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Abstract

With the continuing technological trend of ever cheaper and larger memory, most data sets in database
servers will soon be able to reside in main memory. In this configuration, the performance bottleneck is
likely to be the gap between the processing speed of the CPU and the memory access latency. Previous
work has shown that database applications have large instruction and data footprints and hence do not
use processor caches effectively. In this paper, we propose Call Graph Prefetching (CGP), a hardware
technique that analyzes the call graph of a database system and prefetches instructions from the function
that is deemed likely to be called next. CGP capitalizes on the highly predictable function call sequences
that are typical of database systems. We evaluate the performance of CGP on sets of Wisconsin and
TPC-H queries, as well as on CPU-2000 benchmarks. For most CPU-2000 applications the number of
I-cache misses were very few even without any prefetching, obviating the need for CGP. Our database
experiments show that CGP can improve the performance of a database system by 30% over a baseline
system that uses the OM tool to layout the code so as to improve I-cache performance. CGP also achieved
7% higher performance than nezt-N-line prefetching on database applications.

1 Introduction

The increasing need to store and query large volumes of data have made database management systems
(DBMSSs) one of the most prominent applications on today’s computer systems. DBMS performance in the
past was bottlenecked by disk access latency which is six orders of magnitude slower than processor cycle
times. But with the trend toward denser and cheaper memory, database servers in the near future will
have large main-memory configurations, and many working sets will be resident in main memory [BBC*98].
Moreover techniques such as concurrent query execution, where a query that is waiting for a disk access
is switched with another query that is ready for execution, can successfully mask the disk access latencies.
Several commercial database systems already implement concurrent query execution along with asynchronous

I/0 to reduce the I/O bottleneck. Once the disk access latency is tolerated, or disk accesses are sufficiently



infrequent, the performance bottleneck shifts from I/O response time to the memory access time.

There is a growing gap between processor and memory speeds which can be reduced by the effective
use of multi-level caches. But recent studies have shown that current database systems with their large code
and data footprints suffer significantly from poor cache performance [ADHW99, BRK98, LBET98, NBC*94,
SKN94]. Thus the key challenge in improving the performance of memory bound database systems is to

utilize caches effectively and reduce cache miss stalls.

In this paper, we propose Call Graph Prefetching (CGP), a hardware instruction prefetching tech-
nique that analyzes the call graph of an application and prefetches instructions to reduce the instruction
cache misses. Although CGP is a generic instruction prefetching scheme, it is particularly effective for
DBMS because of the layered software design approach used by these systems. CGP uses a Call Graph
History Cache (CGHC) to dynamically store sequences of functions invoked during program execution, and
uses the stored history when choosing which functions to prefetch. We evaluate the effectiveness of CGP
using a subset of CPU-2000 benchmarks and a database workload that consists of a subset of the Wisconsin

queries [BDT83] and TPC-H [Cou99] queries.

Our performance evaluations show that most CPU-2000 benchmarks do not need any prefetching
because of the very few I-cache misses suffered by these benchmarks. On the other hand, the database
workloads do suffer a significant number of I-cache misses, and CGP improves their performance by 30%
over a baseline system that has been tuned up by using the OM tool to layout the code for improved I-
cache performance. CGP issues more useful prefetches than next-N-line (NL) prefetching, while keeping the
prefetch traffic similar to NL. On the DBMS workloads CGP reduces the cache misses by 10% and improves

the performance by 7% relative to NL.

Although both instruction and data cache misses can have a significant impact on the overall perfor-
mance, this paper focuses only on the instruction cache misses. Instruction cache misses are harder to mask

as they serialize program execution by stalling the issuing of instructions in the processor pipeline until the



cache miss is serviced. Nevertheless data cache misses are also important, and any techniques for reducing

data stalls will further improve the performance of the database system.

The rest of this paper is organized as follows. Section 2 describes previous work that is related
to CGP. Section 3 presents an overview of CGP and discusses the architectural modifications needed for
implementation. Section 4 describes the simulation environment and performance analysis tools that we
used to assess the effectiveness of CGP. We also evaluate the performance of CGP when applied to CPU2000
benchmarks and show that although CGP can be applied to other application domains it is most effective

for database systems. The results of the assessment are presented in Section 5, and we conclude in Section 6.

2 Related Work

Researchers have proposed several techniques to improve the I/O bottleneck of database systems. Nyberg et
al. [NBC194] suggested that if data intensive applications use software assisted disk striping, the performance
bottleneck shifts from I/O response time to the memory access time. Boncz et al. [BRK98] showed that
the query execution time of data mining workloads with a large main memory buffer pool is memory bound
rather than I/O bound. Shatdal et al. [SKN94] proposed cache-conscious performance tuning techniques
that improve the locality of the data accesses for join and aggregation algorithms. These techniques reduce
the data cache misses, and are orthogonal to the goal of CGP which tries to reduce I-cache misses. CGP

may be implemented on top of these cache-conscious algorithms.

It is only recently that researchers have examined the performance impact of architectural features
on DBMSs [ADHW99, LBE198, TLPZT97, EJK+96, RBHT95, CB94, MDB94]. Their results show that
database applications have large instruction and data footprints and exhibit more unpredictable branch be-
havior than benchmarks that are commonly used in architectural studies (e.g. SPEC). Database applications
have fewer loops and suffer from frequent context switches, causing significant increases in the instruction

cache miss rates [Fra94]. Lo et al. [LBE198] also showed that in OLTP workloads, the instruction cache miss



rate is nearly three times the data cache miss rate. Ailamaki et al. [ADHW99] analyzed three commercial
DBMSs on a Xeon processor and showed that TPC-D queries spend about 20% of their execution time on
branch misprediction stalls and 20% on L1 instruction cache miss stalls (even though the Xeon processor
uses special instruction prefetching hardware). Surprisingly, their results showed that L1 data cache misses

that hit in L2 were not a significant bottleneck, but L2 data cache misses reduced the performance by 20%.

Researchers have proposed several schemes to improve instruction cache performance. Pettis and
Hansen [PH90] proposed a code layout algorithm which uses profile guided feedback information to layout
contiguously the sequence of basic blocks that lie on the most commonly occurring control flow path. Romer
et al. implemented the Pettis and Hansen code layout algorithm using the Etch [RVL+97] tool and showed
performance improvements for Win32 binaries. In this paper we used OM [SW92] which implements a
modified Pettis and Hansen algorithm to do feedback-directed code layout. This algorithm is discussed
further in Section 5.1. Our results show that OM improves the performance of a highly optimized binary
(C++ -05 optimization level) by 11%. Using CGP in addition to OM further improves the performance by
30%, for a combined 45% performance improvement. CGP alone, without OM, achieved a 40% performance

improvement.

Next-N-line prefetching (NL) [Smi78] is another prefetching technique that is often used. In this
technique when a line is being fetched by the CPU, the next N sequential lines are prefetched, unless they
are already in cache. This scheme works in programs that execute long sequences of straight line code. We
used NL prefetching for prefetching code within a function and used CGP for prefetching across function
calls. We show that CGP takes good advantage of the nextline prefetching scheme and also outperforms a

pure nextline scheme by 7%.

Researchers have proposed several techniques for non-sequential instruction prefetching [SH92, CLM97,
LM98, RCA99]. Of these, the work that is closest to the research presented in this paper is that of Luk

and Mowry [LM98]. They proposed cooperative prefetching where the compiler inserts prefetch instructions



to prefetch branch targets. Their approach, however, requires ISA extensions to add four new prefetch
instructions: two to prefetch the targets of branches, one for indirect jumps and one for function returns.
They use next-N-line prefetching for sequential accesses. Special hardware filters are used to reduce the
prefetch traffic. Since they targeted their scheme to perform prefetching for a wide range of applications
such as the SPEC95 benchmarks, SUIF compiler passes, and Postgres, they needed special ISA extensions
as well as additional hardware support for prefetch filtering. By contrast, CGP is a simple hardware scheme
that discovers and exploits predictable call behavior as found, for example, in database applications due to
their layered software design. CGP uses NL prefetching to prefetch within a function boundary and can
benefit from using the OM tool at link time to make NL more effective by reducing the number of taken
branches which increases the sequentiality of the code. Hence using NL with OM can effectively prefetch
the instructions within a function boundary and thereby will reduce the need for branch target prefetching
within a function boundary. CGP is thus freed to focus on prefetching for function calls. Since CGP is
implemented in hardware it permits running legacy code without modification or recompilation, which is

particularly attractive for large software systems such as databases.

3 Call Graph Prefetching (CGP)

DBMSs are commonly built using a layered software architecture where each layer provides a set of well-
defined entry points to the layers above it. Figure 1 shows the layers in a typical database system with the
storage manager being the bottom-most layer. The storage manager provides basic file storage mechanisms
(such as tables and indices), concurrency control and transaction management facilities. Relational operators
that implement algorithms for join, aggregation etc., are typically built on top of the storage manager. The
query scheduler, the query optimizer and the query parser are then built on top of the operator layer.
Each layer in this modular architecture provides a set of well-defined entry points and hides its internal

implementation details so as to improve the portability and maintainability of the software. The sequence
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Figure 1: Software layers in a typical database system

of function calls within each of these entry points is transparent to the layers above. Although such layered
code typically exhibits poor spatial and temporal locality, the function call sequences can often be predicted
with great accuracy. CGP exploits this predictability to prefetch instructions from the procedure that is

deemed most likely to be executed next.

3.1 A Simple Call Graph Example

We introduce CGP with the following pedagogical example. Figure 2 shows a segment of a call graph for
adding a record to a file in SHORE [CDF*94]. SHORE is a storage manager that provides storage volumes,
B+-trees, R*-trees, concurrency control and transaction management. In this example, Create_rec calls
Find_page_in_buffer_pool to check if the relation into which the record is being added is already in the buffer
pool. If the page is not already in the buffer pool the Getpage_from_disk function is invoked to bring the
page from the disk into the main memory buffer pool. This page is then locked using the Lock_page routine,

subsequently updated using Update_page, and finally unlocked using Unlock_page.

The Create_rec function is the entry point provided by the storage manager to create a record, and is
routinely invoked by a number of relational operators, including insert, bulk load, join (to create temporary

partitions or sorted runs), and aggregate. Although it is difficult to predict calls to Create_rec, once it is



invoked Find_page_in_buffer_pool is always the next function to be called. When a page is brought into the
memory buffer pool from the disk, DBMSs typically “pin” the page in the buffer pool to prevent the possibility
of its being replaced before it is used. Given a large buffer pool size and repeated calls to Create_rec, the page
that is being updated will usually be found pinned in the buffer. Hence Getpage_from_disk will usually not
be called and Lock_page, Update_page and Unlock_page will be the sequence of functions next invoked. CGP
capitalizes on this predictability by prefetching instructions needed for executing Find_page_in_buffer_pool
upon entering Create_rec, then prefetching instructions for Lock_page once Find_page_in_buffer_pool is entered,
and finally prefetching instructions from Update_page after returning from Find_page_in_buffer_pool, and for

Unlock_page upon returning from Update_page.

Create_rec Find_page in_buffer_pool
if NOT found _ Getpage from_disk
Getpage_from_dlsk() — ;
g L ock _pagé()
Find J:)age_iln_buffer ~_pool() Update page() Lock_page
Update_page() —— | Unlock_page

Unlock Jaageef//

Figure 2: Call Graph for the Create_rec function

3.2 Exploiting Call Graph Information

The main hardware component of the CGP prefetcher is the Call Graph History Cache (CGHC) which
comprises a tag array and a data array as shown in Figure 3. Each entry in the tag array stores the starting
address of a function (F) and an index (I). The corresponding entry in the data array stores a sequence
of starting addresses corresponding to the sequence of functions that were called by F the last time that

function F was called. If F' has not yet returned from its most recent call, this sequence may be partially



updated. For ease of explanation here and in Figure 3 we use the function name to represent the starting
address of the function. Each entry in the data array, as implemented in our evaluations, can store up to 8
function addresses. If a function in the tag entry invokes more than 8 functions, only the first 8 functions
invoked will be stored. As shown later in Section 5.3, a small direct mapped CGHC achieves nearly the
same performance as an infinite sized CGHC and hence we chose to use a direct mapped CGHC instead of

a set-associative CGHC.

Each call and each return instruction that is executed makes two accesses to CGHC. In both cases
the first access to CGHC is made using target address of the call (or the return) to determine which function
to prefetch next; the second access to CGHC is made using the starting address of the currently executing
function to update the current function’s index and calling sequence that is stored in CGHC. To quickly
generate the target address of the call or the return instruction, the processor’s branch predictor is used,
instead of waiting for the target address computation which may take several cycles in the out-of-order
processor pipeline. On a CGHC access, if there is no hit in the tag array, no prefetches are issued and a new
tag array entry is created with the desired tag and an index value of 1. The corresponding data array entry
is marked invalid; unless the CGHC miss occurs on the second (update) access for a call (say P calls F), in

which case the first slot of the data array entry for P is set to F'.

In general, the index value in the tag array entry for a function F', points to one of the functions in
the data array entry for F. An index value of 1 selects the first function in the data array entry. Note that
the index value is initialized to 1 whenever a new entry is created for F', and the index value is reset to 1

whenever F' returns.

When the branch predictor predicts that P is calling F, the first (prefetch) access to the direct
mapped CGHC tag array is made by using the lower order bits of the predicted target address, F', of the
function call. If the address stored in the tag entry matches F, as the index value of a function being called

should be 1, a prefetch is issued to the first function address that is stored in the corresponding data array



entry. The second function will be prefetched when the first function returns, the third when the second
returns etc. The prefetcher thus predicts that the sequence of calls to be invoked by F' will be the same as
the last time F' was executed. We chose to implement this prediction scheme because of the simplicity of its

prefetch logic and the accuracy of this predictor for stable call sequences.

For the same call instruction (P calls F), the second (update) access to the CGHC tag array is made
using the lower order bits of the starting address of the current function P. If the address stored in the tag
entry matches P, then the index of that entry is used to select one of 8 slots of the corresponding data array,
and F is stored in that slot. The index is incremented by 1 on each call update, up to a maximum value of

8.

On a return instruction, when the function F' returns to function P, the lower order bits of the
starting address of P are used for the first (prefetch) access the CGHC. On a tag hit, the corresponding data
array entry is accessed to prefetch the function that is in the slot pointed to by the index value in the tag

array entry.

A modified branch predictor is used to provide the starting address of P. On a return instruction,
a conventional branch predictor only predicts the return address in P to which F' returns, in particular it
does not provide the starting address of P. Since the entries in the tag array store only starting addresses of
functions, the target address of a return instruction cannot be directly used for a tag match in CGHC. To
overcome this problem the processor always keeps track of the starting address of the function currently being
executed. When a call instruction is encountered, the starting address of the caller function is pushed onto
the branch predictor’s return address stack structure along with the return address. On a return instruction,
the modified branch predictor retrieves the return address as usual, and also gets the caller function starting

address which is used to access the CGHC tag array.

On the same return instruction, the second (update) access to CGHC is made with the lower order

bits of the starting address of the current returning function F. On a tag hit, the index value in the tag



array entry is reset to one.

Since CGP predicts that the sequence of function calls made by a caller will be the same as the last
time that caller was executed, prefetching an entire function based on this prediction may waste processor
resources if the prefetched function is not invoked during the actual execution. Moreover prefetching a large
function into the instruction cache can pollute the cache by replacing existing cache lines that may be needed
sooner than the prefetched lines. Hence the prefetch algorithm only prefetches N cache lines, where N is a
parameter that can be based on the cache size, line size and the I-cache miss latency. Since only the first N
cache lines of a callee function are prefetched from within the caller function, the rest of the callee function is
prefetched after entering the callee function by using a simple NL prefetching scheme. We use the notation
CGP_N to represent a CGP scheme that prefetches only N cache lines rather than an entire function on

each prefetch request.

Tag Array DataArray
Func_Addr Index Sequence of functionsinvoked
Start addressof @ | creqpe rec 1 Find_page.. Update_page Unlock_page |~

function - )
Find_page. | 1 |CGHCHit | Lock_page | oo | R

Update_page i N A N

MissincGHC | N0
Funcl Address Func8 Address

Goto L2 level CGHC MUX
(only for 2-level CGHC) Index selects function to prefetch u

Prefetch %ddress sent to L2 cache

Figure 3: Call Graph History Cache. (state shown in CGHC occurs as Lock_page is being prefetched from
Find_page_in_buffer_pool)

3.3 Design considerations

Operations that access and update the CGHC are not on the critical path of the processor pipeline and can
be done in the background. In our implementation the CGHC is accessed and updated in different cycles

to eliminate the need for having a dual-ported CGHC that can be accessed and updated in the same cycle.
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The CGHC is accessed one cycle after the branch predictor predicts the target of a call or return instruction.
Since the CGHC is a small direct mapped cache, the tag match of the target address is done in 1 cycle. On
a hit in CGHC, a prefetch is issued in the next cycle. After the tag match and the decision whether to issue

a prefetch, the CGHC is updated in the next clock cycle to reflect the call sequence history.

Our current CGP implementation prefetches instructions directly into the L1 I-cache. The traffic
generated by the prefetches and the L1 cache misses are serviced by L2 in a FIFO order without giving any
priority to the demand miss traffic. Although the lack of priority may increase the latency of the demand

miss traffic, it simplifies the L2 accessing interface within the L1 cache.

4 Simulation Environment and Benchmarks

4.1 Methodology

To evaluate the effectiveness of CGP we implemented a subset of the relational operators on top of the
SHORE storage manager [CDFT94]. SHORE is a fully functional storage manager which has been used
extensively in the database research community and is also used in some commercial database systems.
SHORE provides storage volumes, files of untyped objects, B+ trees, and R* trees, full concurrency control
and recovery with two-phase locking and write-ahead logging. We implemented the following relational
operators on top of SHORE: select, indexed select, grace join, nested loops join, indexed nested loop join
and hash-based aggregate. Each SQL query was transformed into a query plan using these operators. The
relational operators and the underlying storage manager were compiled on an Alpha 21264 processor running
OSF Version 4.0F. We compiled SHORE using the Compaq C++ compiler, version 6.2, with the -O5 -ifo

-inline speed flags turned on.

We used the SimpleScalar simulator [BA97], for detailed cycle-level processor simulation. The mi-

croarchitectural parameters that we used for this performance evaluation are shown in Table 1.
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Fetch, Decode & Issue Width | 4

Inst Fetch & L/S Queue Size | 16

Reservation stations 64

Functional Units 4add/2mult
Memory system ports to CPU | 4

L1 T and D cache each 32KB,2-way,32byte
Unified L2 cache 1MB,4-way,32byte
L1 hit latency(cycles) 1

L2 hit latency(cycles) 16

Mem latency (cycles) 80

Branch Predictor 2-lev,2K-entry

Table 1: Microarchitectural Parameter Values

To evaluate the performance of CGP we used a database workload that consists of eight queries (1
through 7 and 9) from the Wisconsin benchmark [BDT83], and five queries (1,2,3,5, and 6) from the TPC-H
benchmark [Cou99]. Wisconsin queries 1 through 7 are 1% and 10% range selection queries (with and without
indices) and query 9 is two-way join query. The selected TPC-H queries include queries with aggregations
and many joins, and also includes a simple nested query (query 2). The remaining TPC-H queries need more

relational operators than what we have currently implemented and hence are not evaluated in this paper.

We selected queries from two different benchmarks, Wisconsin and TPC-H, to demonstrate how
CGP performs with mixed workloads. The results in this section evaluate the effectiveness of CGP for four

different database workloads. These workloads are:

1. Wisc-prof, a set of three queries from the Wisconsin benchmark: query 1 (sequential scan), query 5
(non-clustered index select) and query 9 (two-way join). These queries were chosen since they include
query operations that are frequently used by the other Wisconsin benchmark queries. These selected

queries were run on a database of 2100 tuples.

2. Wisc-large-1 consists of the same three queries used in the Wisc-prof workload, except that the queries
were run on a full 21,000 tuple Wisconsin database (10,000 tuples in each of the first two relations,
and 1,000 tuples in the third relation). The total size of the database including the indices is 10MB.

This workload was selected to see how CGP performance differs when running the same queries on a

12



differing database size.

3. Wisc-large-2 consists of all eight Wisconsin queries running on a 10MB database.

4. Wisc+tpch consists of all eight Wisconsin queries and the five TPC-H queries running concurrently on

a total database of size 40MB. In this workload the size of the TPC-H dataset was 30MB.

The queries in each workload were executed concurrently, each query running as a separate thread
in the database server. We used a small database size (40MB) to allow the SimpleScalar simulation to
complete in a reasonable time. Even with this small database, the total number of instructions simulated in
Tpch+ Wisc was about 3 billion. Increasing the size of the data set only increases the number of instructions
executed in each function, but does not significantly alter the types and sequences of functions calls that are
made. Consequently, CGP performance is fairly independent of the database size that is used. To verify this
claim, we simulated CGP on the Wisc-large-2 queries with a 100MB data set and saw improvements quite

similar to those for the 10MB data set.

5 Results

5.1 Feedback Directed Code Layout with OM

Before presenting the results for CGP, we briefly discuss the feedback-directed code layout optimization of
OM that reduces I-cache misses by increasing spatial locality. Since CGP also targets I-cache misses, we

applied CGP to an OM optimized binary to see how much additional benefit CGP can provide.

The OM [SW92] tool on Alpha processors implements a modified version of the Pettis and Hansen
profile-directed code layout algorithm for reducing instruction cache misses [PH90]. OM performs two levels
of optimizations. In the first level, OM uses profile information to determine the likely outcome of the
conditional branches and rearranges the basic blocks within a function such that conditional branches are

most likely not taken. This optimization increases the average number of instructions executed between
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two taken branches. Consequently, the number of instructions used in each cache line increases, which in
turn reduces I-cache misses. The second level of optimization rearranges functions using a closest-is-best
strategy. If one function calls another function frequently, the two functions are allocated close to one
another in memory so as to improve the spatial locality. Since OM is a link-time optimizer, it has the ability

to rearrange functions that are spread across multiple files, as well as statically linked library routines.

The profile information needed for OM optimizations was generated by running two workloads,
Wisc-prof and Wisc+tpch to provide better feedback information than that provided by running just one
workload. Each of these workloads was run separately and the profile information of both runs were merged
to generate the required feedback file used by OM. The OM optimizations were applied to an O5 optimized
binary. OM’s ability to analyze object level code at link time opens up new opportunities for redoing
some traditional compiler optimizations, such as inter-procedural dead code elimination and loop-invariant
code motion, that could not be performed effectively at compile time even with O5 optimizations. Such

optimizations reduced the dynamic instruction count of the OM code by 12%, relative to O5 optimized code.

5.2 Performance Comparison

In this section we present the performance improvements due to OM optimizations. We also present the
performance improvements due to CGP without OM optimizations and the performance improvements

resulting from applying CGP to an OM optimized binary.

Figure 4 shows the execution cycles needed for running the four workloads using the O5 optimized
binary, the O54+0OM optimized binary and the binary generated by running the CGP algorithm on O5 bi-
nary and O5+OM binary. We selected two different values for N, the number of cache lines prefetched
each time, namely 2 and 4 (corresponding, respectively, to bars labeled O5+CGP-2/05+0OM+CGP_2,
O5+CGP_4/ O5+0OM+CGP_ in the graphs). For these experiments we used a two level CGHC with 2KB

in the first level and 32KB in the second level. Figure 4 shows that on average OM optimizations result
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in an 11% speedup over O5 optimized code. CGP_4 alone, without OM, achieves 40% speedup over O5.
CGP_4 with OM achieves 45% speedup over O5. This shows that CGP alone can significantly improve the
performance, and using CGP with OM gives additional benefits. But in both cases, CGP outperforms OM

optimizations.

One observation might best explain why CGP improves the performance significantly over OM
optimizations. Namely, the closest-is-best strategy used by OM for code layout is not very effective for
functions that are frequently called from many different places in the code. For instance, procedures such as
lock_record() can be invoked by several functions in the database system, and OM’s closest-is-best strategy
places lock_record() close to only a few of its callers by replicating lock_record(). Aggressive function repli-
cation can cause significant code bloat which can adversely affect I-cache performance. On the other hand,
CGP can prefetch lock_record() from those functions that invoke lock_record(), without having to replicate

the function.

o B os
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col [] os5+CGP_4

[ 05+OM+CGP_2
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wisc-prof wisc-large-1 wisc-large-2 wisc+tpch Avg

Figure 4: Execution cycle comparison of O5, OM and CGP

5.3 Exploring the design space of CGHC

The performance of CGP depends on the ability of the hardware to store enough call graph history so

as to effectively issue prefetches for repeated call sequences. Since CGHC stores this history information,
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we explored the effect of varying the size of CGHC on the overall performance of CGP. Figure 5 shows
the performance of CGP_4 for five different CGHC configurations, namely 1IKB CGHC (CGHC-1K), 32KB
CGHC (CGHC-32K), 1IKB+16KB two level CGHC (CGHC-1K+16K), 2KB+32KB two level CGHC (CGHC-
2K+32K), and infinite CGHC (CGHC-Inf) where every function in the program has an entry in the CGHC

that stores the entire function call sequence of its most recent invocation.

As seen from the figure, a 1KB CGHC is about 12% slower than an infinite CGHC. But the per-
formance gap between the other three finite CGHC configurations and the infinite CGHC is very small.
Surprisingly for the wisc+tpch benchmark the performance of the infinite CGHC is slightly worse than all
configurations except CGHC-1K. Since the infinite CGHC caches all the history information, some of the
prefetches issued on a function call were useless prefetches that resulted in increased bus traffic. These
prefetches may not be issued in other configurations because the finite call history eliminates less recent
function call sequences from the CGHC (via LRU replacement) thereby reducing the number of prefetches
issued (and hence useless and polluting prefetches as well), and correspondingly reducing the bus contention.

In wisc+tpch the gains of an infinite CGHC are outweighed by the losses.

Among the four finite CGHC configurations that were simulated, the performances of CGHC-
2K+32K and CGHC-32K are better than the remaining configurations. But instead of using a 32KB one
level CGHC with a one cycle access time, we chose to use a two level CGHC with 2KB in the first level
CGHC and 32KB in the second. The access times to the two level CGHC are same as the access times of
the two level cache hierarchy. On a miss in the first level CGHC, the second level CGHC is accessed. On
a hit in the second level CGHC an entry from the first level CGHC is written back to the second level and
the hit entry in the second level CGHC is moved to the first level. On a miss in the second level CGHC a
new entry is allocated in the first level CGHC and the replaced entry from the first level is written back to

the second level. All our further evaluations are presented using a CGHC-2K+32K configuration.
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Figure 5: Performance of five different CGHC configurations

5.4 Comparison with Next-N-Line Prefetching

Since OM optimizations increase the sequential accesses to a code segment, a simple prefetching scheme such
as NL, where the next N lines from the currently accessed cache line are prefetched, might be successful in
bringing in more required cache lines and eliminating more cache misses when applied after OM. Figure 6
compares the performance of NL prefetching with CGP, where each is applied to the OM optimized binary.
NL_2 and NL_4 are NL schemes that prefetch the next 2 and next 4 cache lines, respectively, from the

currently accessed cache line.

The results show that the NL scheme is indeed effective in improving the performance of the OM
optimized binary, but CGP still outperforms NL alone by about 7% and is within 19% of the perfect I-cache
performance (labeled as perf-Icache in the graph), where all accesses to the I-cache are completed in 1 cycle.
The NL scheme is effective for prefetching long straight line sequences of code within a function. In our
workloads on average only 43 instructions were executed between two successive function calls. This frequent

change in the control flow reduces the effectiveness of the NL scheme even with OM optimizations.
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Figure 6: Execution cycle comparison of O5, OM, NL and CGP

5.5 I-cache Performance

Further analysis shows the reasons for the improved performance of CGP over NL. Figure 7 shows the
number of I-cache misses. The OM reorganization reduces the number of cache misses by 21% relative to

the O5 optimized binary, but OM+NL reduces cache misses by 77% and OM+CGP by 87%.
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Figure 7: I-Cache miss comparison of O5, OM, NL and CGP
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5.6 Prefetch Effectiveness and Bus Traffic overhead

Figure 8 shows the prefetch effectiveness of CGP and NL by categorizing all the issued prefetches into three
categories. The bottom component shows Pref Hits, the number of times the first reference to a L1 cache
line that was prefetched found the referenced instruction already in the L1 cache. The center component
shows Delayed Hits, the number of times the first reference to a prefetched cache line finds the reference
instruction not present in the L1 cache although it is already being fetched from the lower levels of memory
due to the previous prefetch request. Finally the upper component shows Useless Prefetches, the number of
times that cache lines were prefetched into the L1 cache and replaced before being referenced. Since CGP
uses CGHC only to prefetch across function boundaries, and uses NL to prefetch within a function, the total
number of prefetches issued by CGP_4 are only 8% more than those issued by the NL_4 scheme alone. But
this ability to prefetch across function boundaries also allows CGP to do more effective prefetching than NL
alone, particularly in the presence of frequent function calls. On average CGP_4 generates 22% more hits to
prefetched cache lines than NL_4. Of the prefetches issued by CGP_4, 54% were useful prefetches, and 51%

were useful for NL.

Since CGP uses NL to prefetch within a function, we expected that CGP would incur at least as
many delayed hits as the NL scheme. But surprisingly there are fewer delayed hits with CGP than with NL
alone. Such a reduction could, for example, occur if a callee function is laid out close to its caller and NL
running without CGP prefetches the beginning lines of the callee function due to the sequentiality of the
code layout, but they do not arrive before they are referenced. However, when CGP runs it issues prefetches
to this callee function at the beginning of the caller function resulting in improved timeliness, and thereby

converts such delayed hits to hits.

To improve the timeliness of NL, we implemented run-ahead NL prefetching, which is a modified
NL prefetching scheme (results not shown here). This prefetching scheme, instead of prefetching the next

N sequential lines from the currently accessed cache line, prefetches N lines that begin M cache lines after
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the currently accessed cache line. Although this scheme did improve the timeliness of some delayed hits,
the overall performance of this modified NL scheme is much worse than NL. With frequent control flow
changes, and with an average of only 43 instructions between two consecutive functions calls, the run-ahead
NL scheme prefetches too many useless instructions from too far ahead in the instruction stream, and fails to

prefetch some closer lines that are needed, thereby significantly decreasing the number of useful prefetches.
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Figure 8: Prefetch Timeliness

5.7 Applying CGP to CPU2000 benchmarks

In this section we show that although CGP is a general technique which can be applied to applications in
other domains, the layered software architecture of database applications make CGP particularly attractive
for database applications. To quantify the impact of CGP when applied to other application domains, we
used CGP on the CPU-intensive SPEC-CPU2000 benchmarks. We selected seven benchmarks from the
CPU2000 integer benchmark suite, namely gzip, gcc, crafty, parser, gap, bzip2 and twolf. These benchmarks
were compiled, as above, with the Compaq C++ compiler with O5 and then OM. The test input set, provided
by SPEC, was used to generate the required profile information for OM. The train input set was then run

for two billion instructions to generate the results presented in this section.

In Figure 9, the last bar in each benchmark shows the execution cycles required with a perfect
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I-cache, where all accesses to the I-cache are completed in 1 cycle. The performance gap due to using a 32
KB I-cache and the perfect I-cache is 17% in gce, 9% in crafty, 2% in gap, and less than 1% for each of the
other benchmark. CPU2000 applications suffer very few I-cache misses and hence a 32KB I-cache and a
perfect I-cache achieve nearly the same performance. In fact the I-cache miss ratios are nearly 0%, except
for gee and crafty which have 0.5% and 0.3% I-cache miss ratios, respectively. The I-cache is thus not a
performance bottleneck in most CPU2000 applications, in which case it is unnecessary to use prefetching
techniques such as CGP and NL. For those applications that do suffer from I-cache misses, namely gcc and
crafty, NL prefetching alone achieves performance gains similar to that of CGP. NL_4 and CGP_4 each speed
up the execution of gcc by 7 to 8% and crafty by 4% relative to O5+0OM alone. This shows that CGP is not

especially attractive for workloads with small I-cache footprints and/or infrequent function calls.
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Figure 9: Effectiveness of CGP on CPU-2000 applications

6 Conclusions and Future work

This paper proposes Call Graph Prefetching (CGP) to increase the performance of database systems by
improving their I-cache utilization. With data sets that are mostly main memory resident, CGP can outper-
form the best existing feedback directed compiler optimizations by 30% and provides an additional speedup

of 7% over NL prefetching. The hardware requirements of CGP are quite modest. By adding a 2KB first
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level CGHC with a 32KB second level CGHC, CGP achieves significant performance benefits.

In this paper CGP is implemented in hardware, which permits running legacy code without modifi-
cation or recompilation. However, it is possible for the compiler to insert prefetch instructions into the code

based on call graph information generated from profile executions.

We have demonstrated the effectiveness of CGP for database applications. We expect CGP to be
useful as well for other benchmarks where I-cache performance is a bottleneck and function calls are frequent.
Some of the more commonly studied benchmarks, such as CPU-2000, exhibit very little I-cache stall and
there is no need to use CGP for such benchmarks. It would be interesting, however, to study the performance

of CGP on media processing and other emerging applications.
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