string getRecord()
– Returns	a	pointer	to	the	“current”	record.	The	record	is	the	one	in	a	

preceding	scanNext()	call.	
• void markDirty()

– You	don’t	need	this	for	this	assignment

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 40

BadgerDB:	B+Tree Index
Simplifications:
• assume	that	all	records	in	a	file	have	the	same	length	
(so	for	a	given	attribute	its	offset	in	the	record	is	
always	the	same).	

• only	needs	to	support	single-attribute	indexing
• the	indexed	attribute	may	be	one	of	three	data	types:	
integer,	double,	or	string

• in	the	case	of	a	string,	you	can	use	the	first	10	
characters	as	the	key	in	the	B+-tree

• we	will	never	insert	two	data	entries	into	the	index	
with	the	same	key	value
2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 41

B+Tree Index:	Constructor

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 42

const string	&	
relationName

The	name	of	the	relation	on	which	to	build	the	index.	The	
constructor	should	scan	this	relation	(using	FileScan)	and	insert	
entries	for	all	the	tuples	in	this	relation	into	the	index

String	&	
outIndexName

The	name	of	the	index	file;	determine	this	name	in	the	
constructor	as	shown	above,	and	return	the	name.	

BufMgr *bufMgrIn The	instance	of	the	global	buffer	manager.

const int
attrByteOffset

The	byte	offset	of	the	attribute	in	the	tuple	on	which	to	build	
the	index.		For	instance,	if	we	are	storing	the	following	structure	
as	a	record	in	the	original	relation:	

And,	we	are	building	the	index	over	the	double	d,	then	the	
attrByteOffset value	is	0+offsetof(RECORD,	i),	where	offsetof is	
the	offset	position	provided	by	the	standard	C++	library	
“offsetoff”.

const Datatype	
attrType

The	data	type	of	the	attribute	we	are	indexing.		Note	that	the	
Datatype	enumeration	{INTEGER,	DOUBLE,	STRING}	is	defined	
in	btree.h

If the index file already exists, open the file.
Else, create a new index file
Parameters:

B+Tree Index:	insertEntry

const void	*	key A	pointer	to	the	value	
(integer/double/string)	we	want	to	insert.

const RecordId &	rid The	corresponding	record	id	of	the	tuple
in	the	base	relation.

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 43

insertEntry
inserts a new entry into the index using the pair
<key, rid>.
Input to this function:

B+Tree Index:	insertEntry

const void	*	key A	pointer	to	the	value	
(integer/double/string)	we	want	to	insert.

const RecordId &	rid The	corresponding	record	id	of	the	tuple
in	the	base	relation.

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 44

insertEntry
inserts a new entry into the index using the pair
<key, rid>.
Input to this function:

You will be spending bulk of your time /code in this method

B+Tree Index:	startScan

const void	*	
lowValue

The	low	value	to	be	tested.

const Operator	
lowOp

The	operation	to	be	used	in	testing	the	low	range.		You	
should	only	support	GT	and	GTE	here;	anything	else	
should	throw	BadOpcodesException.	

const void	*	
highValue

The	high	value	to	be	tested.

const Operator	
highOp

The	operation	to	be	used	in	testing	the	high	range.		You	
should	only	support	LT	and	LTE	here;	anything	else	
should	throw	BadOpcodesException.

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 45

startScan
This method is used to begin a “filtered scan” of the index.
For e.g. if the method is called using arguments (“a”,GT,”d”,LTE),
the scan should seek all entries greater than “a” and less than or
equal to “d”.
Input to this function:

B+Tree Index:	scanNext

• scanNext
• fetches	the	record	id	of	the	next	tuple	that	matches	the	scan	

criteria.	If	the	scan	has	reached	the	end,	then	it	should	throw	the	
exception	IndexScanCompletedException

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 46

RecordId &	
outRid

output	value
this	is	the	record	id	of	the	next	entry	that	
matches	the	scan	filter	set	in	startScan.

B+Tree Index:	endScan

• endScan
• terminates	the	current	scan	and	unpins all	the	
pages	that	have	been	pinned	for	the	purpose	of	
the	scan	

• throws	ScanNotInitializedException if	called	before	
a	successful	startScan call.

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 47

Implementation	notes
• call	the	buffer	manager	to	read/write	pages	
• don’t	keep	the	pages	pinned	in	the	buffer	pool	
unless	you	need	to	

• For	the	scan	methods,	you	will	need	to	remember	
the	“state”	of	the	scan	specified	during	the	
startScan

• insert does	not need	to	redistribute	entries	
• At	the	leaf	level,	you	do	not	need	to	store	pointers	
to	both	siblings.	The	leaf	nodes	only	point	to	the	
“next”	(the	right)	sibling	

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 48

FAQs
• How	do	I	get	started?

if	the	index	file	does	not	exist:
create	new	BlobFile.
allocate new	meta	page
allocate new	root	page
populate	'IndexMetaInfo'	with	the	rootpage num
scan	records	and	insert	into	the	BTree

else
read	the	first	page	from	the	file	- which	is	the	meta	node
get	the	root	page	num from	the	meta	node
read	the	root	page	(bufManager->readPage(file,	

rootpageNum,	out_root_page)
once	you	have	the	root	node,	you	can	traverse	down	the	
tree	

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 49

FAQs

• how	to	check	whether	an	index	file	exists?
– See	file.h:	
static	bool	exists(const std::string&	filename)	

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 50

FAQs

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 51

• How do I write a node to disk as a Page? e.g. how to write IndexMetaInfo
node to the file?

Þ You first need to allocate a Page using the bufferManager.
Page* metaPage;
bufManager->allocatePage(..., metaPage);

Then you can either cast it as IndexMetaInfo* and update it's parameter.
Another way is to first create and populate MetaIndexInfo node.
Then you can allocate a new Page* using bufferManager as above.
Then use 'memcpy' to copy tothe new Page:

memcpy(metaPage, &metaInfo,sizeof(IndexMetaInfo));

But you do not need to write it back as page to disk explicitly. Buffer
Manager does it for you.
Remember project 2?

FAQs

• how	to	convert	Page - that	you	read	from	the	file	
to	Node	?
– you	can	cast	e.g.	using	reinterpret_cast

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 52

Suggestions

• Start	early
– 1000+	lines	of	codes

• Try	to	finish	before	the	spring	break
– No	TA	hours	during	the	break	

• Make	incremental	progress
– Test	aggressively	

2/23/17 CS 564: Database Management Systems, Udip Pant and Jignesh Patel 53

