
Chapter 14

PLFS: Software-Defined Storage for
HPC

John Bent

EMC

14.1 Motivation . 171
14.2 Design/Architecture . 172

14.2.1 PLFS Shared File Mode . 172
14.2.2 PLFS Flat File Mode . 173
14.2.3 PLFS Small File Mode . 174

14.3 Deployment, Usage, and Applications . 175
14.3.1 Burst Bu↵ers . 176
14.3.2 Cloud File Systems for HPC . 177

14.4 Conclusion . 177
Bibliography . 178

14.1 Motivation

Just as virtualization has provided massive flexibility for computation
across diverse processor hardware, software-defined storage provides that flex-
ibility for I/O workloads across diverse storage hardware. The Parallel Log-
structured File System (PLFS) is one such software-defined storage platform.
Originally designed as middleware designed to solve massively concurrent
checkpointing, PLFS has become a powerful reminder of how not all work-
loads are well suited to all storage systems. PLFS is also a compelling example
of how a layer of software indirection can change the base abilities of existing
storage systems. PLFS has since extended its functionality to address addi-
tional storage challenges thereby growing from single purpose middleware into
a more general software-defined storage platform.

The main benefit of PLFS is that a system adminstrator can buy a single
storage system, configure it just once, and then use PLFS to allow a variety
of workloads to use that single storage system. The basic mechanism of PLFS
is an interception and transformation of unstructured application I/O into
well-structured I/O better suited to the underlying storage system. PLFS has

171

172 High Performance Parallel I/O

three main modes of operation (shared, flat, and small) essentially comparable
to mount time options and several interesting use cases for each mode.

14.2 Design/Architecture

PLFS is mainly designed to run as middleware on the compute nodes
themselves. It can run in the user space of applications using MPI-IO and a
patched MPI library, or in the user space of applications which are ported to
link directly into the PLFS API. The PLFS API closely mirrors the standard
POSIX API; thus porting several applications and synthetic benchmarks has
been straight-forward. PLFS is also available as a FUSE file system [1] for
unmodified applications which do not use MPI-IO. Since the FUSE approach
can incur high overhead, there is also an LD PRELOAD interface which brings
PLFS into the user space of unmodified applications [8].

There are three main modes of PLFS which are set in a PLFS configuration
file and defined on a per path basis. The options for each path define the path
that the user will use (i.e., /mnt/plfs/shared file), the mode of operation,
and the underlying storage system(s) that PLFS will use for the actual storage
of the user data as well as its own metadata. Typically, the underlying storage
system is a globally visible storage system, and the PLFS configuration file is
shared across a set of compute nodes such that each compute node can write
to the same PLFS file(s) and each compute node can read PLFS files written
from a di↵erent compute node.

The three main configurations of PLFS are shared file, small file, and
flat file, each of which is intended for di↵erent application I/O workloads.
Additionally, there is a burst bu↵er configuration (which currently works only
in shared file mode) to transparently gain performance benefits from a smaller,
faster storage tier such as flash memory. All three modes support the ability
to use PLFS as an umbrella file system that can distribute workloads across
multiple underlying storage systems to aggregate their bandwidth and utilize
all available metadata servers. Finally, there is support in PLFS to run with
all three modes on top of cloud file systems such as Hadoop.

14.2.1 PLFS Shared File Mode

Shared file mode is the original PLFS configuration [3] and is designed
for highly concurrent writes to a shared file, such as a checkpoint file which
is simultaneously written by all processes within a large parallel application.
The architecture of PLFS shared file mode is shown in Figure 14.1. Note that
the figure shows the PLFS layer as a separate layer; this is accurate from the
perspective of the application but in fact the PLFS software runs on each
compute node. This mode was motivated by the well-known observation that

PLFS: Software-Defined Storage for HPC 173

FIGURE 14.1: PLFS shared file mode transforms multiple writes to a shared
file into streams of data sent to multiple subfiles on the underlying storage
system(s). Not shown is the internal PLFS metadata used to reconstruct the
file. [Image courtesy of John Bent (EMC).]

many applications naturally have partitions of a large distributed data struc-
ture which are poorly matched to the block alignment of many storage systems
and therefore lose performance to various locks and serialization bottlenecks
inherent in parallel file systems.

By decoupling the concurrent writes, PLFS sends data streams to the un-
derlying storage systems, which avoid these locks and bottlenecks. The basic
mechanism is that PLFS first creates a PLFS container and then stores all
the individual subfiles into this container as well as the metadata necessary to
recreate the logical file. In function, the container is no di↵erent than how in-
odes are used in almost as file systems since the Berkeley Fast File System [7].
When the user requests data from the file, PLFS consults the metadata within
the container to resolve which subfile(s) contain the requested data and then
reads from the subfile(s) to return the data to the reading application.

Note that at no point is the application aware of this transformation:
all operations on the shared file work functionally, exactly the same as if
PLFS was not present. One concern in PLFS however is that the amount of
PLFS metadata can grow to challenging sizes; this concern is addressed by
discovering hidden structure within seemingly unstructured I/O [6].

174 High Performance Parallel I/O

14.2.2 PLFS Flat File Mode

PLFS flat file mode was subsequently added to reduce metadata contention
when many processes concurrently create files within a single directory. The
basic motivation is that when multiple processes modify a shared object con-
currently, they often incur locks and serialization bottlenecks in many storage
systems. In the PLFS shared file mode, the shared object is a file and the con-
current modifications are writes, whereas in the PLFS flat file mode is for the
case in which the shared object is a directory and the concurrent modifications
are file creations. Just as PLFS shared file mode creates a virtual container to
store the subfiles, the PLFS flat file mode creates a virtual directory from a
set of subdirectories on the underlying storage system(s). When a user creates
a file, PLFS hashes the filename to determine into which subdirectory to store
that file. Reads and queries of files share the hash function so that they can
quickly find requested files from the set of subdirectories. The PLFS flat file
mode will achieve maximum performance improvements when it is configured
to use multiple storage systems, and therefore multiple metadata servers to
create its set of subdirectories.

In this way, when multiple files are concurrently created with a PLFS
directory, PLFS spreads the create workload across multiple metadata servers.
This is an important feature of the software-defined storage approach. It is
easy for a system administrator to buy multiple storage systems but di�cult
to allow unmodified applications to spread their workload across them. With
PLFS, it is a simple matter of modifying the PLFS configuration file to include
all of the available storage systems. PLFS flat file mode is described in more
detail in by Bent et al. [4].

14.2.3 PLFS Small File Mode

The third mode of PLFS is the small file mode, the architecture of which
is shown in Figure 14.2. This mode is designed for the workload in which
individual processes want to create a large number of small files in a short
period of time. This workload is challenging for storage systems, which must
allocate some amount of resource for each file. For a stream of many small files,
this resource allocation quickly becomes a bottleneck. PLFS small file mode,
like the PLFS shared file mode, creates a PLFS container. However, PLFS
small file mode creates a PLFS small file container for each PLFS directory,
whereas the PLFS shared file mode creates a PLFS shared file container for
each PLFS file.

When an application creates a set of small files, PLFS small file mode will
aggregate all of the data for each small file into a single large file stored on
the underlying storage system. It will also create a metadata file to store the
necessary information to allow finding small files and their data within the
single large aggregated file.

This mode transforms the performance extracted from the underlying file

PLFS: Software-Defined Storage for HPC 175

FIGURE 14.2: PLFS small file mode transforms a stream of small file creates
from an individual process into two large streaming files sent to the underlying
file system (one for user data and one for PLFS metadata). Note how PLFS
can also aggregate the performance of multiple file systems; flat-file mode is
the same except that PLFS stores each logical file as its own physical file
instead of as a chunk within a single physical file as shown here. Flat-file
mode therefore also does not need another file for PLFS metadata since the
mapping between logical and physical is purely algorithmic. [Image courtesy
of John Bent (EMC).]

system to match its maximum bandwidth for streaming data instead of match-
ing its maximum file creation rate. The amount of performance gained is de-
pendent on the size of the individual files.

14.3 Deployment, Usage, and Applications

PLFS is currently installed on most of the classified and unclassified su-
percomputers at LANL. It has also been directly ported into several LANL
applications. Additionally, the PLFS shared file mode has been used in two

176 High Performance Parallel I/O

use-cases not originally envisioned when PLFS was first developed: for burst
bu↵ers and for enabling parallel I/O to file systems which do not natively
support parallel I/O.

FIGURE 14.3: By using the PLFS middleware layer, the illusion of a single
file is preserved in a manner completely transparent to the application and
the user. Physically however, PLFS transforms the I/O to leverage both the
global visibility of the parallel file system to store its metadata as well as
the faster performance of the storage in the burst bu↵ers to store user data.
Later, the user data is migrated to the parallel file system. This figure shows
an example burst bu↵er architecture where a simulation application sends
simulation data from compute nodes to burst bu↵ers nodes which have been
augmented with GPU’s to allow in-transit analysis by a visualization program
(see Chapter 23). The data will be later migrated to a Lustre file system
running on VNX storage. [Image courtesy of John Bent (EMC).]

14.3.1 Burst Bu↵ers

As HPC transistions from petascale into exascale, the economics of storage
media dictate a new storage architecture. HPC users have two basic check-
pointing requirements from their storage systems: they require a minimum
bandwidth for checkpointing to enable a su�cient utilization of the super-
computer and they require a minimum capacity to store a su�cient amount
of checkpoint data. In the petascale, disk-based storage systems provisioned
for the capacity requirement met the bandwidth requirement as well. How-
ever, as the improvements in disk capacity have outpaced the improvements in
disk bandwidth, disk-based storage systems for exascale HPC will need to be

PLFS: Software-Defined Storage for HPC 177

provisioned for bandwidth. Unfortunately, purchasing disks for bandwidth is
extremely economically ine�cient. Luckily, emerging media such as NVRAM
and flash storage allow an economically e�cient way to purchase bandwidth,
but they are not a solution for capacity. Therefore, exascale will require a
new storage architecture which has become known as a burst bu↵er storage
architecture. This name reflects its intended usage for checkpointing in which
checkpoint data can be quickly saved to a small, fast flash-based tier (i.e.,
the burst bu↵er); while the computation resumes, the checkpoint data can be
more slowly transferred to the larger, slower disk-based storage system.

The PLFS containers used within the PLFS shared file mode have proven
to be very e↵ective in enabling burst bu↵er storage systems [2]. By storing
the metadata in the container, PLFS can store (and retrieve) the data itself
very quickly into subfiles in a burst bu↵er tier. Later, the data is transferred
to the disk tier and the PLFS metadata is correspondingly modified. The
advantage of this approach is that the user only sees a single namespace.
PLFS transparently knows whether the data is available in the flash and/or
disk tier and will retrieve it appropriately. This allows unmodified applications
to benefit from the performance enhancements of the burst bu↵er architecture.
The architecture of PLFS running in burst bu↵er mode is shown in Figure 14.3.

14.3.2 Cloud File Systems for HPC

PLFS can also be used to enable HPC parallel workloads using storage that
wasn’t designed for parallel I/O. For example, early versions of the Hadoop
file system, HDFS, do not allow multiple writers to a single file nor do they
allow appending data to a previously created file. By layering PLFS above
these file systems, the user can use them for parallel I/O since PLFS trans-
parently transforms the shared file writing into individual processes writing
to individual subfiles within the PLFS container [5].

14.4 Conclusion

Through a variety of configurations and use cases, PLFS is a dramatic ex-
ample of the power of software-defined storage. An underlying storage system
can be configured to work well with well-arranged streams of data. The PLFS
software is then layered about that storage system and can be configured to
export it for a variety of di↵erent workloads, such as shared file, small file,
and flat file for better metadata load balancing. Additionally, PLFS can en-
able parallel I/O using storage systems not defined for parallel I/O. Finally,
PLFS can create a single virtual file system from a collection of multiple stor-
age systems both for bandwidth aggregation as well as metadata distribution.
PLFS development continues today to expand PLFS functionality for an exa-

178 High Performance Parallel I/O

scale future in which POSIX is finally replaced with a more parallel amenable
interface using well-defined concurrency abstractions, and transactional con-
sistency across sets of related objects.

Bibliography

[1] FUSE: File System in Userspace. http://fuse.sourceforge.net/.

[2] John Bent, Sorin Faibish, James Ahrens, Gary Grider, John Patchett,
Percy Tzelnic, and Jon Woodring. Jitter-Free Co-Processing on a Proto-
type Exascale Storage Stack. In 28th IEEE Symposium on Massive Storage
Systems and Technologies, MSST, 2012.

[3] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul Nowoczyn-
ski, James Nunez, Milo Polte, and Meghan Wingate. PLFS: A Checkpoint
File System for Parallel Applications. In Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis, SC ’09,
pages 21:1–21:12, New York, NY, USA, 2009. ACM.

[4] John Bent, Gary Grider, Brett Kettering, Adam Manzanares, Meghan
McClelland, Aaron Torres, and Alfred Torrez. Storage Challenges at Los
Alamos National Lab. In 28th IEEE Symposium on Massive Storage Sys-
tems and Technologies, MSST, 2012.

[5] Chuck Cranor, Milo Polte, and Garth Gibson. HPC Computation on
Hadoop Storage with PLFS. Technical Report CMU-PDL-12-115, Parallel
Data Lab, Carnegie Mellon University, November 2012.

[6] Jun He, John Bent, Aaron Torres, Gary Grider, Garth Gibson, Carlos
Maltzahn, and Xian-He Sun. I/O Acceleration with Pattern Detection. In
ACM Symposium on High-Performance Parallel and Distributed Comput-
ing, HPDC 13, New York, NY, June 2013.

[7] Marshall Kirk Mckusick, William N. Joy, Samuel J. Le✏er, and Robert S.
Fabry. A fast file system for unix. ACM Transactions on Computer Sys-
tems, 2:181–197, 1984.

[8] S. A. Wright, S.D. Hammond, S. J. Pennycook, I. Miller, J. A. Herdman,
and S.A. Jarvis. LDPLFS: Improving I/O Performance without Appli-
cation Modification. In Parallel and Distributed Processing Symposium
Workshops PhD Forum (IPDPSW), 2012 IEEE 26th International, pages
1352–1359, 2012.

http://fuse.sourceforge.net/

