Find names of sailors who've reserved boat #103

Sailors (<u>sid</u>, sname, rating, age) Reserves (<u>sid</u>, <u>bid</u>, <u>day</u>) Boats (<u>bid</u>, bname, color)

Solution 1:
$$\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \Join Sailors)$$
Solution 2: $\rho(Temp1, \sigma_{bid=103} \text{Reserves})$ $\rho(Temp2, Temp1 \Join Sailors)$ $\pi_{sname}(Temp2)$

Solution 3: $\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$

Find names of sailors who've reserved a red boat

Sailors (<u>sid</u>, sname, rating, age) Reserves (<u>sid</u>, <u>bid</u>, <u>day</u>) Boats (<u>bid</u>, bname, color)

- Join relations?
 - Sailor, Reserves, Boats (for color)

 $\pi_{sname}((\sigma_{color='red'}Boats) \bowtie \text{Reserves} \bowtie Sailors)$

A more efficient solution:

 $\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}Boats) \bowtie \operatorname{Res}) \bowtie Sailors)$

A query optimizer can find the most efficient solution!

Find sailors who've reserved a red or a green boat

- Identify all red or green boats, then
- find sailors who've reserved one of these boats:

 ρ (Tempboats,($\sigma_{color='red' \lor color='green'}$ Boats))

 π_{sname} (Tempboats \bowtie Reserves \bowtie Sailors)

- Can also define Tempboats using union! (How?)
- What happens if v is replaced by \wedge in this query?

Find sailors who've reserved a red <u>and</u> a green boat

- 1. Identify
 - sailors who've reserved red boats
 - sailors who've reserved green boats
- 2. Then find the intersection (*sid* is a key for Sailors):

 $\rho (Tempred, \pi_{sid} ((\sigma_{color='red'} Boats) \bowtie \text{Reserves}))$ $\rho (Tempgreen, \pi_{sid} ((\sigma_{color='green'} Boats) \bowtie \text{Reserves}))$ $\pi ((Tempred \cap Tempgreen) \bowtie \text{Sailors})$

 $\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$

Find the names of sailors who've reserved all boats

Sailors (<u>sid</u>, sname, rating, age) Reserves (<u>sid</u>, <u>bid</u>, <u>day</u>) Boats (<u>bid</u>, bname, color)

 Uses division; schemas of the input relations to / must be carefully chosen:

$$\rho$$
 (Tempsids, (π sid, bid Reserves) / (π bid Boats))
 π sname (Tempsids \bowtie Sailors)

To find sailors who've reserved all '470' boats:

$$\dots /\pi_{bid} (\sigma_{bname='470'} Boats)$$