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ABSTRACT
Spatial applications frequently need to join two data sets
based on some spatial relationship between objects in the
two data sets. This operation, called a spatial join, is an
expensive operation and in the past many algorithms have
been proposed for evaluating the spatial join operation on
a single processor system. However, the use of parallelism
for handling queries involving large volumes of spatial data
has received little attention. In this paper, we explore the
use of parallelism for evaluating the spatial join operation.
We �rst propose two strategies for storing spatial data in a
parallel database system. We propose a number of spatial
join algorithms based on these declustering strategies. Two
algorithms are identi�ed as the key algorithms in this design
space. We analyze these two algorithms both analytically
and experimentally. The experimental evaluation uses real
data sets and is based on an actual implementation in a
parallel database system. The experiments show that both
algorithms can e�ectively exploit parallelism.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications|
Spatial databases and GIS ; H.3.4 [Information Storage
and Retrieval]: Systems and Software|Performance eval-
uation (e�ciency and e�ectiveness)

General Terms
Algorithms, Design, Experimentation, Performance.
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1. INTRODUCTION
Spatial applications frequently need to combine two data

sets based on some spatial relationship between objects in
the two data sets. For example, given a polygon data set
representing corn �elds and another polygon data set repre-
senting areas a�ected by soil erosion, a soil scientist studying
the e�ect of soil erosion on corn �elds may ask the system to
�nd corn �elds that overlap with soil erosion polygons. This
operation of combining two spatial data sets is called a spa-
tial join. A spatial join operation, just like its counterpart
in the relational world, is expensive to compute and very
resource intensive. Recognizing the impact that a good spa-
tial join algorithm can have on the overall performance and
usability of a spatial database system, many algorithms for
evaluating the spatial join operation in a centralized system
have been proposed [18, 2, 6, 11, 7, 15, 10, 16, 19]. How-
ever, joining very large spatial data sets has received little
attention. Large volumes of spatial data are now available
from a variety of sources. USGS, for example, distributes
the TIGER data set that contains cartographic data for the
United States. The size of the entire data set at a 1:100,000
resolution is 19GB; such data sets for the entire world, and
at higher resolutions will be much larger. In the near future,
we will see even larger data sets. High resolution satellite
images are now becoming available for commercial purposes
at a very economical price [23]. A variety of applications
that use these high resolution satellite images are now start-
ing to emerge. Feature extraction algorithms can be used
to identify features in an image, and these features can be
stored in a database system as polygons, points, polylines,
etc. Then, the applications can pose queries on these fea-
tures. This feature extraction process can easily generate
very large spatial data sets. With this inevitable increase
in the volume of spatial data, there is clearly a need for
e�cient spatial join algorithms that operate on large data
sets. In the relational world, as the sizes of databases in-
creased, using parallelism to store and query large data sets
was very e�ective. It is natural then to attempt to use paral-
lelism for storing and querying large spatial data sets. This
paper explores various algorithms for evaluating the spatial
join operation in a parallel spatial database system. First,
strategies for declustering spatial data are examined. Spatial
data can be declustered using either a static or a dynamic
partitioning scheme. Static partitioning divides the under-
lying space into regions, and maps the regions to nodes in
the parallel system. Dynamic partitioning inserts the spa-



tial objects into a spatial index, like an R-tree [8], and maps
the leaf nodes of the R-tree to nodes in the parallel system.
In [26] it was shown that for spatial joins static partitioning
is superior to dynamic partitioning. Consequently, this pa-
per only focuses on declustering strategies that are based on
static partitioning of the underlying space. First, this paper
proposes two di�erent declustering strategies. Then, based
on these two declustering strategies, the design space for
parallel spatial join algorithms is explored. Two algorithms,
Clone Join and Shadow Join are identi�ed as the key al-
gorithms in this design space. An analytical model is used
to investigate the characteristics of these two algorithms.
These two algorithms are also implemented in Paradise, a
parallel spatial database system, and this paper also evalu-
ates these two algorithms using this implementation and real
data sets. The experiments show that both these algorithms
exploit parallelism e�ectively.

2. RELATED WORK
In this section we review the related work in the area of

parallel spatial database systems. The paper by Tan and
Yu [24] proposes techniques for declustering spatial data,
and evaluates the e�ect of these declustering techniques on
spatial selections. The evaluation uses synthetically gener-
ated uniformly distributed data, and does not consider data
distribution skew. Another paper by Abel et al. [1] propose a
spatial semi-join operator for joining spatial data from two
distributed sites in a distributed spatial database system.
No parallel evaluation technique is explored in the paper.
Kamel and Faloutsos [12] explore the use of parallelism to
accelerate the performance of spatial selections. They ex-
amine various placement policies for distributing the leaves
of an R-tree [8] across multiple disks in a system. The focus
of the paper is limited to spatial selections, and the target
parallel architecture is a single processor with multiple disks
attached to it. This idea was later extended by Koudas et
al. [14] to decluster spatial data on a shared-nothing archi-
tecture. Again, the scope of the study is limited to queries
with spatial selections. Parallel range selection algorithms
and dynamic data partitioning strategies has also been ex-
amined by Shekar et al. [22]. Hoel and Samet [9] have exam-
ined the use of PMR Quadtrees, R+-trees, and R-trees for
evaluating the spatial join on a Thinking Machines, CM-5
platform. No I/O is considered in the paper, as all the data
is always resident in main memory. Similar tree-based join
algorithms have been proposed by Brinkho� et al. [3] using
two R*-trees for performing a spatial join in a shared-disk
environment.
Recently, Zhou et al. [26], have examined data partition-

ing mechanism for parallel spatial join processing. First, the
authors show that for parallel spatial joins, a static partition-
ing function is superior to a dynamic partitioning function.
Then, the authors propose a parallel spatial join algorithm
that uses a static partitioning function. Using the spatial
partitioning function proposed in [19], the data is distributed
to partitions by �rst dividing the space into cells. The cells
are then mapped to partitions. As in [19] if a spatial ob-
ject overlaps cells that are mapped to di�erent partitions,
the object is inserted into multiple partitions. A spatial join
algorithm is developed based on this partitioning strategy.
A major focus of the paper is on tuning the spatial join
algorithm to handle data skew [13, 25], and balancing the
workload across all the nodes in the system. The perfor-

mance of the algorithm is evaluated using a 30MB data set
by simulating a parallel environment on a SunSPARC 10
workstation. All data is always assumed to �t in memory,
and a single query is used for the performance evaluation.
One simulation model is used to calculate the CPU cost of
executing the query, and another simulation model is used
to calculate the network message cost. The total cost of the
query is calculated by adding these costs. The model does
not account for overlap of communication and CPU process-
ing, or contention for network resources.

3. SPATIAL DECLUSTERING
In a parallel shared-nothing system, the main source of

parallelism is partitioned parallelism [5]. Partitioned paral-
lelism is achieved by declustering the data across multiple
nodes in the system, and then running operators at each of
these nodes. There are two main requirements for achiev-
ing e�ective parallelism. First, good data declustering tech-
niques are required to evenly distribute the data across the
nodes in the parallel system. Second, the operators must
be designed such that an operator running at a particular
node accesses only the data stored locally. Naturally, in an
attempt to parallelize spatial operations like the spatial join,
one must �rst explore various declustering techniques that
can be used to distribute spatial data across nodes in a par-
allel database system. In this section, we explore two such
declustering techniques.

3.1 Declustering Using Replication
In this declustering strategy, the universe of the spatial

attribute is divided into a number of tiles. (The universe
of a particular spatial attribute is de�ned as the minimum
rectangle that covers that spatial attribute for all the tuples
in the relation.) The number of tiles is chosen to be much
larger than the number of nodes in the system. Each tile is
assigned a number, and a hash function is used to map the
tile number to a node. A spatial object that is entirely con-
tained within a tile, is assigned to the node corresponding
to that tile. Spatial objects that overlap multiple tiles are
replicated in all the nodes that correspond to the tiles that
the object overlaps. The use of tiling reduced the e�ects
of skewed data distribution, which can cause severe perfor-
mance problems in a parallel database system [25]. Figure 1
illustrates a tiling scheme in which the universe is parti-
tioned into 16 tiles that are mapped to 4 nodes. Note that
this declustering strategy is similar to the spatial partition-
ing function that is used internally in the PBSM spatial join
algorithm [19].
For the remainder of this paper, this declustering strategy

is referred to as D-W (\decluster using whole tuple replica-
tion").

3.2 Partial Spatial Surrogate
The previous declustering strategy can have a very high

replication overhead, especially when many spatial objects
overlap with multiple tiles (see [20] for a detailed experimen-
tal analysis quantifying this overhead). To mitigate the high
replication overhead, we can employ the following strategy.
When the declustering spatial attribute of a tuple overlaps
tiles that are mapped to multiple nodes, we pick one of the
nodes as the home node. The entire tuple is stored only at
the home node, while all nodes (including the home node)
store the global object identi�er (OID) of the tuple and the
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Figure 1: Declustering Using
Tiling and Replication

Figure 2: Declustering Using Spa-
tial Surrogates

Figure 3: Design Space of Spatial
Join Algorithms

minimum bounding rectangle (MBR) of the part of the spa-
tial attribute that overlaps the tile covered by the node. This
replicated MBR is called the fragment box. The fragment
box and the OID of the tuple are collectively called the par-
tial spatial surrogate of the declustered spatial attribute, and
are stored in a separate relation. Since a partial spatial sur-
rogate requires very little space (about 16 bytes for the MBR
and 16 bytes for the OID), the increase in size of the declus-
tered relation due to replication is quite small. As an ex-
ample of this declustering strategy, consider Figure 2 which
shows a tuple being declustered on a polygon attribute. The
universe has been divided into 9 tiles and the tiles have been
mapped to 3 nodes. Let node 1 be the home node for the
tuple, and let OID-H represent the global OID of the tuple.
Then, node 0 will store the fragment box FB0 and OID-H,
node 2 will store the fragment box FB2 and OID-H, and
node 1, in addition to storing the tuple, will also store the
fragment box FB1 and OID-H. A partial spatial surrogate
at a particular node represents a conservative approxima-
tion of the portion of the spatial attribute that is within the
area of the universe assigned to the node. It serves as a sig-
nal that if someone is interested in tuples in this portion of
space, then they should follow the OID to the node where
the tuple actually resides.
For the remainder of this paper, this declustering strategy

is referred to as D-PSS (\decluster creating partial spatial
surrogates").
Both these declustering strategies have been evaluated and

analyzed using a variety of data sets in [20].

4. PARALLEL SPATIAL JOINS
Having discussed declustering techniques, this section now

examines various parallel algorithms for the spatial join op-
eration. A parallel spatial join algorithm executes in three
phases:

1. Partitioning Phase

2. Join Phase

3. Re�nement Phase

In the partitioning phase, the two relations being joined
are redeclustered on their (spatial) join attributes. Before
the join, if one or both the relations happen to be declustered
on the joining attribute, then this phase is not required. In
the context of spatial declustering, the \same" declustering
means that the two relations are declustered using the same

universe, the same tile boundaries, and the same tile-to-node
mapping. Note that when this condition holds, one of the
relations could be declustered using D-W and the other re-
lation could be declustered using D-PSS.
In the join phase, each operator looks at the fragment of

the declustered relation residing on its local disks and joins
them using any centralized spatial join algorithm. In this
paper, the local processing is done using the PBSM join
algorithm [19].
The �nal re�nement phase is required to compare the ex-

act geometry of the spatial objects, and to eliminate du-
plicates that may be produced as as result of declustering.
Recall from Section 3 that the declustering strategies allows
a single spatial object to be represented at multiple nodes, ei-
ther by replicating the object or by creating fragment boxes.
Consequently, it is possible for the same pairs of overlapping
spatial objects to be independently joined at di�erent nodes.
Before producing the �nal result, these duplicates must be
eliminated.

4.1 Design Space
LetR and S denote the two relations that are being joined.

As mentioned above, if required, in the partitioning phase
these relations are redeclustered using either D-PSS or D-W.
Based on these alternatives, the design space for parallel spa-
tial join algorithms is as shown in Figure 3. Algorithm \A"
corresponds to the case when both relations are redeclus-
tered using D-PSS. The operator tree for this algorithm is
shown in Figure 4. The �rst two operators (labeled as opera-
tors 1 and 2 in Figure 4) redecluster the relations producing
partial spatial surrogates. The next operator, Operator 3,
joins the partial spatial surrogates producing a candidate
set. The candidate set contains a pair of OIDs; one of the
OIDs in this pair points to a tuple in the relation R, and the
other points to a tuple in the relation S. This candidate set
is redeclustered (by Operator 3) on the node information in
OID-R. E�ectively, this redeclustering sends each candidate
to the home node of the R tuple. Operator 4 then \joins"
the candidate set with the R tuples. To ensure that the R
tuples are read sequentially, this operator sorts the incom-
ing candidates before fetching the tuples from the relation
R. This sorting step also eliminates duplicate entries. After
this step, the intermediate result is declustered on OID-S.
This redeclustering is followed by the last operator which
\joins" with the relation S.
Now consider Algorithm \B" in the design space (see Fig-
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ure 3). The operator tree for this algorithm is shown in Fig-
ure 5. The �rst two operators (labeled as operator 1 and 2
in Figure 5) redecluster the relations using the D-W declus-
tering policy. Next, a local spatial join operator joins the
redeclustered relations. Finally, a distinct operator is used
to eliminate duplicates that may be produced as a result of
the replication in the declustering steps.
Referring back to Figure 3, now consider Algorithm \C".

This algorithm �rst redeclusters one of the relation using
D-W and the other using D-PSS, and then joins these re-
declustered relations. This algorithm is a special case of
Algorithm \A" with one less \join on OID" operator.
The algorithms in Figure 3 can be adapted if one or both

the relations are already declustered on the join attribute.
For example, if prior to the join the relations are declustered
using D-W, then Algorithm \A" can be run without the
redecluster operators. Similarly, if prior to the join only one
of the relation is declustered on D-W, then we can either
redecluster the other relation using D-W and run Algorithm
\A" (without the redecluster operators), or redecluster the
other relation using D-PSS and run Algorithm \C" (without
the redecluster operator).
For the remainder of this paper, we refer to Algorithm

\A" as the Shadow Join algorithm, since this algorithm uses
partial spatial surrogates that are like shadows of the ac-
tual spatial attribute. Algorithm \B" replicates entire tuples
during the redeclustering process, essentially creating clones.
Subsequently, we refer to this algorithm as the Clone Join
algorithm.
The Shadow join algorithm just described is similar to the

parallel spatial join proposed by Zhou, Abel and Tru�et [26].
The declustering strategy employed in this algorithm is a
form of D-PSS. In D-PSS, when a spatial attribute over-
laps tiles that are mapped to multiple nodes, the MBR of
the spatial attribute is broken up into fragment boxes (re-
fer to Section 3.2). The fragment boxes are then sent to
the appropriate node. This step ensures that a node only
sees the portion of the spatial attribute that is relevant to
the space covered by that node. In [26], when a spatial at-

tribute overlaps tiles that are mapped to multiple nodes, the
entire MBR is replicated. This strategy might lead to some
wasted processing in the algorithm that is used in the local
spatial join.

5. ANALYTICAL MODEL
In this section, we compare the performance of Clone Join

and Shadow Join analytically. In the interest of space, we
do not present the detailed cost equations here, but redirect
the interested reader to the extended version of this paper
available at [20]. In our analysis, we examine the e�ects of
the following three parameters:

1. Join Selectivity

2. Replication Probability

3. Precision

Join selectivity is the ratio of the cardinality of the out-
put relation to the product of the cardinalities of the input
relations. Replication probability is the probability that
a tuple in an input relation will be replicated when it is
declustered. Both the Clone Join and the Shadow Join use
the MBRs of the tuples during the join. The result of joining
the MBRs is an approximate answer set that is called the
candidate set. In the Clone Join (Figure 5), the candidate
set is produced during the local spatial join, which actually
executes in two steps: the �lter step and the re�nement step.
The candidate set is produced right after the �lter step of
the local join. In Shadow Join (Figure 4), the candidate
set is produced at the end of the local spatial join operator
(operator 3). The ratio of the cardinality of the �nal re-
sult set to the cardinality of the candidate set is called the
precision. It represents how accurate the candidate set is
in representing the �nal result set. A low precision implies
that many of the tuples in the candidate set do not satisfy
the �nal join predicate.
In the following analytical experiments, we vary each of

these parameters one at a time. The default values for these
parameters are: replication probability = 0.07, precision =
0.2, and join selectivity = 0:5e�6. These values were chosen
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based on actual experiments with the DCW [4] data sets.
The cardinality of each input relation is set to 1 million.

5.1 Effect of Join Selectivity
Figure 6 shows the e�ect of join selectivity on the two

algorithms. As shown in the �gure, when the join selec-
tivity is small (compare Shadow{0.1e-6 with Clone{0.1e-6),
Shadow Join outperforms Clone Join. As the join selectiv-
ity increases (compare Shadow{1e-6 with Clone{1e-6), Clone
Join performs better than Shadow Join. Shadow Join has to
move candidate tuples between operators 3 and 4, and be-
tween operators 4 and 5 (Figure 4). Many of these candidate
sets are eventually not part of the �nal result set. As the
join selectivity increases, the size of the candidate sets that
are passed around also increases, thereby, causing Shadow
Join to perform poorly.

5.2 Effect of Replication Probability
Figure 7 plots the e�ect of the replication probability on

the two algorithms for two replication probabilities: 2% and
40%. Increasing the replication probability has little e�ect
on the performance of Shadow Join since this algorithm
uses partial spatial surrogates which has a modest repli-
cation overhead. Clone Join, on the other hand replicates
entire tuples in the partitioning phase and is more suscep-
tible to replication overhead. As the replication probability
increases, the replication overhead also increases, and con-
sequently, the performance of Clone Join rapidly degrades.

5.3 Effect of Precision
Figure 8 shows the e�ect of the precision on the per-

formance of the two join algorithms. For low precision,
Clone Join outperforms Shadow Join (compare Clone{0.1
with Shadow{0.1). As the precision increases (compare Clone{
1 with Shadow{1), the relative performance of the two al-
gorithms is reversed. When the precision is low, the car-
dinality of the candidate set is large compared to the �nal
result. Shadow Join has to move this candidate set, in one
form or another, a couple of times: once between the local
join and the �rst OID join, and then between the two OID
joins. Clone Join on the other hand, prunes the candidate
set locally (in the local join operator in Figure 5), and only
transfers the pruned set once to the distinct operator. Con-
sequently, lower precision favor the Clone Join algorithm.

5.4 Summary of the Analytical Comparisons
To summarize, the parameters, replication probability, join

selectivity and precision, have di�erent e�ects on the per-
formance of the two algorithms. One di�erence between the
two algorithms is that the Shadow join algorithm uses partial
spatial surrogates for replication. Partial spatial surrogates
have a very low replication overhead, and, consequently, the
Shadow join algorithm is rather immune to changes in the
replication characteristics of the data. Clone Join, on the
other hand, replicates entire tuples, and its performance de-
grades rapidly if the underlying data has a high probability
of requiring replication.
Another di�erence between the two algorithms is the num-

ber and size of the intermediate result sets that are generated
during the execution of the algorithms. Clone Join has one
intermediate result set (see Figure 5) that is used to transfer
data between the local spatial join and the distinct oper-
ators. The size of this intermediate result is largely inu-
enced by the join selectivity and the replication probability.
Shadow Join, on the other hand, generates two intermediate
result sets. The �rst intermediate result set is produced by
the local spatial join and sent to the �rst OID join (opera-
tors 3 and 4 respectively). The second intermediate result
set is produced by the �rst OID join operator (operator 4)
and sent to the second OID join operator (operator 5). The
sizes of these intermediate result sets are largely inuenced
by the precision and the join selectivity. A lower precision,
or a larger join selectivity implies larger intermediate result
sets. Consequently, a low precision or a high join selectivity
has a negative e�ect on Shadow Join's performance, allowing
Clone Join to outperform it under these conditions.

6. EXPERIMENTAL EVALUATION
In this section, we compare the performance of Shadow

Join and Clone Join based on an actual implementation of
these algorithms. These algorithms were implemented inside
Paradise, a scalable spatial database system [21].

6.1 Data Sets
The data sets that are used in this benchmark come from

the DCW data product [4]. We used the drainage, road and
rail data sets. The drainage data set describes, using poly-
lines, drainage features, such rivers, streams, canals, etc., for



the entire world. Similarly, the road and the rail data set de-
scribe, using polylines, roads and railway lines for the entire
world. The characteristics of this data set is summarized in
Table 1.

Tuple Count Size
Drainage 1.73 M 300 MB
Road 0.7 M 100 MB
Rail 0.14 M 18 MB

Table 1: DCW Data Set.

6.2 Testbed and DBMS Configuration
For the tests conducted in this paper we used a cluster

of 17 Intel eXpress PCs each con�gured with dual 133 Mhz
Pentium processors, 128 Mbytes of memory, dual Fast &
Wide SCSI-2 adapters (Adaptec 7870P), and 6 Seagate Bar-
racuda 2.1 Gbyte disk drives (ST32500WC). Solaris 2.5 was
used as the operating system. The processors are connected
using 100 Mbit/second Ethernet and a Cisco Catalyst 5000
switch that has an internal bandwidth of 1.2 Gbits/second.
Five of the six disks were con�gured as \raw" disk drives
(i.e. without a Solaris �le system). Four were used for hold-
ing the database and the �fth for holding the log. The sixth
disk was initialized with a Solaris �le system. This disk was
used for holding system software as well as swap space. The
four disk drives used to hold the database were distributed
across the two SCSI chains.
Paradise was con�gured to use a 32 MByte bu�er pool. Al-

though this is a small bu�er pool relative to the 128 MByte of
physical memory available, Paradise does much of its query
processing outside the bu�er pool in dynamically allocated
memory. The maximum process size we observed during
benchmark execution was about 90 Mbytes. Thus, no swap-
ping occurred. In all test con�gurations, all relations were
partitioned across all the database storage disks (4 per node)
in the system. All the experiments used 10,000 tiles in the
spatial declustering function.

6.3 Experimental Results

6.3.1 Experiment 1
Figure 9 shows the speedup of the two algorithms while

joining the Drainage relation and the Road relation. For
this experiment, the result relation has 0.7 M tuples and is
300 MB in size. The data characteristics are: Replication
Probability = 0.07, Precision = 0.20, and Join Selectivity =
0:53e�6. As shown in the �gure, both algorithms have close
to linear speedup. As the number of nodes in the system
doubles, the query execution time reduces approximately by
half. For these parameters, both the algorithms have com-
parable performance.

6.3.2 Experiment 2: Effect of Join Selectivity
Next, we examine the e�ect of join selectivity on the two

algorithms. To study this case, we needed a data set that
di�ered from the previous data set (used in Experiment 1)
in terms of the join selectivity characteristics. To obtain
the desired e�ect, we again joined the Drainage and Road
tables, but arbitrarily dropped half of the tuples in the inter-
mediate result tables (the candidate set) that are produced
during the execution of both the algorithms. This process
of reducing the cardinality of the candidate set by half, has
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Figure 9: Join Drainage and Roads
(Repl. Prob. = 0.07, Precision = 0.20,
Join Sel. = 0:53e� 6)

the e�ect of approximately halving the cardinality of the
�nal result set. For the Shadow Join (refer to Figure 4) ev-
ery second tuple that is produced by the local join operator
(operator 3) is discarded instead of sending it to the next op-
erator. For the Clone Join (refer to Figure 5), every second
tuple that is produced by the �lter step of the local spatial
join is dropped. The result of executing this experimental
setup is plotted in Figure 10. As predicted by the analyti-
cal model, the lower join selectivity favors Shadow Join (see
Section 5.1 for an explanation).

6.3.3 Experiment 3: Effect of Precision
We now explore the e�ects of the precision on the two algo-

rithms. The data set for this experiment is produced using a
technique similar to that used in Experiment 2. To decrease
the precision, we duplicate each tuple of the intermediate
relation. For the Shadow Join we produce two tuples for
every tuple that is produced by the local join operator (op-
erator 3). For the Clone Join every tuple that is produced
by the �lter step of the local spatial join is added to the in-
termediate result twice. E�ectively, this technique doubles
the cardinality of the candidate lists while keeping the cardi-
nality of the �nal result set constant. The result of running
this experiment is shown in Figure 11. Again, as predicted
by the analytical model, a lower precision favors the Clone
Join algorithm (see Section 5.3 for an explanation).

6.3.4 Experiment 4: Effect of Replication
Next, we examine the e�ect of replication on the two join

algorithms. For this experiment, we took the DCW data and
\stitched" it. In the original DCW data set, a single feature,
such as a road, is broken into a number of smaller road
segments. Each segment is then stored in the database as a
separate tuple. This fragmentization is performed because
road segments often have associated information such as the
zip code of the area that they are passing through. When
this zip code information changes for a road, a new road
segment is produced.
We produced a data set by \stitching" the spatial features

(and dropping the associated information such as zip codes).
This data set has features that span larger areas of space,
and hence is more likely to require replication when declus-
tered. The characteristics of this data set is summarized in
Table 2.
From Table 2, we observe that the stitching process dra-
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Figure 10: E�ect of Join Selec-
tivity: Join Drainage and Roads
(Repl. Prob. = 0.07, Precision =
0.20, Join Sel. = 0:27e� 6)

Figure 11: E�ect of Precision:
Join Drainage and Roads (Repl.
Prob. = 0.07, Precision = 0.11,
Join Sel. = 0:53e� 6)

Figure 12: E�ect of Replication:
Join Stitched-Road and Stitched-
Rails (Repl. Prob. = 0.18, Preci-
sion = 0.23, Join Sel. = 1:3e� 6)

Avg. Avg.
# stitched original

Tuples Size length length
Drainage 0.99 M 243 MB 20.18 km 11.61 km
Road 0.23 M 67 MB 45.28 km 14.99 km
Rail 0.04 M 12 MB 41.05 km 12.28 km

Table 2: Stitched DCW Data Set.

matically changes the characteristics of the road and the rail
relations. We use these two relations to evaluate the e�ect
of high replication probability on the performance of the two
join algorithms. Figure 12 shows the results of this exper-
iment. The results shows that when the replication proba-
bility is high, Shadow Join outperforms Clone Join (again,
for the same reasons described in Section 5.2).

7. CODING COMPLEXITY
The experimental and the analytical experiments show

that neither the Shadow or the Clone join algorithm is supe-
rior in all cases. The relative performance of the two algo-
rithms depends on the data characteristics like the replica-
tion probability, the precision, and the join selectivity. For-
tunately, both the Shadow and the Clone join algorithms
share a number of software modules, and also reuse modules
that already exist in conventional database systems. This
makes it easier to implement both these algorithms. The
query optimizer can then use the analytical cost formulae to
pick the cheapest algorithm for each spatial join operation.
First, consider the coding complexities of the \Redeclus-

ter" operator in the Shadow Join (operator 1 and 2 in Fig-
ure 4). A parallel database system must have some kind of a
redecluster operator, with a list of declustering policies. In a
relational system the common declustering policies are hash
and round-robin. The Clone Join requires adding D-PSS
as a declustering strategy. The code for this requires com-
puting the MBR (minimum bounding rectangle) of a spatial
object, and then computing the intersection of the MBR
with tiles in the spatial declustering policy. With full error
checking and the ability to reuse this functionality in other
modules (like the internal partitioning for the local spatial
join processing), this part of the code is a few hundred lines
of C++ code in Paradise. The \Redecluster" operator in
Clone Join (operator 1 and 2 in Figure 5) is even simpler

to implement as it simply requires replicating tuples. This
module is less than a hundred lines of C++ code in Par-
adise. The \local spatial join" is required both by the Clone
Join and the Shadow Join (operator 3 in both Figure 4 and
Figure 5). This part of the code is slightly over a thou-
sand lines in Paradise. The distinct operator in the Clone
Join (operator 4 in �gure 5) is the same as a distinct oper-
ator that is available in any conventional database system.
The \Join on OID-R" operator (operators 5 and 6 in �g-
ure 4), requires sorting tuples based on an OID attribute,
and then sequentially fetching the tuples and evaluating the
join predicate. The sorting part of this operator reuses the
conventional sort utility that is available in Paradise. The
additional code needed for this operator (beyond the sorting)
is a few hundred lines in Paradise.

8. CONCLUSIONS
In this paper, we �rst proposed two strategies for declus-

tering spatial data in a parallel database system. These tech-
niques are based on partitioning the underlying space into
regions, and mapping these regions to nodes. Spatial declus-
tering strategies require some form of redundancy, and both
these strategies employ some form of replication. One strat-
egy replicates entire tuples, whereas the other strategy repli-
cates an approximation of the spatial attribute. Based on
these alternative declustering policies we then explored the
design space for parallel spatial join algorithms, and iden-
ti�ed two key algorithms in the design space - the Clone
Join and the Shadow Join. Finally, we presented results
obtained from analytical modeling and an actual implemen-
tation of these algorithms. Various experiments, using real
geographic data, were run on a of cluster of PCs. The exper-
imental results show that the parallel spatial join algorithms
exhibit good speedup characteristics. The experimental re-
sults also demonstrate that the relative performance of the
two algorithms is dependent on the characteristics of the
data set, and the selectivity of the join. Fortunately, in an
actual implementation, it is possible for both these algo-
rithms to share a number of software modules, and reuse
modules that already exist in a conventional database sys-
tem. This makes it easy to implement both algorithms. The
query optimizer can then pick the best algorithm for a given
spatial join operator. In aiding the query optimizer to pick
the best algorithm, it is essential to capture the character-
istics of the data. Spatial sampling techniques, like those



described in [17] can potentially be used for this purpose.
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