
Mahanaxar: Quality of Service Guarantees in
High-Bandwidth, Real-Time Streaming Data Storage

David Bigelow∗†, Scott Brandt∗, John Bent†, HB Chen†
∗University of California, Santa Cruz

{dbigelow, scott}@cs.ucsc.edu
†Los Alamos National Laboratory

{johnbent, hbchen}@lanl.gov

Abstract—Large radio telescopes, cyber-security systems mon-
itoring real-time network traffic, and others have specialized data
storage needs: guaranteed capture of an ultra-high-bandwidth
data stream, retention of the data long enough to determine
what is “interesting,” retention of interesting data indefinitely,
and concurrent read/write access to determine what data is
interesting, without interrupting the ongoing capture of incoming
data. Mahanaxar addresses this problem. Mahanaxar guarantees
streaming real-time data capture at (nearly) the full rate of the
raw device, allows concurrent read and write access to the device
on a best-effort basis without interrupting the data capture, and
retains data as long as possible given the available storage. It
has built in mechanisms for reliability and indexing, can scale
to meet arbitrary bandwidth requirements, and handles both
small and large data elements equally well. Results from our
prototype implementation show that Mahanaxar provides both
better guarantees and better performance than traditional file
systems.

I. INTRODUCTION

From the mundane to the exotic, many applications require

real-time data capture and storage. Consumers wish to record

television programs for later viewing and can do so with digital

video recorders. Security personnel monitor and record from

cameras and sensors when guarding secure areas. Scientists

must capture experimental and observational data on their

first and only attempt, from seismometers to telescopes to test

explosions. The base need is the same in all of these case –

guaranteed real-time capture of streaming data – but each has

greatly differing parameters.

In television, a standard NTSC/ATSC signal provides data

at around 20 MB/s [1], a rate easily recorded by any standard

consumer grade hard drive. By contrast, the Large Hadron

Collider at CERN generates data on the order of 300 MB/s

after filtering [2], utilizing a large backend system and global

network. The data rate of one-shot large scientific experiments

may be enormous, limited only by the ability of a specialized

data recording system to capture a burst of data all at once.

Sometimes this data is vitally important, at least for a time,

and cannot be safely discarded. However, a large subset of this

data has the curious property of being mostly “worthless” over

the long term. A security camera positioned to watch over a

door does not generate a steady stream of “useful” data. If

somebody has attempted a break-in, then the data is useful.

978-1-4244-7153-9/10/$26.00 c©2010 IEEE

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

Start Point

Old Data

Data about to Expire

Most Recent Data

Fig. 1. Ring Buffer Diagram

Otherwise, there is rarely any practical use in retaining a record

summarized by “nothing interesting happened.” Many types

of sensor data follow the same model, often summarized by

“nothing interesting here” with sporadic bursts of data worth

saving. Unfortunately for data storage purposes, it is often

impossible to determine which data is worth saving until well

after the fact.

The storage system for this model is best described

by “write-once, read-maybe,” or perhaps “write-once, read-

rarely.” All data needs to be captured and (temporarily) stored

in real time, but odds are good that it will never actually be

needed, and can safely expire after a period of time. This is

easily conceptualized as a ring buffer (figure 1): if the data is

not declared “interesting” within a set amount of time, it is

automatically discarded to make room for new data. This is not

a difficult problem on small scales, but presents a challenge

when dealing with large amounts of data.

We created a prototype system, Mahanaxar, to address this

problem. It is a multithreaded process running in userspace

that collects and arranges incoming data, regulates all access to

a disk drive, and automatically expires old data in favor of new.

Its first priority is in providing quality of service guarantees for

incoming data streams, ensuring that the process of saving and

retrieving old data does not interfere with the real-time capture

of new data. It also incorporates mechanisms for reliability

and indexing, and is well suited to scaling upward. We first

present our general design to handle this class of problem, then

provide results that show Mahanaxar’s superior performance

to other methods for managing this type of data.

II. BACKGROUND

This project was first conceived as a storage system for

the Long Wavelength Array (LWA) project [3]. The LWA

is a distributed radio telescope currently under construction

in southwestern New Mexico. The initial plan is for 53

separate stations scattered widely over the desert. Each station

generates 72.5 MB/s of data, for an overall rate of slightly over

3.75 GB/s. This data is generated continuously and without

letup over the lifetime of the project.

Radio astronomy is one of several observational sciences

which generates large amounts of “useless” data: in this case,

seemingly random radio noise. Since a petabyte of new data

is generated in just over three days, it is fortunate that we

can safely throw most of it away. However, it may not be

immediately apparent whether the data is useful or not until

much later, and thus we must retain it until an outside observer

is able to decide whether the data is interesting, and whether

it should be preserved.

Many other applications share this characteristic of generat-

ing lots of “useless” data, and deem some of it interesting from

time to time. Therefore we decided to develop a generalized

model to address all such problems. Broadly speaking, we

focused on two canonical real-world problems which stand

at opposite ends of our spectrum of possibilities, with other

example problems being derivatives and combinations of these

two prime examples.

1) Fixed-size, non-indexed data:

Fixed-size, non-indexed data is generated by the LWA

project, and by many types of sensor systems in general.

It arrives at an absolutely fixed rate, never varying, and

is only indexed on a single variable: time of generation.

Oftentimes such data is generated at too high a rate to be

captured on a single storage device, and must be broken

into multiple streams. Such streams need to be correlated

with each other in order to regain the entire data picture.

Any command to preserve data will be given according

to timestamp only.

2) Variable-size, indexed data:

Variable-size, indexed data describes a data source where

the data elements arrive at variable rates and have

variable sizes. Such events may be indexed by time,

but also by other attributes as determined by the exact

data type. Searching and preserving this data may be

done according to any of the indexed attributes. This is

a more difficult problem due to the non-fixed sizes and

data rates, and it also requires a complex index.

While no existing system yet addresses this specific prob-

lem, the use of a ring buffer to gather sensor data is not new:

both Antelope [4] and Data Turbine [5] use this approach.

However, neither system offers quality of service guarantees,

only best-effort data recording. Other systems like the network

traffic capturing “Time Machine” [6] deal with the problem

only by classifying and prioritizing data streams, and dropping

what they are unable to handle. Even then, there are no real

time guarantees in the system, and it promises only that it will

record a portion of the data at best-effort capacity, arranged

by priorities.

The COSS Storage System from Squid [7] utilizes a ring

buffer based model, but also functions solely on a best-effort

basis in terms of bandwidth. The mechanism for “preserving”

data is simply to rewrite it again at the top of the buffer, which

is suitable for cache purposes but not scientific data capture.

Larger storage systems such as Lustre do not make quality

of service guarantees from moment to moment [8], which is

problematic in running a system where the data generation rate

is very close to the maximum sustainable bandwidth. Larger

systems also have no convenient and automatic mechanism to

expire old data when capacity is low.

There has been some quality of service work focused on

providing guarantees of a certain service level from the storage

system, as in RT-Mach [9] and Ceph [10], but only to the

degree of categorizing traffic for an appropriately “fair” level

of service. Data streams can be guaranteed to receive a certain

portion of system resources in both the short and long term,

but the guarantee is of the form “you will get X% of the

resource every Y time units,“ rather than an explicit “you are

guaranteed a bandwidth of Z at your required granularity”

The disk request scheduling system Fahradd [11] is capa-

ble of providing QoS guarantees within certain constraints.

Fahradd allocates a certain amount of disk head time to

a requesting process, and lets each process spend the disk

head time as it sees fit. Unfortunately for the purposes of

this problem, that guarantee is not quite strong enough: a

percentage of disk head time does not necessarily translate

directly into bandwidth guarantees, and we need to guarantee

the latter rather than the former.

Because we need to make firm quality of service guarantees,

we cannot work with standard file systems or databases. These

systems have the benefit of simplicity, but are not designed to

work at near-full capacity, and suffer significant performance

degradation in such circumstances. A standard file system is

capable of handling this class of problem in certain rigidly

defined circumstances, but cannot do it well in the general

case, and can never offer explicit quality of service guarantees

without additional modification.

Since this problem involves constant and uninterrupted

writing, we assume that any solution will need to remain

based on conventional rotational disk drives for the foresee-

able future. Solid state storage devices promise to become

prominent in future years, but despite their potential bandwidth

improvements, we do not believe that it is wise to use a

device with a limited number of write cycles for this task.

Write endurance for one of the latest top-rated Intel SSDs

is rated at only 1-2 petabytes [12], an upper limit which our

system would exceed in months. The use of SSDs for indexing

purposes is viable in some circumstances, but we anticipate

that standard mechanical hard drives, including their present

characteristics and limitations, will continue to be necessary

for main data storage for some time to come.

III. EXAMPLE USE CASES

Two example use cases were briefly described in the pre-

vious section, standing at opposite extremes of our problem

space. The first example use case is based on the type of data

which the LWA generates: continuously streaming fixed size

sensor data. It arrives at an unchanging bandwidth, needs no

indexing, and is uniformly “large.” The second example use

case is described by the problem of monitoring network traffic:

each element is fairly small (often several thousand bytes or

less), and non-fixed in size. Each data element must be indexed

on multiple variables other than time alone.

We can easily imagine other combinations of data size, size

variability, indexing requirements, and arrival rate variability.

However, in addressing the two extreme cases, we should be

able to handle anything in between.

A. Continuously Streaming Sensor Data

This type of data arrives at the same rate forever, never

varying. The size and layout of each data element is known in

advance, or perhaps need only be treated as a stream of bytes,

arranged it in whatever manner is most convenient. Interaction

with this type of data is extremely limited: we take it and store

it with a sequence number (timestamp) and need not worry

about it again until it comes time to overwrite, preserve, or

re-read it.

If an external process decides that the data is interesting

and should be saved, it only needs to tell the storage system

that “timestamps X through Y should be preserved” and it is

done. The data is marked as preserved on the storage medium,

the ring-buffer recording is logically rearranged to bypass the

newly-preserved region, and operation continues normally.

This model is relevant in a broad variety of scientific fields

because it may take some time to determine whether the data

is interesting. If a radio telescope captures a sudden burst of

activity signifying some cosmic event, scientists also need to

know what was happening in the time leading up to that event,

as well as what just happened and what will happen in the

minutes to come.

This is perhaps the most basic use case possible in this

problem space, but covers a wide variety of systems.

B. Variable-Rate Indexed Network Traffic

In order to detect intrusion attempts into a system, we

may wish to monitor network traffic on a particular router.

The basic concept of the problem is the same: a firehose of

data, most of which is unimportant, but which may become

important based on future detection results. However, the

specifics of this problem are quite different from continuously

streaming sensor data. “Variable” best describes all the major

parameters.

First, there is a natural ebb and flow of network traffic

depending on several factors, some of which can be predicted,

and some of which cannot. For example, we can predict traffic

amounts based on the time of day in certain regions of the

world. However, we cannot necessarily predict the state of

society at any given time, as many things lead to increased

or decreased activity: news, sports events, disasters, etc. This

changes moment to moment, and we can only make rough

guesses at it.

The size of network traffic is also variable, as data elements

do not have a single fixed size. An IPv4 packet may range in

size from a few bytes to tens of thousands of bytes. Even if

the data rate holds steady at X MB/s, the number of individual

elements to consider and index may differ by a few orders of

magnitude at extreme ends of the spectrum.
The number of indices per data element is also variable. In

the case of an IP packet, time alone is not a sufficient index. To

be useful, we must also be able to index and search on aspects

such as the source and destination addresses, the protocol, the

size, and other characteristics. These extra variables pose a

further complication when constructing the initial index and

when performing subsequent searches on the data.

There are several commercial products which provide net-

work traffic monitoring ability, but without the quality of

service guarantees that we desire (aside from the guarantees

which can be provided by brute-force overprovisioning). The

strategies we need to solve this problem are also useful in

many other types of data collection where the rate or size is

variable, or where many indexes are required.

IV. DESIGN

We designed Mahanaxar to meet three primary goals:

1) Provide a quality of service guarantee

Our first priority is to provide a quality of service

guarantee for the incoming data stream, up to a declared

bandwidth. If the incoming data stream requires X MB/s

of write bandwidth, we need to make sure that it has X

MB/s no matter what. If the process attempts to exceed

that amount, we’ll do the best we can, but make no

guarantees for the extra data. All other activity on the

disk must have lower priority, and be carefully managed

so that it does not interfere with the recording.

2) Use commodity components

We want our system to run on commodity hardware in a

variety of locations. In the case of the LWA project, the

physical location may be a small outpost in the desert.

We cannot assume a high-end network infrastructure or

storage backend, or highly reliable (and expensive) disk

drives. Conversely, if we do have a dedicated machine

room available, it would be foolish not to take advantage.

In no case do we want to attempt to solve the problem

by “throwing more disks at it” until it works.

3) Never lose data

The data that we collect can never be regenerated.

If there is a hardware failure (and there are always

hardware failures), we need to be able to retrieve the

data on demand. However, any reliability mechanism

we use must not compromise the first goal, which is

providing a quality of service guarantee.

These goals guided our thinking when designing Ma-

hanaxar. We will now present the specifics of our design, along

with the rationale and subsidiary goals behind each of them.

A. Staying Close to the Hardware

One of our first design decisions was that we needed to

stay very close to the hardware. In order to assure quality of

service, we need to know what the underlying hardware is

capable of, and more importantly, what it is actually doing at

any given moment. This is particularly important in rotational

disk drives, as performance can differ by several orders of

magnitude based on the access pattern. We need to carefully

map out hardware capabilities before organizing our own

layout. It may be that we need to avoid certain regions of

the disk drive which cannot guarantee the data rate we need.

As an example of why we need this mapping of the hard-

ware, consider one of the hard drives we used for testing: a 1.5

TB drive from Western Digital (model number WD15EARS).

The first quarter of the drive (measured from the outermost

track) provided a constant minimum write bandwidth of 68

MB/s or better. The last quarter of the drive (innermost tracks)

could manage a consistent minimum write bandwidth of only

52 MB/s. The graph of its performance is shown in figure

2. Other disk drives we tested showed similar patterns, with

higher capacity drives showing a sharper dropoff towards the

“end” of the disk.

This information differs from hard drive to hard drive, even

on those of the same make and model. In fact, another hard

drive of exactly the same model was approximately 2 MB/s

faster over most of the drive, but significantly slower near the

end. Since we want the best possible performance from our

hardware, it is critical to have this information for each drive.

Continuing with the hard drive above, we can safely advertise

a bandwidth of perhaps 50 MB/s over the entire drive, which

allows a bit of slack for other drive activity. However, if we

use only 80% of the drive in the “uppermost” region, we can

advertise a bandwidth of around 65 MB/s instead: a significant

improvement.

To take advantage of this knowledge of hardware, we must

use the disk without any interface layers. We envision turning

our prototype system into a specialized file system in the

future, but for current purposes in our prototype, we treat the

disk as a raw device and manage our own specialized layout.

B. Chunk-Based Layout

In order to take maximum advantage of our hardware

knowledge, we must restrict the data layout. Modern filesys-

tems are generally good at data placement, but are prone

to fragmentation over time. This fragmentation problem is

dramatically worse when operating a system full to 99%+

capacity at all times, as we intend. Unless file placement

is rigidly planned out in advance, fragmentation will rapidly

occur. Bandwidth is very difficult to guarantee when related

data is scattered all over the surface of a disk rather than

clustered together.

To solve this problem of data layout, we take a cue from

the traditional 512-byte disk block, and declare that no data

may be written in a segment smaller than the chunk size.

Chunk size is customizable based on the exact type of data

that the system is storing, but as a general rule of thumb,

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 2500 5000 7500 10000 12500 15000

B
a

n
d

w
id

th
,
M

B
/s

Position in Disk, GB

Avg Read Speed
Avg Write Speed

Fig. 2. Average read and write speeds on a particular disk

the bigger the chunk, the better. The time required to write 1

KB to a disk drive is most often dominated by the seek time

and rotational delay as the disk head moves to the correct

portion of the drive. These same factors are diminished into

near-insignificance when writing a single 50 MB chunk to a

sequential area of the drive, where the actual writing time

dominates.

It is well known that data sequentiality has a very large

impact on overall bandwidth [13], and we attempt to exploit

this factor as much as possible. There are certain disadvantages

in dealing only with very large chunks, but what we lose

in flexibility and packing efficiency, we make up on raw

bandwidth. As long as we follow a basic “don’t be stupid” rule

(for example, we should not use a chunk size that is slightly

smaller than twice the data element size), there is minimal

inefficiency.

By strictly maintaining a single chunk size and forcing all

incoming data to conform to it, fragmentation problems are

practically non-existent. The worst case scenario possible is

this: there are only two “free” data chunks in the system, and

every other chunk is marked as preserved. These two chunks

are at exactly opposite ends of the disk, the outermost and

innermost tracks, and the disk head must constantly jump back

and forth between the two. Even in this scenario, since chunk

sizes are large and immutable, seek time between them is only

a tiny part: on the order of a few milliseconds, compared to

about a second for the chunk as a whole.

The worst case scenario for a less strictly controlled filesys-

tem might scatter a single large chunk over the entire surface

of the disk, anywhere there was spare room, in the 99%+ full

system. This behavior drastically increases the total writing

time because of the large number of seeks. We wish to avoid

this scenario at all costs.

Our approach has no problems with fixed-rate continuously

streaming data, since we can easily pick the ideal chunk size

based on the incoming data. If one “data element” is the same

size as one “data chunk,” we have no indexing difficulties and

no packing inefficiency.

When data elements are small and variable in size, we

must pack multiple elements into each chunk. This may create

packing inefficiency as portions of each chunk are left unfilled,

too small to hold an additional data element. If chunk sizes

are chosen particularly unwisely, up to 50% of the drive may

be unutilized. However, this is easily mitigated by carefully

choosing the chunk size, or by splitting elements into two

portions if necessary. A greater problem is indexing, which

we address in a later section. In no case does any signifi-

cant fragmentation occur, since chunks are aligned properly

whether full or half-empty.

C. Disk Structure and Consistency

Standard file systems store their indexing information on

the disk itself for two main reasons. First, holding the entire

disk index in memory is at best inconvenient, and at worst

impossible, depending on the amount of memory and the size

of the filesystem. It is also unnecessary to maintain the entire

file structure in main memory when large portions of it are not

accessed regularly. The second reason is far more important:

whenever the system is shut down or experiences a crash, it is

far easier to recover file information from known portions of

the disk than it is to traverse the entire disk partition at mount,

reconstructing the file system anew with each bootup.

We can take substantial advantage in this area by noting that

our chunk sizes are both uniformly large and deterministically

placed. The only information that Mahanaxar requires in order

to understand physical disk layout is the chunk size, the

number of chunks, and a possible list of skipped regions within

the disk. This information may be thought of as akin to the

superblock in a standard file system, and is the only disk

structure information that must be stored on the disk itself

– and even that may be skipped, if the information can be

provided by an external source.

The chunk index itself is only a list of sequence numbers

(timestamps) and a few state variables (for example, marking

whether the chunk is preserved), and must be kept in memory

at all times in order to know which data is the next to expire.

If this information were also kept on disk, it would mean

frequent seeks to an index area, a waste of bandwidth.

The implications of these observations are that we can hold

the entire index structure in memory, and need never commit

it to disk. We gain measurable performance advantages by

only writing the data itself, rather than constantly updating an

index or on-disk metadata. The only real disadvantage is in

reconstructing the index if it is ever necessary, perhaps due to

a failure of some sort.

However, we also observe that this is a system which is

never supposed to go offline. If it does go offline, there has

been a problem of some sort (perhaps a power failure), and

there must be a backup plan available to ensure that data is

not lost. Because of this, the startup time of a failed system is

much less of an issue, even if it happens to take a few more

minutes than usual.

The greater reconstruction time for the index is a small price

to pay for increased overall performance. This is particularly

true since in the event of a system crash, the disk drive would

need to be rescanned for consistency anyway. We do not

anticipate this type of system ever shutting down in normal

conditions.

D. Reliability and Recovery

Storage systems fail from time to time, both from recov-

erable crashes and via outright hardware failures. When this

happens, we must take two things into account: the ongoing

data collection must not be disrupted, and we must be able to

recover lost data if the failed drive is entirely dead.

This problem is easily addressed by redundant drives in

a smaller system. For example, each LWA station generating

data at 72.5 MB/s may be best backed up by a redundant drive,

or a second machine entirely if funding is available. Since

each station is independent from the others and possibly not

connected to a network, the simplest solution is probably the

best, and we need not consider it further, other than ensuring

the drives are matched in their capabilities.

The far more interesting case is a large system, where a

total mirroring of drives is inefficient and uneconomical both

in terms of monetary cost and power consumption. A far more

elegant solution is available, and is an old familiar one: RAID.

A conventional RAID system provides fault-tolerance and

even certain performance advantages with the proper work-

load, but is disadvantaged when a drive has failed and the

system must operate in degraded mode. Read times often

increase dramatically since the data from an entire series of

drives must be reassembled for every single read. Writing an

entirely new stripe of data into a degraded RAID system will

often not hurt performance, and ironically may even increase

it slightly due to one less disk being involved.

Recalling that our system can be characterized as “write

once, read maybe,” it becomes apparent that the disadvantages

of a RAID system may never actually come into play. When

a disk fails, it is entirely possible that none of its data is

“interesting” and we never need to reconstruct it. In fact, all

data stored on that disk will expire in a matter of hours unless

the system is specifically instructed to preserve a section. We

may need to regenerate a portion of the data, but almost never

will there be a case in which we have to regenerate an entire

disk’s worth of data.

This technique works best when the data chunks in a

RAID group are all related to each other. For example, an

“ideal” RAID group might be a single 300 MB/s stream

broken up into five 60 MB/s streams going to five different

drives. In this case, an order to preserve data would be given

to all drives simultaneously, and there would be no need

to preserve unwanted data. Even reconstruction of data for

storage elsewhere would be easy, since the same chunks from

the working disks would need to be read in either case.

Unfortunately, if the data chunks are not related to each

other, there is a potential downside. If there are five separate

streams of data, the preservation of any single chunk in a

stream would require that four other “unneeded” chunks be

saved for redundancy purposes. Collection of data would

never be impaired and quality of service guarantees would be

unaffected, but total capacity of the buffer would be reduced

unnecessarily. For this reason, it is preferable that chunks in

a RAID group be highly related.

We are not limited to standard RAID alone, as any erasure-

correcting code would work equally well. Reed-Solomon

codes (as an example) are not often used in high-performance

storage because of a high computational overhead for encoding

and decoding. Because of our coordinated chunks and write-

intensive workload, such codes have a lower performance

penalty, and may be worth considering in future work.

E. Indexing

It is difficult to design a general solution for the problem of

indexing. If we only need to index a timestamp for each (large)

data element, there are few problems. If we need to index four

different factors of a twenty byte data packet, indexing is a

problem no matter how we try to solve it. Nonetheless, we

must be able to index data at its arrival rate, and search it

efficiently upon request.

We address the simple problem first. If data elements are

large and indices are few, we can keep an entire searchable

index in main memory. This describes the type of searching

we must do with many types of continuously streaming sensor

data, including the LWA, where the only required index

is time. For an example calculation, assume that our data

elements are 50 megabytes in size, and indexed by an 8-byte

sequence number (timestamp). The entire index is only a few

hundred kilobytes in size when using a 1.5 terabyte drive.

Reduce the data element size down to only a few kilobytes

and the size of the entire index is still only a few gigabytes in

size, easily held in memory for standard commodity systems

of 2010.

It is a far more complex problem when data elements

are tiny and there are multiple factors that must be indexed.

Consider the problem of storing IP packets that are indexed

on source and destination addresses (4 bytes each), protocol

(1 byte), and data length (4 bytes). Furthermore, assume that

each of these data packets are tiny for the worst-case scenario:

20 bytes each. The indexing in such a scenario would run to

hundreds of gigabytes. In fact, the indexing in such a case

would be 13/20 of the data itself. While this is an unlikely

scenario, a more reasonable scenario may still include an index

large enough such that it cannot be stored entirely in main

memory.

If there is no room in main memory for the index, we must

clearly divert at least a portion of it to secondary storage of

some sort. We have developed two ways of doing this, and

implemented the first into Mahanaxar while we consider how

to best implement the second.

Out first solution is to attach an “index” segment to each

chunk and commit it to disk alongside that chunk. We maintain

a bird’s-eye view of the index in main memory, but details are

stored on disk. If nobody ever inquires about the data in that

particular chunk, the index segment expires at the same time

as the data segment. If a search is performed, we can narrow

down the potential chunks as much as possible with our bird’s-

eye view, then read the necessary index segments for a more

detailed search.

Unfortunately, this search is necessarily quite slow because

our ability to read from the disk is limited by the quality of

service guarantees we make for incoming data. It is entirely

possible to miss the opportunity to preserve data because our

search is far slower than the speed at which incoming data

overwrites old data. We can mitigate this effect, partially, by

marking all chunks currently being searched as temporarily

preserved.

This problem cannot be solved so long as indexing infor-

mation resides on the same disk as the data itself, which led

us to a second solution: a secondary disk designed to store

indexing information only. Indexing information is (usually)

much smaller than the full data element, which would allow

a single indexing disk to hold the indexes from several data

disks at once. This is not a perfect solution since it depends

on a secondary disk being available, and creates potential new

reliability issues if the index is only stored on that one drive.

However, it allows a very large speedup in search speed, which

may be worth the extra cost in some situations.

We have considered using an SSD for the secondary index

drive. As previously discussed, SSDs are not suitable for data

drives in our model, but may be for the far smaller indexes.

The vastly superior read bandwidth available also contributes

to speedy searches on large datasets.

If we are only indexing a few well-ordered indices, we

have elected to handle the search within our own system. If

we need to search on multiple variables which are not well

ordered amongst each other, we determined that it would be

best not to reinvent the wheel, and we pass the problem to

another mechanism well suited to the task: a database. We

create a database anew with each search, using the indexing

information from whatever data chunks are needed. Following

the results of the search, the database is dropped entirely,

never being used for more time than it takes to complete the

search. This “lazy search” allows us to optimize data storage

according to our own bandwidth needs, but pass the search

problem to a mechanism better-suited to handling it. This is

one of our primary targets for future work.

V. SCALING

Our prototype system is mainly concerned with the problem

of guaranteeing quality of service from single data streams

onto single disks. We can take multiple data streams and route

them to different disks and create RAID groups within the

same system, but have not yet addressed the larger scaling

problem involving multiple sites and systems. The LWA

project involves only 53 stations at the start, but what if it were

to expand to hundreds of stations with more interconnectivity?

We need to understand how to best scale upward.

Because our model is tied so closely to the hardware, we

can easily scale up the data capture portion. Each disk is

bound to a single data stream and need only concern itself

with putting that data stream on that disk, and reading other

�
�
�
�

�
�
�
�

�����
�����
�����
�����
������
������
������
������

������
������
������
������

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

Metadata

Indexing
Data One Element

Sentinel Values

Fig. 3. Data chunk layout

sections as requested. An external process is responsible for

giving instructions to preserve or read data, and from the disk

point of view, the only logical connection it has with any other

data stream is when it happens to be in a RAID group.

From a control point of view, hundreds or thousands of

streams may be tied together, and a controller process may

need to preserve data over a thousand different disks at once.

We have treated this as a communications problem thus far

and not focused on it, but we intend to fully explore it at a

later time. For the moment, we prefer to focus on the quality

of service and individual indexing issues.

VI. PROTOTYPE ARCHITECTURE

Our long-range intention is to create a specialized filesystem

and interface layer, but for prototype and testing purposes, we

first created Mahanaxar. It is a multithreaded process which

runs in userspace and accesses disk drives as raw devices.

Multiple processes may run on the same machine, one process

per disk, and an additional process may be configured to

accept multiple data streams and combine them for RAID

reliability purposes. All access to a given disk must be through

its associated process in order to manage the bandwidth. Each

process/disk is governed by a configuration file that specifies,

among other things, the chunk size, the element size range, and

the method of indexing. State can be restored from a shutdown

or crashed state by scanning and re-indexing the disk.

Each process runs several threads, of which the two most

important are data processing and disk I/O. The data process-

ing thread is responsible for arranging the data elements into

chunks and indexing it. An example data chunk layout can be

seen in figure 3. The components are:

1) Sentinel Values are intended to ensure that a chunk is

marked inconsistent if the system crashes in the middle

of a write.

2) Metadata is present for system restart purposes, and

describes the exact layout of the chunk index and set of

data elements.

3) Indexing is described in a previous section.

4) Data and Elements mark where the actual data itself is

stored.

The second main thread is intended for disk I/O. Our I/O

model works on a simple priority scheme: if there is a chunk

of data ready to be put on disk, it gets first priority and is

written as soon as possible. Data is only read if there is no

chunk which currently needs to be written.

This method produces a jagged access pattern, especially

for reads, since nothing may be read for some time, and then

an entire chunk is read and delivered all at once. This is an

unfortunate but necessary effect of making quality of service

guarantees and maximizing bandwidth, since we do not wish

to fritter away disk head time seeking back and forth over the

disk in pursuit of a smoother curve on a bandwidth graph.

Long-term trends average out the bandwidth into smooth

curves, which we feel is acceptable when considering the sheer

amounts of data we are attempting to deal with. In the short-

term view, while a read request is never entirely starved, it

may be forced to wait some time.

As each data element arrives at Mahanaxar, it is immediately

indexed and placed into a chunk. If element sizes are large,

one element may be equal to one chunk. If sizes are small,

hundreds or thousands of data elements may be placed into

a single chunk. Default primary indexing is based entirely

around chunks, and is made up of a pair of timestamps. The

first marks the time at which the first element started arriving,

and the second marks the time at which the last element has

fully arrived. Other indexing schemes are possible, and we use

only a single sequence number for LWA-type data.

The chunk size may be configured according to system

requirements, but we have found that larger chunks provide

the best performance. We prefer to use a rule-of-thumb that

one chunk should be approximately the amount that the disk

takes one second to write to disk. In order to minimize wasted

space, chunk size should be arranged to be a close multiple of

the typical element size, and including a margin for metadata

and indexing information. If elements are X MB each, a chunk

size of 2X − 1 MB would be a very poor choice.

If the main memory is of sufficient size and elements are

sufficiently large, each element can be individually indexed by

timestamp and possibly other “primary IDs.” Mahanaxar does

its best to store as much indexing information as possible in

main memory, so that searches can be performed quickly, but

in certain scenarios, it may not be able to index anything more

than timestamp ranges in main memory.

Unfortunately, in order to maintain rigid chunk size and

available bandwidth, we must save an entire chunk at a time,

even if only a single small element of that chunk is actually

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

B
a

n
d

w
id

th
,

M
B

/s

Requested Read Speed, MB/s

(a) Mahanaxar

Write Speed
Read Speed

Combined Bandwidth

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

B
a

n
d

w
id

th
,

M
B

/s

Requested Read Speed, MB/s

(b) ext2 file system

Write Speed
Read Speed

Combined Bandwidth
Data Loss

Fig. 4. Comparison of Mahanaxar and ext2 filesystem with an incoming data rate of 60 MB/s and increasing requested read speeds

desired. We are currently working on a way to accumulate

individual elements for later storage in dedicated chunks

without making an excessive number of “small reads,” and

thus extra seeks.

VII. TESTING PROCEDURE

We designed our tests to focus on the raw bandwidth under

several different workloads. We used several different disks on

the same machine and achieved similar results for each disk,

adjusted for its available bandwidth. All the results presented

here are based upon one particular disk (profiled in figure 2)

so that we make fair bandwidth comparisons between tests.
Our testing machine used an Intel Core 2 Quad processor

clocked at 2.83 GHz, with 8 GB of main memory, and an

operating system of Debian 5.0 (“lenny”). The particular disk

used for these results was a Western Digital Caviar Green

of 1.5 (decimal) TB advertised capacity. Our own reported

measurements shall be understood to use the binary convention

of KB, MB, etc.
The raw write bandwidth of this particular disk averaged

from 50 MB/s to 70 MB/s, and its read bandwidth from 57

MB/s to 115 MB/s. Upon profiling the drive, we determined

that the read bandwidth decreased in an approximately linear

fashion from its peak at the outermost tracks of the drive at

115 MB/s to about 70 MB/s at a point about 80% into the

drive. Bandwidth dropped sharply in the last 20% of the drive

to a low of around 50 MB/s. Meanwhile, the write bandwidth

only dropped from 70 MB/s to 65 MB/s in that same “top”

80% of the disk, and sharply decreased in the last 20%.
Due to this behavior, we elected not to use the

lower/innermost portion of the drive. This allows us to offer

a sustained write bandwidth of 60 MB/s with 5-10 MB/s left

available for reading. This gave us a usable disk size of about

one (binary) terabyte.
We disabled disk write caching for our testing so that we

could be (reasonably) sure that the data was on disk when

we thought it was, and we ensured that the disk was fully

synchronized with each chunk that was written. Interestingly,

disabling the write cache slightly improved overall write

bandwidth on the disks we tested.

Our primary comparisons were made against the ext2 file

system utilizing flat files. We also tested against ext3 and XFS,

each of which had worse performance than ext2, a problem

which we attribute to their journaling nature. In order to give

the file system write caching an opportunity to reorder its

disk access patterns as necessary, we refrained from explicitly

sync’ing to disk after each chunk, as we did with our own

system. Instead, we only explicitly synchronized to disk every

several hundred megabytes, which was several seconds worth

of writing. We would prefer to have tight sync’ing to disk to

keep the same consistency in ext2 as we did with Mahanaxar,

but we found that ext2 performed much better when explicit

synchronization was rare.

We had also intended to compare against a pure database

model, but discovered that performance was extremely poor as

we approached the limits of the disk. The initial population of

our database on the first cycle of data was of comparable speed

to our ext2 based system, but performance quickly dropped to

less than a third of ext2 when constantly expiring old data in

favor of new elements. We therefore stopped testing against a

database model and focused on our comparisons against the

regular filesystem.

Our primary testing procedure was to select various element

and chunk sizes, then measure the bandwidth in both writing

and reading. We partitioned the “uppermost” 80% of the drive

and ran tests utilizing the entire space for some of the results

here. For others, we created smaller partitions within that space

in order to gather data of a finer grain. All results are gathered

from an “aged” system which has been in operation for several

full cycles over the space of the disk, unless otherwise noted.

We present here only those results for which our comparison

ext2 filesystem achieved stable performance. Certain of our

tests led to an ever-decreasing performance over time as the

entire system continued to age, and continued that decrease

over many full disk cycles. For example, when dealing with

highly variable element sizes, the standard filesystem had to

constantly delete a variable number of elements and create

new elements of different size. Because the file system was

operating at 99%+ of capacity (as intended), fragmentation

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000

B
a

n
d

w
id

th
,

M
B

/s

Position in disk, in GB

(a) Comparison of read bandwidth on first cycle

Write Speed (Both)
Mahanaxar Read Speed

ext2 Read Speed

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

B
a

n
d

w
id

th
,

M
B

/s

Position in a particular partition, in MB

(b) Closeup of read bandwidth after several cycles

Mahanaxar Read Speed
ext2 Read Speed

Fig. 5. Performance of Mahanaxar versus a regular filesystem with strict priorities, overall view on first cycle (a), and closeup view of a single partition
after multiple cycles (b)

problems built up very quickly and data locality was destroyed.

Consecutive elements were scattered over the surface of the

disk, rather than remaining in close proximity to each other.
Because of this characteristic, we hypothesize that fragmen-

tation would continue until blocks belonging to the same ele-

ment would only be physically consecutive by happenstance.

Therefore, we discontinued these tests and instead used a

constant element size which we overwrote in-place on the

standard file system in order to give it as much of an advantage

as possible.
Our own system, Mahanaxar, is designed to deal with this

variable element size without changing its mode of operation

and thus its performance never declined over time. Because

its design packs variable element sizes into fixed chunk sizes,

the graphs presented in the next section are identical to those

from our variable element size testing, except in “packing

efficiency.”

VIII. RESULTS

Figure 4 is a basic comparison of Mahanaxar versus a

normal ext2 filesystem with no modifications. The incoming

data stream has a bandwidth of 60 MB/s. The element size is

also set to be 60 MB. An external process is attempting to read

data from the disk at increasing speeds along the x-axis. The

total available bandwidth of the disk drive in this region of the

disk has ample capacity to write at 60 MB/s, and read at up to

12 MB/s if the writing and reading are properly coordinated.

The values shown on the graph are the average read and

write bandwidths of Mahanaxar and the ext2 filesystem over an

entire partition. The partition is already populated with existing

data (for several cycles) at the start of the test. Mahanaxar

maintains a constant write bandwidth of 60 MB/s no matter

how much bandwidth the external reading process requests.

Up to the physical limitations of the disk drive, Mahanaxar

can also provide the requested read speed.
By contrast, the ext2 based filesystem starts falling behind

the required 60 MB/s write bandwidth, even when the read

process is only attempting to read at 2 MB/s. By the time

the read process is attempting to read at 10 MB/s (which the

disk can easily handle if managed correctly), over 5% of the

incoming data is lost due to insufficient bandwidth. Even at

that point, the reading process still can’t reach the requested

10 MB/s read speed, being held to about 8.5 MB/s.

The reason for this disparity is that a standard ext2 filesys-

tem manages its bandwidth “fairly” rather than managing it

in a way to provide quality of service. Mahanaxar is able

to throttle the read requests and prioritizes writes entirely.

Because of this disparity, we decided to introduce a similar

mechanism for the standard ext2 filesystem which ensures

writing always has priority.

Figure 5 shows two different views of a comparison

against a filesystem with strict priorities introduced, mimicking

Mahanaxar. The element size remains at 60 MB/s for this test.

Part (a) shows the initial populating of the disk. In other words,

this is a “fresh” system on its first round. Both systems are able

to maintain a 60 MB/s write speed here. Although Mahanaxar

has a slightly higher bandwidth on reading, the two systems

are largely equivalent for the first “cycle” through.

Part (b) shows what happens after several cycles, and

focuses on the read performance only (write performance

remains at 60 MB/s for both systems). This test takes place

within a single partition in order to limit the region of the disk

which is used. Here, Mahanaxar maintains a read performance

of 10-12 MB/s, while the ext2 system drops down to about 2-4

MB/s before it stabilizes. As mentioned before, all elements in

this test are overwritten in place. We also wish to note that we

used the same in-memory index for the ext2 system as we did

for Mahanaxar. When we let the ext2 system rely on filesystem

metadata only, to determine which data elements were next to

expire, performance continued to decrease steadily over time.

For both the graphs in figure 5, the x-axis has a slightly

different interpretation for each system. For Mahanaxar, the

x-axis represents the literal position of the data within the

disk or partition. In the ext2 filesystem approach, the x-axis

only represents the position in the cycle for that particular set

of data. The literal position within the disk is determined by

the filesystem’s data placement techniques, though the units

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2000 4000 6000 8000 10000 12000

B
a

n
d

w
id

th
,

M
B

/s

Progress through partition, in MB

(a) Mahanaxar

Mahanaxar Write Speed
Mahanaxar Read Speed

Mahanaxar Combined Bandwidth

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2000 4000 6000 8000 10000 12000

B
a

n
d

w
id

th
,

M
B

/s

Progress through partition, in MB

(b) ext2

ext2 Write Speed
ext2 Read Speed

ext2 Combined Bandwidth

Fig. 6. Comparison of Mahanaxar and a regular filesystem with strict priorities, 1 MB element size. The lines in (b) are extremely close to the lines at 35
and 0, respectively.

are identical. We focused on a smaller partition for part (b)

mainly to ensure that the ext2 approach stayed in the same

small region of the disk for a more limited test.

Figures 4 and 5 were both carried out with a 60 MB

element size, which is what a regular filesystem can handle

best: large contiguous files written and read as one unit. Figure

6 shows the results when we reduce the element size to 1 MB,

but leave in the other enhancements to the regular filesystem

with regards to indexing and priorities. This results of this test

are shown on a single partition for detail, rather than over the

whole drive.

As seen in Figure 6, Mahanaxar retains a write bandwidth

of 60 MB/s, and has an available read bandwidth of nearly

20 MB/s in this partition, for a total I/O bandwidth of around

80 MB/s. This performance is practically identical to when it

was working with 60 MB elements because it combines those

elements together into 60 MB chunks. This same pattern holds

for any element size, as we tested in going down to a mere

20 byte element size.

However, the performance of the ext2 filesystem is dras-

tically reduced with 1 MB elements. If we do not explic-

itly synchronize the write cache to disk, the filesystem can

”pretend” to keep up for quite some time, but it eventually

collapses under its own weight. Synchronizing after every

element is unrealistic, however, so we only forced a sync to

disk every several hundred elements (megabytes) in order to

keep it honest.

We found that the maximum sustainable write bandwidth

for the ext2 filesystem was about 35 MB/s, and set the system

accordingly. At 38 MB/s and above, it slowly starts falling

behind over time and eventually loses data as it runs out of

buffer space. At 35 MB/s it loses no data over the course

of many cycles, having stabilized, and it can read off data

at around 1 MB/s. This combined bandwidth of less than 36

MB/s compares very poorly with Mahanaxar’s performance

of nearly 80 MB/s combined bandwidth. The performance

difference between Mahanaxar and flat files only increases as

the element size shrinks even further.

When we tested variable element sizes on the ext2 filesys-

tem, performance decreased steadily over time without ap-

pearing to stabilize at any point, and thus we do not have

a proper comparison to make against the steady performance

of Mahanaxar under the same circumstances. However, the

performance graph of Mahanaxar when run with variable

element sizes is identical to that of 6 (a).

IX. CONCLUSION

The performance of Mahanaxar shows that is has a clear

edge over standard filesystems in the high-bandwidth “write

once, read rarely” workload. By staying very close to the

physical hardware and aligning our workload to match, we are

able to provide real quality of service guarantees to meet a set

of hard real-time deadlines in a high-turnover, high-bandwidth

environment. We are able to reach performance levels on par

with the tested maximum of individual hard drives, though

this depends on generating disk profiles on a per-drive basis

in order to maximally exploit the hardware.

Even when standard filesystems are adapted to prioritize

data streams and enhanced with a more appropriate indexing

capacity, they cannot maintain as high an overall bandwidth

as Mahanaxar. Even with the ideal large element sizes,

standard filesystems can only come “close” to Mahanaxar’s

performance. When element sizes are smaller or variable,

performance of standard filesystems drops drastically, and they

cannot handle variable element sizes in a 99%+ full system

sizes at all.

Our future intentions are to turn this project into a full

specialized file system, develop an API to interact with it,

and develop an interface allowing an arbitrary number of such

systems to operate in concert to capture arbitrarily large data

streams. We also need to run performance tests on various

types of rebuilding after hardware failure, and experiment with

using separate “index” drives to improve search performance.

Lastly, we need to address the problem of preserving individ-

ual data elements within a chunk, and develop a system for

scalability.

However, we feel that the raw performance numbers are

sound, and promise a substantial improvement over the current

systems which cannot offer any quality of service guarantees

for this type of problem.

ACKNOWLEDGEMENT

This work was carried out under the auspices of the Na-

tional Nuclear Security Administration of the U.S. Depart-

ment of Energy at Los Alamos National Laboratory under

Contract No.DE-AC52-06NA25396. This work received fund-

ing from Los Alamos National Laboratory LDRD Project

#20080729DR and is published under LA-UR-10-02072.

REFERENCES

[1] A/53: ATSC Digital Television Standard, Parts 1-6, 2007, Advanced
Television Systems Committee, Inc., 3 January 2007.

[2] L. C. Grid, “Gridbriefings: Grid computing in five minutes,” August
2008.

[3] “http://www.phys.unm.edu/˜lwa/index.html.”
[4] Antelope: ARTS configuration and operations manual, Boulder Real

Time Technologies, Inc., 3 November 1998.
[5] S. Tilak, P. Hubbard, M. Miller, and T. Fountain, “The ring buffer

network bus (rbnb) dataturbine streaming data middleware for environ-
mental observing systems,” in e-Science, Bangalore, India, 10/12/2007
2007.

[6] S. Kornexl, V. Paxson, H. Dreger, A. Feldmann, and R. Sommer,
“Building a time machine for efficient recording and retrieval of high-
volume network traffic,” in IMC ’05: Proceedings of the 5th ACM

SIGCOMM conference on Internet Measurement. Berkeley, CA, USA:
USENIX Association, 2005, pp. 23–23.

[7] A. Chadd, “http://devel.squid-cache.org/coss/coss-notes.txt,” 2005.
[8] DataDirect Networks, “Best practices for architecting a lustre-based

storage environment,” DataDirect Networks, Tech. Rep., 2008.
[9] A. Molano, K. Juvva, and R. Rajkumar, “Real-time filesystems. guaran-

teeing timing constraints for disk accesses in rt-mach,” in The 18th IEEE

Real-Time Systems Symposium, December 2-5, 1997 1997, pp. 155–165.
[10] J. Wu and S. Brandt, “Providing quality of service support in object-

based file system,” in 24th IEEE Conference on Mass Storage Systems

and Technologies, 24-27 Sept. 2007 2007, pp. 157–170.
[11] A. Povzner, T. Kaldewey, S. Brandt, R. Golding, T. M. Wong, and

C. Maltzahn, “Efficient guaranteed disk request scheduling with fahrrad,”
in Eurosys ’08: Proceedings of the 3rd ACM SIGOPS/EuroSys European

Conference on Computer Systems 2008. New York, NY, USA: ACM,
2008, pp. 13–25.

[12] Intel X25-E SATA Solid State Drive Product Reference Sheet, 2009.
[13] W. W. Hsu, A. J. Smith, and H. C. Young, “The automatic improvement

of locality in storage systems,” ACM Trans. Comput. Syst., vol. 23, no. 4,
pp. 424–473, 2005.

[14] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Silberschatz, “Disk
scheduling with quality of service guarantees,” in IEEE International

Conference on Multimedia Computing and Systems, 7-11 June 1999
1999, pp. 400–405 vol 2.

[15] R. Rangaswami, Z. Dimitrijević, E. Chang, and K. Schauser, “Building
mems-based storage systems for streaming media,” Trans. Storage,
vol. 3, no. 2, p. 6, 2007.

