
MRAP: A Novel MapReduce-based Framework to Support
HPC Analytics Applications with Access Patterns

Saba Sehrish1, Grant Mackey1, Jun Wang1, and John Bent2
1University of Central Florida

ssehrish, gmackey, jwang@eecs.ucf.edu
2Los Alamos National Laboratory

johnbent@lanl.gov

ABSTRACT
Due to the explosive growth in the size of scientific data
sets, data-intensive computing is an emerging trend in com-
putational science. Many application scientists are looking
to integrate data-intensive computing into computational-
intensive High Performance Computing facilities, particu-
larly for data analytics. We have observed several scientific
applications which must migrate their data from an HPC
storage system to a data-intensive one. There is a gap be-
tween the data semantics of HPC storage and data-intensive
system, hence, once migrated, the data must be further re-
fined and reorganized. This reorganization requires at least
two complete scans through the data set and then at least
one MapReduce program to prepare the data before analyz-
ing it. Running multiple MapReduce phases causes signif-
icant overhead for the application, in the form of excessive
I/O operations. For every MapReduce application that must
be run in order to complete the desired data analysis, a dis-
tributed read and write operation on the file system must
be performed. Our contribution is to extend Map-Reduce
to eliminate the multiple scans and also reduce the num-
ber of pre-processing MapReduce programs. We have added
additional expressiveness to the MapReduce language to al-
low users to specify the logical semantics of their data such
that 1) the data can be analyzed without running multi-
ple data pre-processing MapReduce programs, and 2) the
data can be simultaneously reorganized as it is migrated to
the data-intensive file system. Using our augmented Map-
Reduce system, MapReduce with Access Patterns (MRAP),
we have demonstrated up to 33% throughput improvement
in one real application, and up to 70% in an I/O kernel of
another application.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Distributed Program-
ming;
D.1.3 [Concurrent Programming]: Parallel Programming;
H.3.4 [Systems and Software]: Distributed Systems;

General Terms
I/O Performance of HPC Applications, Large-scale data pro-
cessing systems

Keywords
HPC Analytics Applications, HPC Data Access Patterns,
MapReduce

1. INTRODUCTION
Today’s cutting-edge research deals with the increasing vol-
ume and complexity of data produced by ultra-scale simula-
tions, high resolution scientific equipment and experiments.
These datasets are stored using parallel and distributed file
systems and are frequently retrieved for analytics applica-
tions. There are two considerations regarding these datasets.
First, the scale of these datasets [6, 33] that affects the way
they are stored (e.g. metadata management, indexing, file
block sizes, etc). Second, in addition to being extremely
large, these datasets are also immensely complex. They are
capable of representing systems with high levels of dimen-
sionality and various parameters that include length, time,
temperature, etc. For example, the Solenoidal Tracker at
the Relativistic Heavy Ion Collider (STAR; RHIC) experi-
ment explores nuclear matter under extreme conditions and
can collect seventy million pixels of information one hun-
dred times per second [10]. Such extraordinarily rich data
presents researchers with many challenges in representing,
managing and processing (analyzing) it. Many data pro-
cessing frameworks coupled with distributed and parallel
file system have emerged in recent years to cope with these
datasets [3, 16, 17, 20].

However, the raw data obtained from the simulations/sensors
needs to be stored to data-intensive file systems in a format
useful for the subsequent analytics applications. There is
an information gap because current HPC applications write
data to these new file systems using their own file seman-
tics, unaware of how the new file systems store data, which
generate unoptimized writes to the file system. In HPC an-
alytics, this information gap becomes critical because source
of data and commodity-based systems do not have the same
data semantics. For example, in many simulations based ap-
plications, data sets are generated using MPI datatypes [21]
and self describing data formats like netCDF [7, 25] and
HDF5 [4, 8]. However, scientists are using frameworks like
MapReduce for analysis [18, 24, 26, 27, 30] and require
datasets to be copied to the accompanied distributed and

Input Data

MapReduce

MapReduce

Output Data

a) HPC Analytics in MapReduce b) HPC Analytics in MRAP

Write

Write/Read

Write/Read

Read

Input Data

MapReduce

MapReduce

Output Data

... ... MN

N > M

Figure 1: Steps performed in writing HPC analytics
using both MapReduce and MRAP.

parallel file system e.g. HDFS [13]. The challenge is to
identify the best way to retrieve data from the file system
following the original semantics of the HPC data.

One way to approach this problem is to use a high level
programming abstraction for specifying the semantics and
bridging the gap between the way data was written and the
way it will be accessed. Currently, the way to access data in
HDFS like file systems is to use the MapReduce programing
abstraction. Because MapReduce is not designed for seman-
tics based HPC analytics, some of the existing analytics ap-
plications use multiple MapReduce programs to specify and
analyze data [24, 30]. We show the steps performed in writ-
ing these HPC analytics applications using MapReduce in
Figure 1 a). In Figure 1 a), N MapReduce phases are being
used; the first MapReduce program is used to filter the origi-
nal data set. If data access pattern is complex, then a second
MapReduce program will perform another step on the data
to extract another dataset. Otherwise, it will perform the
first step of analysis and generate a new data set. Simi-
larly, depending on the data access pattern and the analysis
algorithm, multiple phases of MapReduce are utilized.

For example, consider an application, which needs to merge
different data sets followed by extracting subsets of that
data. Two MapReduce programs are used to implement this
access pattern. That is, the first program will merge the data
set and the second will extract the subsets. The overhead of
this approach is quantified as 1) the effort to transform the
data patterns in MapReduce programs, 2) number of lines of
code required for MapReduce data pre-processing and 3) the
performance penalties because of reading excessive datasets
from disk in each MapReduce program.

We propose a framework based on MapReduce, which is
capable of understanding data semantics, simplify the writ-
ing of analytics applications and potentially improve per-
formance by reducing MapReduce phases. Our aim in this
project is to utilize the scalability and fault tolerance bene-
fits for MapReduce and combine them with scientific access
patterns. Our framework, called MapReduce with Access
Patterns (MRAP), is a unique combination of the data
access semantics and the programming framework (MapRe-

Scientific Data HPC Storage (PFS ,
GPFS)

Data Intensive file system (HDFS , GFS)

MapReduce MRAP API

Scientific Data
Intensive HPC

MRAP Data Restructuring

Figure 2: High-Level System View with MRAP

duce), which is used in implementing HPC analytics appli-
cations. We have considered two different types of access
patterns in the MRAP framework. The first pattern is for
the matching, or similar analysis operations where the input
data is required from two different data sets. These applica-
tions access data in smaller contiguous regions. The second
pattern is for the other types of analysis that uses data in
multiple smaller non-contiguous regions. MRAP framework
consists of two components to handle these two patterns;
MRAP API and MRAP data restructuring.

MRAP API is used to specify both access patterns. It is flex-
ible enough to specify the data pre-processing and analytics
in fewer MapReduce programs than currently possible with
traditional MapReduce as shown in the Figure 1 b). Figure 1
shows that MRAP is utilizing M phases, and M < N , where
N is the number of corresponding phases in a MapReduce
based implementation. With MRAP, M < N is possible
because it allows the users to describe data semantics (var-
ious access patterns based on different data formats) in a
single MRAP application. As mentioned in the previous ex-
ample, two MapReduce programs are used to describe an
access pattern which requires merge and subset operations
on data before analyzing it. In MRAP, only one MapReduce
program is required, because data is read in required merge
pattern in the Map phase, and subsets are extracted in the
reduce phase.

MRAP data restructuring reorganizes data with the copy
operation to mitigate the performance penalties resulting
from non-contiguous small I/O requests (second access pat-
tern). Our prototype of MRAP framework includes ba-
sic implementation of functions that allow users to specify
data semantics and data restructuring to improve the per-
formance of our framework. Figure 2 shows the high level
system view with MRAP. Our results with a real application
in bioinformatics and an I/O kernel in astrophysics, show up
to 33% performance improvement by using MRAP API, and
up to 70% performance gain by using data restructuring.

This paper is organized as follows: Section 2 discusses the
motivation for our MRAP approach. Section 3 describes the
overall framework and its design, and how API effects the
data layout and how optimization like data restructuring is
used in the framework. Results are presented and analyzed
in Section 4. Section 5 describes the related work in large
scale data processing, access patterns in scientific applica-
tions and optimization on these patterns. Conclusion and
future work is in Section 6.

2. MOTIVATION FOR DEVELOPING MRAP
In this section we describe the motivation for developing
MRAP. Data for analysis comes in all types of formats, file
semantics, and comes from many various sources; whether it
be weather data to high energy physics simulations. Within
these patterns, we also need to provide for efficient file ac-
cesses. Current approaches show that in order to implement
these access patterns, a series of MapReduce programs is
utilized [24, 30], also shown in the Figure 1.

In a MapReduce program, the map phase always reads data
in contiguous chunks, and generates data in the form of (key,
value) pairs for the reduce phase. The reduce phase then
combines all the values with the same keys to output the
result. This approach works well when the order and se-
quence of inputs do not affect the output. On the other
hand, there are algorithms that require data to be accessed
in a given pattern and sequence. For example, in some im-
age pattern/template matching algorithm, the input of the
function must contain a part of the original image and a part
of the reference image. Using MapReduce for this particular
type of analysis would require one MapReduce program to
read the inputs from different image files and then combine
them in the reduce phase for further processing. A second
MapReduce program would then analyze the results of the
pattern matching. Similar behavior has been observed in
two other application as shown in the Figure 3 and Figure 7
a). Figure 3 describes a distributed Friends-of-Friends algo-
rithm; the four phases are MapReduce programs [24]. Fig-
ure 7 a) is discussed in the Section 4. Both these figures
show the multi-stage MapReduce applications developed for
scientific analytics.

Using this multi-stage approach, all the intermediate MapRe-
duce programs write data back to the file system while sub-
sequent applications read that outputted data as input for
their task. These excessive read/write cycles impose perfor-
mance penalties and can be avoided if initial data is read
more flexibly as compared with traditional approach of con-
tiguous chunks read. Our proposed effort, MRAP API, is
designed to address these performance penalties and to pro-
vide an interface that allows these access patterns to be spec-
ified in fewer MapReduce phases. Hence, the goal of the
MRAP API is to deliver greater I/O performance than the
traditional MapReduce framework can provide to scientific
analytics applications.

Additionally, some scientific access patterns generally re-
sult in accessing multiple non-contiguous small regions per
task, rather than the large, contiguous data accesses seen
in MapReduce. Due to the mismatch in sizes of distributed
file system (DFS) blocks/chunks and the logical file requests
of these applications, small I/O problem arises. The small
I/O requests from various access patterns impact the per-
formance by accessing excessive amount of data, when im-
plemented using MapReduce. The default distributed file
system chunk used in current setup is either 64/128 MB.
Most of the scientific applications store data with each value
comprising of a few KBs. Each small I/O region (a few KBs)
in the file may map to large chunks (64/128 MB) in the file
system. If each of the requested small I/O region is 64 KB,
then a 64 MB chunk will be retrieved to process only 64 KB
making it extremely expensive.

A possible approach can be to decrease the chunk size to
reduce the amount of extra data accessed. These smaller
chunks increase the size of metadata [5]. Also, the small
I/O accesses also result in a large number of I/O requests
sent to the file system. In MapReduce framework, smaller
chunks and large number of I/O requests become extremely
challenging because there is a single metadata server (Na-
meNode) that handles all the requests. These small I/O re-
quires efficient data layout mechanisms because the patterns
can be used to mitigate performance impact that would oth-
erwise arise. Hence, providing semantics for various access
patterns which generate small I/O requires optimizations at
both the programming abstraction and the file system levels.

3. DESIGN OF MRAP
The MRAP framework consists of two components; 1) MRAP
API, that is provided to eliminate the multiple MapReduce
phases used to specify data access patterns, and 2) MRAP
data restructuring, that is provided to further improve the
performance of the access patterns with small I/O problem.
Before we describe each component of the MRAP frame-
work, it is important to understand the steps that existing
HPC MapReduce applications perform in order to complete
an analysis job. These steps are listed as follows:

• Copy data from external resource (remote storage, sen-
sors, etc) to HDFS/similar data-intensive file system
with MapReduce for data processing.

• Write at least one data pre-processing application (in
MapReduce) to prepare data for analysis. The number
of MapReduce applications depends on the complexity
of initial access pattern.

– This data preparation can be a conversion from
raw data to scientific data format or in general
filtering of formatted data.

• Write at least one MapReduce application to analyze
the prepared datasets. The number of MapReduce ap-
plications for analysis varies with the number of steps
in the analytics algorithm.

As compared with this existing MapReduce setup, our MRAP
framework will allow the following steps:

• Copy data from external resource to HDFS/similar file
system (perform MRAP data restructuring if specified
by the user).

• Write an MRAP application to specify the pattern and
subsequent analysis operation.

– If data was restructured at the copy time, then
map/reduce phases will be written only for the
analysis operation.

We discuss the two components, i.e. MRAP API and MRAP
data restructuring in detail in the next subsections.

Reduce
Write the

Intermediate

Output to the disk

Map
Read the

Input from

the disk

Map
Read the

Input from

the disk

Reduce
Write the final

Output to the disk

Map
Read the

Input from

the disk

Map
Read the

Input from

the disk

Reduce
Write the

Intermediate

Output to the disk

Reduce
Write the

Intermediate

Output to the disk

Partition Local Cluster Hierarchical Merge Relabel

Figure 3: Overview of the distributed FoF algorithm using 4 MapReduce phases [24].

3.1 MRAP API
The purpose of adding this data awareness functionality is
to reduce the number of MapReduce programs that are used
to specify HPC data access patterns. We provide an inter-
face for two types of data access patterns; 1) applications
that perform match operations on the data sets, and 2) ap-
plications that perform other types of analysis by reading
data non-contiguously in the files. At least one MapReduce
program is used to implement either 1 or 2. Note: There
are some complex access patterns which consist of different
combinations of both 1 and 2. We first briefly describe how
MapReduce programs work, and why they require more pro-
gramming efforts when it comes to HPC access patterns.

A MapReduce program consists of two phases: a Map and a
Reduce. The inputs and outputs to these phases are defined
in the form of a key and a value pair. Each map task
is assigned a split specified in InputSplit to perform data
processing. A FileSplit and a MultiFileSplit are the two
implementations of the interface InputSplit. The function
computeSplitSize calculates the split size to be assigned to
each map task. This approach guarantees that each map
task will get a contiguous chunk of data. In the example
with merge and subset operations on data sets, following
two MapReduce programs will be used.

• MapReduce1:
(inputA, inputB, functionA, outAB)

• functionA (merge)
map1(inputA, inputB, splitsizeA, splitsizeB,

merge, outputAB)

where merge has different criteria, e.g. merge on exact
or partial match, 1-1 match of inputA and inputB, 1-
all match of inputA and inputB, etc.
reduce1(outputAB, sizeAB, merge_all, outAB)

• MapReduce2:
(outAB, functionB, outC)

• functionB (subset)
map2(outAB, splitsizeAB,subset)

where subset describes the offset/length pair for each
split of size splitsizeAB.
reduce2(subset, outC)

We now describe MRAP API, classes and functions, and
how it allows the user to minimize the number of MapRe-
duce phases for data pre-processing. Then, we describe the
provided user templates that are pre-written MRAP pro-
grams. The user templates are useful in the cases when the
access patterns are very regular and can be specified by us-
ing different parameters in a configuration file e.g, a vector

Output Data

a) HPC Analytics (Matching) in MapReduce

MapReduce

Write

...

Input A Input B

M1 M2 Mn

R1

 Read per Map Task

Write

Analysis

b) HPC Analytics (Matching) in MRAP

Write

...

Input A Input B

M’1 M’2 M’n

*MapReduce Reads = Single Sequential

*MRAP Reads

AnalysisR’1 R’2

Output Data

R2

*MapReduce Reads

*MRAP Reads = Multiple Sequential
 Reads per Map Task

Figure 4: A detailed View of comparing MapReduce
and MRAP for applications that perform matching.

access pattern can be described by the size of data set, size
of a vector, number of elements to skip between two vectors,
and number of vectors in the data set.

In MRAP, we provide a set of two classes that implement
customized InputSplits for the two aforementioned HPC ac-
cess patterns. By using these classes, users can read data in
one of these two specified patterns in the map phase and con-
tinue with the analysis in the subsequent reduce phase. The
first pattern for the applications that perform matching and
similar analysis is defined by (inputA, inputB, splitSizeA,
splitSizeB, function). inputA/inputB represents both sin-
gle or multi-file inputs. Each input can have a different split
size, and then the function describes the sequence of opera-
tions to be performed on these two data sets. The new Se-
quenceMatching class implements getSplits(), such that each
map task reads the specified splitSizeA from inputA and
splitSizeB from inputB. This way of splitting data saves
one MapReduce data pre-processing phase for the applica-
tions with this particular behavior as shown in the Figure 4.

The second access pattern is a non-contiguous access, where
each map task needs to process multiple small non-contiguous
regions. This pattern is defined as (inputA, (list of offsets/
maptaks, list of lengths/maptask), function). These pat-
terns are more complex to implement, because these pat-
terns are defined by multiple offset/length pairs. Each map
task can either have the same non-contiguous pattern, or
different pattern. Current abstraction for getSplits() either
return an offset/length pair or a list of filenames/lengths
to be processed by each map task. The new AccessInput-
Format class with our new getSplits() method implements
the above-mentioned functionality to the MapReduce API.

Logical layout of an
example sequence in file

 After data restructuring all
 regions are packed into one
 chunk

No data restructuring results
in accessing four chunks

Chunk 1 Chunk 2 Chunk 4Chunk 3

Data of Interest Unused data

Figure 5: An example showing the reduction in number of chunks per map task after data restructuring

These patterns are generally cumbersome to describe us-
ing MapReduce existing split methods because the existing
splits are contiguous, and require the pattern to be trans-
formed to the MapReduce (key, value) formulation.

The above mentioned access pattern with merge and subset
operations, is specified in one MRAP program, as follows:

• (inputA, inputB, functionAB, outC)

• functionAB (merge, subset)
map1(inputA, inputB, splitsizeA, splitsizeB,

merge, outAB)

Read data from all sources in the required merge pat-
tern
reduce1(outAB, sizeAB, subset, outC) Extract data
of interest from the merged data

We now explain the user templates. User templates are pre-
written MRAP programs using new input split classes that
read data according to the pattern specified in configuration
file. We provide template programs for reading the astro-
physics data for halo finding, and general strided access pat-
terns. In the configuration file (see Appendix), we require
type of application, e.g. any MPI simulation, or astrophysics
to be specified. Each of these different categories generate
data in different formats and access data in different pat-
terns. By providing a supported application type, MRAP
can generate a template configuration file to the user.

We give a few examples of the access patterns that can be
described in a configuration file. A vector based access pat-
tern is defined as if each request having the same number of
bytes (i.e. a vector) and is interleaved by a constant or vari-
able number of bytes (i.e. a stride) and number of vectors
(i.e. a count). A slightly complex vector pattern is a nested
pattern, that is similar to a vector access pattern. However,
rather than being composed of simple requests separated by
regular strides in the file, it is composed of strided segments
separated by regular strides in the file. That is, a nested
pattern is defined by two or more strides instead of one as
in a vector access pattern. A tiled access patterns is seen
in datasets that are multidimensional, and are described by
number of dimensions, number of tiles/arrays in each di-
mension, size of each tile, size of elements in each tile. An
indexed access pattern is more complex, it is not a regular
pattern and describe a pattern using a list of offsets and

lengths. There are many more patterns used in HPC appli-
cations, but we have included the aforementioned patterns
in this version of MRAP.

3.2 MRAP Data Restructuring
MRAP data restructuring is provided to improve the perfor-
mance of access patterns which access data non-contiguously
in small regions to perform analysis. Currently, there is a
little support for connectivity of HDFS to resources that gen-
erate scientific data. In most cases, data must be copied to a
different storage resource and then moved to HDFS. Hence,
a copy operation is the first step performed to make data
available to MapReduce applications. We utilize this copy
phase to reorganize the data layout and convert small I/O
accesses to large by packing small (non-contiguous) regions
into large DFS chunks (also shown in the Figure 5). We im-
plement data restructuring as an MRAP copy operation that
reads data, reorganizes it and then writes it to the HDFS.
It reorganizes the datasets based on user specification when
data is copied to HDFS (for the subsequent MapReduce ap-
plications). The purpose of this data restructuring when
copying data is to improve small I/O performance.

The MRAP copy operation is performed in one of two ways.
The first method copies data from remote storage to the
HDFS along with a configuration file, the second method
does not have a configuration file. For the first method, in
order to reorganize datasets, MRAP copy expects a configu-
ration file, defined by the user, describing the logical layout
of data to be copied. In this operation, the file to be trans-
ferred to HDFS and the configuration file are submitted to
MRAP copy. As the file is written to HDFS, MRAP re-
structures the data into the new format defined by the user.
When the copy operation is completed, the configuration file
is stored with the restructured data.

This configuration file is stored with the file because of a
very important sub-case of the MRAP copy operation, on-
the-fly data restructuring during an MRAP application. In
this case, a user runs an MRAP application on a file that
was previously restructured by the MRAP copy function. In
this job submission, another configuration file is submitted
to define how the logical structure of the data in said file
should look before the current MRAP application can be-
gin. As shown in Figure 6, the configuration file stored with
data during the initial restructuring is compared with the
configuration file submitted with MRAP application. If the
two configuration files match, that is, the logical data lay-

Use MR
Read operation is
already optimized

Use MRAP
Read operation is
optimized using

replicas

Configuration File
submitted with the

application

Configuration File
used with File

Copy

Reads

File layout
Match ?

Yes

Original Data Reads

No

Data
Restructuring ?

Data re -
organized in
contiguous

chunks

No

Use Copy with
Configuration

utility to organize
data in contiguous

chunks

Yes

Figure 6: Flow of operations with data restructuring

out of the stored file matches what the MRAP application
is expecting, then the MRAP operation begins. Else, data
restructuring occurs again and the MRAP application runs
once the file is restructured.

In the case of the second copy method, data is copied to
HDFS from remote storage without any file modification.
This option would be used when the user wants to maintain
the original format in which the data was written. Hence,
option two in MRAP will be performed as a standard HDFS
copy. As discussed in the paragraph above, this option is
amenable to use if the file in question is constantly being
restructured. The approach used to optimize file access for
this case is discussed later in the section.

As mentioned earlier that MRAP copy operation performs
data restructuring, we now explain the data restructuring al-
gorithm. The data restructuring converts small non-contiguous
regions to large contiguous regions, and can be formulated
as a bin packing problem where different smaller objects are
packed in a minimal number of larger bins.
Definition: Given a set of items with sizes s1, . . . , sn, pack
them into the fewest number of bins possible, where each
bin is of size V .
This problem is a combinatorial NP-hard and there are many
proposed heuristics to solve this. In data restructuring each
item from bin packing problem corresponds to a smaller non-
contiguous region, whereas each bin corresponds to a DFS
chunk of size V . We use First-fit algorithm to pack the
smaller regions into chunks.

The time to perform data restructuring based on Algorithm 1
is determined by the following: number of regions in the ac-
cess patterns that are needed to be combined into chunks is
m, and size of each region is si. time to access each region
TreadS , number of chunks after restructuring p where size of
each chunk is V , time to write one region to the chunk is
Tchunk and time to update metadata for the new chunk is
Tmeta. The time to perform data restructuring will be
Tdr = (m× TreadS) + (p× (V/si)× Tchunk) + (p× Tmeta).
We can also determine the execution time of the application
with M tasks, that will involve the time to read any access
pattern (M ×m× TreadS) and processing time Tp,
Tcomp = Tp + (M ×m× TreadS).

Algorithm 1 Data Restructuring Algorithm
Input: A set U which consist of all smaller region size required by a
map task in a MapReduce Application, U = {s1, s2, ..., sm}, where

si corresponds to size of ith region, and m is the number of non-
contiguous regions requested the task. A set C of empty chunks
C = {c1, c2, ..., cp}, where capacity of each cx is V . p = V/s1 ×m
when all si are of the same size else p is unknown.
Output: Find minimal p such that all smaller regions are packed
into p number of chunks.
Steps:
for i is 1 to m, [Iterate through all the elements in set U]
∀cj ∈ C = empty, 0 < j < p
if

∑
i si ≤ V)

Add ith element to cj
else Add cj to C
increment j i.e. start a new chunk
end for
p = j, since j is keeping track of when a new chunk is added.

Data restructuring will be not beneficial if Tdr > Tcomp.
However, Tdr < Tcomp will result in contiguous accesses,
significantly improving the performance.

The benefit of data restructuring is that when an application
is run multiple times and requires only one data layout, the
read operation has been highly optimized, making the total
execution time of the operation much shorter. It minimizes
the number of chunks required by a map task because after
restructuring all smaller regions that are scattered among
various chunks are packed together as shown in the Figure 5.
However, if each application uses the file in a different way,
that is, the file requires constant restructuring, then data
restructuring will incur more overhead as compared to the
performance benefits.

4. RESULTS AND DISCUSSION
In the experiments, we demonstrate how MRAP API per-
forms for the two types of access patterns as described in
Section 3.1. The first access pattern performs matching op-
eration on the data sets, whereas the second access pattern
deals with the non-contiguous accesses. We also show the
performance improvement due to data restructuring for the
second access pattern.

The most challenging part of this work is to fairly evalu-
ate MRAP framework using various data access patterns
against the same patterns used in the existing MapReduce
implementations. Unfortunately, most HPC analytics appli-
cations which could enunciate the benefit from MRAP still
need to be developed. Also, there are no established bench-
marks currently available to test our design. We have used
one application from the bioinformatics domain, an open
source MapReduce implementation of the“read-mapping al-
gorithm”, to evaluate the MRAP framework. This appli-
cation performs sequence matching and extension of these
sequences based on the given criteria and fits well with the
description of the first access pattern. For the second access
pattern, we use both MRAP and MapReduce to read as-
trophysics data in tipsy binary format that is used in many
applications for operations like halo finding. In the next
subsection, we describe our testbed and benchmark setup.

4.1 Testbed and Benchmarks Description
There are 47 nodes in total with Hadoop 0.20.0 installed
on it. The cluster nodes configurations are shown in the

Table 1: CASS Cluster Configuration
15 Compute Nodes and 1 Head Node

Make& Model Dell PowerEdge 1950
CPU 2 Intel Xeon 5140, Dual Core, 2.33 GHz
RAM 4.0 GB DDR2, PC2-5300, 667 MHz
Internal HD 2 SATA 500GB (7200 RPM) or 2 SAS

147GB (15K RPM)
Network Connection Intel Pro/1000 NIC
Operating System Rocks 5.0 (Cent OS 5.1), Kernel:2.6.18-

53.1.14.e15
31 Compute Nodes

Make& Model Sun V20z
CPU 2x AMD Opteron 242 @ 1.6 GHz
RAM 2GB - registered DDR1/333 SDRAM
Internal HD 1x 146GB Ultra320 SCSI HD
Network Connection 1x 10/100/1000 Ethernet connection
Operating System Rocks 5.0 (Cent OS 5.1), Kernel:2.6.18-

53.1.14.e15
Cluster Network

Switch Make & Model Nortel Nortel BayStack 5510-48T Giga-
bit Switch

Table 1. In our setup, the cluster’s master node is used as
the NameNode and JobTracker, whereas the 45 worker nodes
are configured to be the DataNodes and TaskTrackers.

The first application, CloudBurst consists of one data for-
mat conversion phase and three MapReduce phases to per-
form read mapping of genome sequences as shown in the
Figure 7 a). The data conversion phase takes an “.fa” file
and generates a sequence file with a format following HDFS
sequence input format. It breaks the read sequence into
64KB chunks and write sequence in the form of these pairs
(id, (sequence, start offset, ref/read)). The input files con-
sist of a reference sequence file and a read sequence file.
During the conversion phase, these two files are read in to
generate the pairs for “.br” file. After this data conversion
phase, the first MapReduce program takes these pairs in the
map phase and generates mers such that, the resulting (key,
value) pairs are (mers, (id, position, ref/read, left flank,
right flank)). The flanks are added to the pairs in the map
phase to avoid random reads in HDFS. These key, value pairs
are then used in the reduce phase to generate SharedMers
as (read id, (read position, ref id, ref position, read left
flank, read right flank, ref left flank, ref right flank)).
The second MapReduce program generates Mers per read.
The Map phase does nothing and reduce phase groups the
pairs generated in the first MapReduce program by read id.

In MRAP, this whole setup is performed such that there is
one map and one reduce phase as shown in the Figure 7
b). We do not modify the conversion phase in generating
the .br file. The first phase reads from both reference and
read sequence files to generate the SharedMers and they are
coalesced and extended in the reduce phase. The only reason
we can allow a the map phase to read chunks from multiple
files is because, MRAP API allows for a list of splits per map
task. Essentially, each mapper reads from two input splits
and generate (read id, (read position, ref id, ref position,
read left flank, read right flank, ref left flank, ref
right flank)) for the shared mers. The reduce phase aligns
and extends the shared mers. It results in a file, which
contains every alignment of every read with at most some
defined number of differences.

Genome and Read
Sequences

Sorted Mers

Shared Mers

Mers per Read

Shared Seeds

Extended Seeds

Read Mappings

Map

Map

Map

Reduce

Reduce

Reduce

M
er

Re
du

ce
Se

ed
Re

du
ce

Ex
te

nd
Re

du
ce

Genome and Read
Sequence Data in .FA

Data Conversion

Genome and Read
Sequences

Shared Mers

Shared Seeds and Read
Mappings

Genome and Read
Sequence Data in .FA

Data Conversion

Map phase in MRAP

Reduce phase in MRAP

a) CloudBurst in MapReduce b) CloudBurst in MRAP

Figure 7: a) Overview of the Read-Mapping Algo-
rithm using 3 MapReduce cycles. Intermediate files
used internally by MapReduce are shaded [30]. b)
Overview of the Read-Mapping Algorithm using 1
MapReduce cycle in MRAP.

In the second case, we perform a non-contiguous read op-
eration on astrophysics data set used in halo finding appli-
cation, followed by the grouping of given particles. There
are two files in the downloaded data set: particles name,
which contains the positions, velocities and mass of the par-
ticles. In addition to the particles name file, an input data
file summarizing cosmology, box-size etc and halo catalogs
(ascii-files), containing: mass, position and velocity in dif-
ferent coordinates are also provided [2, 1].

Finally, we used a micro benchmark to perform small I/O
requests using MRAP to show the significance of data re-
structuring. We use three configurable parameters to de-
scribe a simple strided access pattern [15]. These parameters
are stripe, stride and data set size. We show the behavior
of changing the stripe size with various data sizes, where
the stride was dependent on the number of processes and
stripe size. The stripe size is the most important parame-
ter for these experiments because it determines the size and
the number of read requests issued per process. We write
a MapReduce program to perform the same patterned read
operation. In the map phase each process reads a contiguous
chunk, and marks all the required stripes in that contiguous
chunk. In the reduce phase, all the stripes required by a
single process are combined together.

4.2 Demonstrating Performance for MRAP
Bioinformatics Sequencing Application: We compare
the results of MRAP and the existing MapReduce imple-
mentation of the read-mapping algorithm. As shown in the
Figure 7, the traditional MapReduce version of the Cloud-
Burst algorithm requires three MapReduce applications in

0.5 GB 1 GB 2 GB 4 GB
0

1.25

2.5

3.75

5

6.25

7.5

8.75

10

11.25

12.5

B
yt

es
 A

cc
es

se
d

(G
B

)

Different Read Sequences

HDFS Bytes Read
HDFS Bytes Written

MRAP

MRAP

MRAP

MRAP

MR

MR

MR

MR

Figure 8: This graph compares the number of bytes
accessed by the MapReduce and MRAP implemen-
tation of Read-mapping, and shows that MRAP ac-
cesses ≈ 47% less data.

order to complete the required analysis as compared with
one MapReduce phase required in MRAP. Because the MRAP
implementation requires only one phase of I/O, we antici-
pate that it will significantly outperform the existing Cloud-
Burst implementation. We first show the total number of
bytes accessed by both MRAP and MapReduce implemen-
tations in the Figure 8. Each stacked bar shows the number
of bytes read and written by MRAP and MapReduce im-
plementation. The number of bytes read is more than the
number of bytes written because reference data sequences
are being merged at the end of reduce phases. The number
of bytes accessed in the MRAP application are on average
47.36% less than the number of bytes accessed in the MapRe-
duce implementation as shown in Figure 8. This reduced
number of I/O accesses result in an overall performance im-
provement of upto 33%, as shown in the Figure 9.

We were also interested in looking at the map phase timings
because each map phase in MRAP was reading its input
from two different data sets. Further break down of the
execution time showed that map task took ≈ 55sec in each
phase to finish, and there were three map phases making
this time equal to 2min, 45sec. In MRAP, this time was ≈
1min, 17sec, because MRAP reads both read and reference
sequence data in the map phase, as opposed to reading either
read or reference sequence in the map phase. Hence, the
time of a single map task in MRAP is greater than the time
of a single map task in MapReduce, but the benefit comes
from multiple stages in MapReduce based implementation.

The MRAP implementation of CloudBurst application ac-
cesses multiple chunks per map task. Multiple chunks per
map task generate remote I/O requests if all the required
chunks are not present on the scheduled node. In this test,
≈ 7 − 8% of the total tasks launched caused remote I/O
accesses, slowing down the MRAP application. Hence, sup-
plemental performance enhancing methods, such as dynamic
chunk replication or scheduling multiple chunks, are required
to be implemented with MRAP framework. Since, this par-

0.5 GB 1 GB 2 GB 4 GB
0

7.5

15

22.5

30

37.5

45

52.5

60

67.5

75

E
xe

cu
tio

n
tim

e
in

 m
in

ut
es

Different Read Sequences

MRAP
MR

Figure 9: The graph compares the execution time
of the Read-mapping algorithm using MRAP and
MapReduce (MR).

ticular access pattern does not access data non-contiguously,
data restructuring is not an appropriate optimization for it.

Astrophysics Data sets: We ran a set of experiments
to demonstrate the performance of MRAP over MapReduce
implementation for reading non-contiguous data sets. In
this example, we use an astrophysics data set and show
how MRAP deals with non-contiguous data accesses. As
described earlier the halo catalog files contains 7 attributes,
i.e. mass (mp), position (x, y, z) and velocity (Vx, Vy and
Vz) for different particles. In the setup, we require our test
application to read these seven attributes for only one par-
ticle using the given catalogs, and scan through the values
once to assign them a group based on a threshold value.
Since MRAP only reads the required data sets, we consider
this case where less data as compared with total data set is
required by the application. The MapReduce application,
reads through the data set and marks all the particles in
the Map phase. The reduce phase filters out the required
particle data. We assume that the data set has 5 different
particles, and at each time step we have attributes of all the
5 particles. Essentially, the map phase reads entire data set,
and the reduce phase writes only 1/5th of the data sets. The
second MapReduce application, scans through this filtered
dataset and assigns the values based on the halo mass. The
MRAP implementation, reads the required 1/5th data in the
map phase, and assigns the values in the reduce phase. We
show the results in Figure 11 and 10 by testing this config-
uration on different data sets.

The application has access to data sets from 1.5− 10 GB in
the form ≈ 6.3 MB files, and the data of interest is ≈ 0.3−2
GB. Figure 10 shows that amount of data read and written
in an MRAP application is ≈ 75% less than the MapReduce
implementation. The reason is that MRAP API allows to
read the data in smaller regions, hence, instead of reading
the full data set only data of interest is extracted in the map
phase. This behavior anticipates significant improvement in
the execution time of the MRAP application when compared

1.5 GB 2.5 GB 5 GB 10 GB
0

1.8

3.6

5.4

7.2

9

10.8

12.6

14.4

16.2

18

B
yt

es
 A

cc
es

se
d

(G
B

)

Size of Halo Catalogs (Ascii Files)

HDFS Bytes Read
HDFS Bytes Written

M
R

A
P

M
R

A
P

M
R

A
P

M
R

A
P

M
R

M
R

M
R

M
R

Figure 10: This graph shows the number of effective
data bytes Read/Written using MRAP and MR.
MRAP only reads the requested number of bytes
from the system, as compared with MR, and shows
≈ 75% fewer bytes read in MRAP.

1.5 GB 2.5 GB 5 GB 10 GB
12

18

24

30

36

42

48

54

60

E
xe

cu
tio

n
T

im
e

in
 m

in
ut

es

Size of Halo Catalogs (Ascii Files)

MRAP
MapReduce

Figure 11: The graph compares the execution time
of an I/O kernel that read Astrophysics data using
MRAP and MapReduce. MRAP shows an improve-
ment of up to ≈ 14%.

15 GB 30 GB 45 B 60 GB
0

1800

3600

5400

7200

9000

10800

12600

14400

16200

18000

E
xe

cu
tio

n
T

im
e

in
 s

ec
on

ds

Data Size

Contiguous Read
1 MB Stripe
256 KB Stripe
64 KB Stripe
32 KB Stripe
16 KB Stripe
1 KB Stripe

Figure 12: This figure shows the performance penal-
ties due to small I/O by running a micro bench-
mark. The non-contiguous read operation with
smaller stripe sizes has more performance penalties
because of the amount of excessive data read and
the number of I/O requests made.

with MapReduce. The results are shown in Figure 11, and
they only show an improvement of ≈ 14%, because HDFS is
not designed for small I/O requests. In the next subsection,
we further elaborate on the small I/O problem, and show
the results of proposed solution i.e. data restructuring.

4.3 Data Restructuring:
In the section 4.2, we saw the performance benefits of MRAP
for applications with different data access patterns, where it
minimized the number of MapReduce phases. Some pat-
terns e.g. non-contiguous accesses incur an overhead in the
form of small I/O, as we demonstrate in the Figure 12. We
used random text generated data sets of 15 GB, 30 GB, 45
GB and 60 GB in this experiment to show that small I/O
degrades performance of read operations. We have used 15
map tasks, each map task reads 1, 2, 3 and 4 GB using small
regions (stripe sizes) ranging from 1 KB to 1 MB. We choose
this range for stripe sizes because 1) there are many appli-
cations that store images which are as small as 1 KB [14],
2) 64 KB is a very standard stripe size used in the MPI/IO
applications running on PVFS2 [9] and 3) 1 MB to 4 MB
is the striping unit used in GPFS [31]. We have used the
default chunk size of 64 MB in this experiment.

Figure 12 shows that smaller stripe sizes have larger perfor-
mance penalties because of the number of read requests that
are issued for striped accesses. 1 KB depicts the worst case
scenario, where for 1 GB per map task will have 1,048,576
read calls which results in much more calls for larger data
sets. Figure 12 also shows the time it takes to perform
contiguous read for the same 1, 2, 3 and 4 GB per map
task. Overall larger stripe sizes tend to perform well because
as they approach the chunk size, they issue fewer read re-
quests per chunk. These requests become contiguous within
a chunk as the stripe size becomes equal to or greater than
the chunk size.

1.5 GB 2.5 GB 5 GB 10 GB
0

10

20

30

40

50

60

70

80

90

100

E
xe

cu
tio

n
T

im
e

in
 m

in
ut

es

Size of Halo Catalogs (Ascii Files)

Data Copy Time
Application Execution Time

M
R

A
P

 +
 D

at
a

C
op

y

M
R

 +
 D

at
a

C
op

y

M
R

A
P

 +
 D

at
a

C
op

y
w

ith
 R

es
tr

uc
tu

rin
g

M
R

A
P

 +
 D

at
a

C
op

y

M
R

A
P

 +
 D

at
a

C
op

y

M
R

A
P

 +
 D

at
a

C
op

y

M
R

 +
 D

at
a

C
op

y M
R

 +
 D

at
a

C
op

y M
R

 +
 D

at
a

C
op

y

M
R

A
P

 +
 D

at
a

C
op

y
w

ith
 R

es
tr

uc
tu

rin
g

M
R

A
P

 +
 D

at
a

C
op

y
w

ith
 R

es
tr

uc
tu

rin
g

M
R

A
P

 +
 D

at
a

C
op

y
w

ith
 R

es
tr

uc
tu

rin
g

Figure 13: This figure shows the execution time of
the I/O kernel for halo catalogs, with three imple-
mentations. MRAP API with data restructuring
outperforms MR and MRAP API implementations.

A contiguous read of 1 GB with 64 MB chunks will result
in reading 16 chunks. On the other hand, with 1 MB stripe
size, there will be 1024 stripes in total for 1 GB set. The up-
per bound of the number of chunks that eventually provides
these 1024 stripes is 1024. Similarly, for 1 KB stripe size,
there are 65536 stripes that generate as many read requests,
and may map to 65536 chunks in the worst case. In short,
we could use some optimizations to improve this behavior,
such as data restructuring, which are studied in this paper.

We run a test by restructuring astrophysics data, and then
read the data to find the groups in the given particle at-
tributes. We restructure data such that the attributes at
different time steps for each particle are stored together. In
the example test case, we run the copy command and re-
structure data. The overhead of running copy command is
shown in the Figure 13. After that we run the application
to read the same amount of data as it was reading in Fig-
ure 11 and show the time it took to execute that operation.
It should be noted that the amount of data read and writ-
ten is the same after data restructuring. Data restructuring
organizes data to minimize the number of I/O requests not
the size of total requested data. In these tests, size of each
request was ≈ 6.3MB, and the number of I/O requests gen-
erated, for example for a 10GB data set is 1625. When data
is restructured, 10 small regions each of 6.3 MB are packed
into a single chunk of 64 MB, and reduce the number of I/O
requests by 10 times. In the figure, we can see that data
restructuring significantly improve the performance by up
to ≈ 68.6% as compared with MRAP without data restruc-
turing and ≈ 70% as compared with MapReduce. The over-
head of data restructuring includes time to read the smaller
regions, and put them into contiguous data chunks.

We would also like to describe that once restructured, subse-
quent runs with the same access patterns will perform con-
tiguous I/O and have further performance improvement over
non-restructured data. We present this case in the Figure 14,
and show that data restructuring is useful for the applica-

run1 run2 run3 run4 run5 run6 run7 run8 run9 run10
0

60

120

180

240

300

360

420

480

540

600

E
xe

cu
tio

n
tim

e
in

 s
ec

Different Runs for Reading Halo Catalogs

MRAP without Data Restructuring
MR
MRAP with Data Restructuring

Figure 14: This figure shows the benefits of Data
Restructuring in the long run. Same application
with three different implementations (MR, MRAP,
MRAP + data restructuring) is run over a period
of time.

tions with repeated access patterns. For the same configu-
ration used in the Figure 13, we run the same application
on 10 GB data set after data restructuring. It is evident
from the graph, that even with the overhead as shown in
Figure 13, data restructuring is giving promising results.

5. RELATED WORK
Large scale data processing frameworks are being devel-
oped because of the information retrieval for web scale com-
puting. Many systems like MapReduce [16, 17], Pig [28],
Hadoop [3], Swift [29, 36], Dryad [22, 23, 35] and many
more abstractions are there that allow large scale data pro-
cessing. Dryad has been evaluated for HPC analytics appli-
cations in [19]. However, our approach is based on MapRe-
duce, which is well-suited for the data parallel applications
where data dependence does not exist and applications run
on a shared-nothing architecture. Some other approaches
like CGL MapReduce [18] also propose a solution to improve
the performance of scientific data analysis applications de-
veloped in MapReduce. However, their approach is funda-
mentally different from our work. In CGL MapReduce they
do not address decreasing the number of MapReduce phases,
rather they mitigate the file read/write issue by providing an
external mechanism to keep read file data persistent across
multiple map reduce jobs. Their approach does not work
with HDFS, and relies on a NFS mounted source.

Scientific applications use high level APIs like NetCDF [7],
HDF5 [4] and their parallel variants [8, 25] to describe the
complex data formats. These APIs and libraries work as
an abstraction with the most commonly used MPI frame-
work by utilizing the MPI File views [11]. NetCDF (Net-
work Common Data Form) is a set of software libraries
and machine-independent data formats that support the cre-
ation, access, and sharing of array-oriented scientific data [7].
The data model represented by HDF5 support very complex
data objects, metadata and a completely portable file for-
mat with no limit on the number or size of data objects in

the collection [4]. We develop ways of specifying access pat-
terns similar to MPI datatypes and MPI File views within
MapReduce. The motivation for our approach is to facili-
tate data-intensive HPC analytics particularly the ones with
access patterns and are developed using MapReduce.

To improve the small I/O problem, many approaches have
been adopted in HPC community particularly for the appli-
cations using MPI/MPI-IO. These techniques are supported
both at the file system and programming abstraction level.
Data sieving allows the processes to read excessive contigu-
ous data set in a given range instead of making small I/O
requests to multiple non-contiguous chunks. The limitation
of this approach is that each process reads excessive amount
of data [34]. Similarly, collective I/O also allows a process
to read a contiguous chunk of data but then using MPI’s
communication framework, it redistributes the data among
multiple processes as required by them [34]. In large-scale
systems with thousand of processes, collective I/O with its
two-phase implementation results in communicating a large
amount of data among processes. Other approaches are for
checkpointing applications like PLFS, which adds a layer be-
tween the application and the file systems and re-maps an
application’s write access pattern to be optimized for the
underlying file system [12]. DPFS provides striping mecha-
nisms that divide a file into small pieces and distribute them
across multiple storage devices for parallel data access [32].
Our approach of data restructuring is significantly different
from these approaches because we re-organize data such that
processes are not required to communicate with each other,
and maintain shared-nothing architecture for scalability.

6. CONCLUSION AND FUTURE WORK
We have developed an extended MapReduce framework to
allow users to specify data semantics for HPC data ana-
lytics applications. Our approach reduces the overhead of
writing multiple MapReduce programs to pre-process data
before its analysis. We provide functions and templates to
specify the sequence matching, and strided (non-contiguous)
accesses in reading astrophysics data, such that access pat-
terns are directly specified in the map phase. For experi-
mentation, we ran a real application from bioinformatics and
an astrophysics I/O kernel. Our results show a maximum
throughput improvement up to 33%. We also studied the
performance penalties due to the non-contiguous accesses
(small I/O requests) and implemented data restructuring to
improve the performance. Data restructuring uses a user-
defined configuration file and reorganizes data such that all
non-contiguous chunks are stored contiguously, and show a
performance gain of up to 70% for the astrophysics data set.

These small I/O requests also map to multiple chunks that
are assigned to a map task, and require schemes to improve
performance by selecting optimal nodes for scheduling map
tasks on the basis of multiple chunk locations. The study
of improving chunk locality is left for the future work. In
the future, we would implement the dynamic chunk replica-
tion and scheduling schemes on a working Hadoop cluster
to address the data locality issue. We would also like to de-
velop more real world HPC data analytics applications using
MRAP, and also explore new applications with their differ-
ent access patterns than the ones described in this paper.

7. ACKNOWLEDGMENTS
This work is supported in part by the US National Sci-
ence Foundation under grants CNS-0646910, CNS-0646911,
CCF-0621526, CCF-0811413, US Department of Energy Early
Career Principal Investigator Award DE-FG02-07ER25747,
and National Science Foundation Early Career Award 0953946.

8. REFERENCES
[1] Astrophysics - Hashed Oct-tree Algorithm.

http://t8web.lanl.gov/people/salman/icp/hot.html.

[2] Cosmology Data Archives.
http://t8web.lanl.gov/people/heitmann/arxiv/codes.html.

[3] Hadoop. http://hadoop.apache.org/core/.

[4] HDF5. http://www.hdfgroup.org/hdf5/.

[5] Hdfs metadata.
https://issues.apache.org/jira/browse/hadoop-1687.

[6] http://www.cisl.ucar.edu/dir/09seminars/roskies
20090130.ppt.

[7] netCDF.
http://www.unidata.ucar.edu/software/netcdf/.

[8] Parallel HDF5.
http://www.hdfgroup.org/hdf5/phdf5/.

[9] Parallel virtual file system version 2.
http://www.pvfs.org/.

[10] Relativistic Heavy Ion Collider.
http://www.bnl.gov/rhic.

[11] MPI-2: Extensions to the message-passing interface.
http://parallel.ru/docs/parallel/mpi2, July 1997.

[12] John Bent, Garth Gibson, Gary Grider, Ben
McClelland, Paul Nowoczynski, James Nunez, Milo
Polte, and Meghan Wingate. PLFS: A checkpoint
filesystem for parallel applications. In Supercomputing,
2009 ACM/IEEE Conference, Nov. 2009.

[13] Dhruba Borthaku. The Hadoop Distributed File
System: Architecture and Design.

[14] Philip Carns, Sam Lang, Robert Ross, Murali
Vilayannur, Julian Kunkel, and Thomas Ludwig.
Small-file access in parallel file systems. In Proceedings
of the 23rd IEEE International Parallel and
Distributed Processing Symposium, April 2009.

[15] Avery Ching, Alok Choudhary, Kenin Coloma, Wei
keng Liao, Robert Ross, and William Gropp.
Noncontiguous I/O accesses through MPI-IO. In
CCGRID ’03: Proceedings of the 3st International
Symposium on Cluster Computing and the Grid, page
104, Washington, DC, USA, 2003. IEEE Computer
Society.

[16] Jeffrey Dean. Experiences with mapreduce, an
abstraction for large-scale computation. In PACT ’06:
Proceedings of the 15th international conference on
Parallel architectures and compilation techniques,
pages 1–1, New York, NY, USA, 2006. ACM.

[17] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
simplified data processing on large clusters. In
OSDI’04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design &
Implementation, pages 10–10, Berkeley, CA, USA,
2004. USENIX Association.

[18] J. Ekanayake, S. Pallickara, and G. Fox. Mapreduce
for data intensive scientific analyses. In eScience,
2008. eScience ’08. IEEE Fourth International

Conference on, pages 277–284, 2008.

[19] Jaliya Ekanayake, Thilina Gunarathne, Geoffrey Fox,
Atilla Soner Balkir, Christophe Poulain, Nelson
Araujo, and Roger Barga. Dryadlinq for scientific
analyses. In E-SCIENCE ’09: Proceedings of the 2009
Fifth IEEE International Conference on e-Science,
pages 329–336, Washington, DC, USA, 2009. IEEE
Computer Society.

[20] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung. The Google File System. In SOSP ’03:
Proceedings of the nineteenth ACM symposium on
Operating systems principles, pages 29–43, New York,
NY, USA, 2003. ACM.

[21] William Gropp, Rajeev Thakur, and Ewing Lusk.
Using MPI-2: Advanced Features of the Message
Passing Interface. MIT Press, Cambridge, MA, USA,
1999.

[22] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: distributed data-parallel
programs from sequential building blocks. EuroSys
’07: Proceedings of the ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007,
pages 59–72, 2007.

[23] Michael Isard and Yuan Yu. Distributed data-parallel
computing using a high-level programming language.
In SIGMOD ’09: Proceedings of the 35th SIGMOD
international conference on Management of data,
pages 987–994, New York, NY, USA, 2009. ACM.

[24] YongChul Kwon1, Dylan Nunley2, Jeffrey P.
Gardner3, Magdalena Balazinska4, Bill Howe5, and
Sarah Loebman6. Scalable clustering algorithm for
n-body simulations in a shared-nothing cluster.
Technical report, University of Washington, Seattle,
WA, 2009.

[25] Jianwei Li, Wei keng Liao, A. Choudhary, R. Ross,
R. Thakur, W. Gropp, R. Latham, A. Siegel,
B. Gallagher, and M. Zingale. Parallel netcdf: A
high-performance scientific i/o interface. In
Supercomputing, 2003 ACM/IEEE Conference, pages
39–39, Nov. 2003.

[26] Xuhui Liu, Jizhong Han, Yunqin Zhong, Chengde
Han, and Xubin He. Implementing WebGIS on
Hadoop: A Case Study of Improving Small File I/O
Performance on HDFS. In IEEE Cluster ’09, 2009.

[27] Andréa Matsunaga, Mauŕıcio Tsugawa, and José
Fortes. Cloudblast: Combining mapreduce and
virtualization on distributed resources for
bioinformatics applications. In ESCIENCE ’08:
Proceedings of the 2008 Fourth IEEE International
Conference on eScience, pages 222–229, Washington,
DC, USA, 2008. IEEE Computer Society.

[28] Christopher Olston, Benjamin Reed, Utkarsh
Srivastava, Ravi Kumar, and Andrew Tomkins. Pig
latin: a not-so-foreign language for data processing. In
SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data,
pages 1099–1110, New York, NY, USA, 2008. ACM.

[29] Ioan Raicu, Yong Zhao, Catalin Dumitrescu, Ian
Foster, and Mike Wilde. Falkon: a fast and
light-weight task execution framework. In SC ’07:
Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, pages 1–12, New York, NY, USA,

2007. ACM.

[30] Michael C. Schatz. Cloudburst: highly sensitive read
mapping with mapreduce. Bioinformatics,
25(11):1363–1369, 2009.

[31] Frank Schmuck and Roger Haskin. GPFS: A
shared-disk file system for large computing clusters. In
FAST ’02: Proceedings of the 1st USENIX Conference
on File and Storage Technologies, page 19, Berkeley,
CA, USA, 2002. USENIX Association.

[32] Xiaohui Shen and Alok Choudhary. DPFS: A
Distributed Parallel File System. Parallel Processing,
International Conference on, 0:0533, 2001.

[33] Volker Springel, Simon D. M. White, Adrian Jenkins,
Carlos S. Frenk, Naoki Yoshida, Liang Gao, Julio
Navarro, Robert Thacker, Darren Croton, John Helly,
John A. Peacock, Shaun Cole, Peter Thomas, Hugh
Couchman, August Evrard, Jorg Colberg, and Frazer
Pearce. Simulations of the formation, evolution and
clustering of galaxies and quasars. Nature,
435(70422):629–636, June 2005.

[34] Rajeev Thakur, William Gropp, and Ewing Lusk.
Data sieving and collective I/O in ROMIO. In
FRONTIERS ’99: Proceedings of the The 7th
Symposium on the Frontiers of Massively Parallel
Computation, page 182, Washington, DC, USA, 1999.
IEEE Computer Society.

[35] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu,

Úlfar Erlingsson, Pradeep Kumar Gunda, and Jon
Currey. Dryadlinq: A system for general-purpose
distributed data-parallel computing using a high-level
language. In Richard Draves and Robbert van Renesse,
editors, OSDI, pages 1–14. USENIX Association, 2008.

[36] Yong Zhao, M. Hategan, B. Clifford, I. Foster, G. von
Laszewski, V. Nefedova, I. Raicu, T. Stef-Praun, and
M. Wilde. Swift: Fast, reliable, loosely coupled
parallel computation. In Services, 2007 IEEE
Congress on, pages 199–206, July 2007.

APPENDIX
A sample configuration file for a strided access pattern is as
follows.

<configuration>
Defining structure of the new file
<property>
<name>strided.nesting level</name>
<value>1</value>
<description>It defines the nesting levels. < /description>
<property>
<name>strided.region count</name>
<value>100</value>
<description>It defines the number of regions in a non-contiguous
access pattern. < /description>
</property>
<property>
<name>strided.region size</name>
<value>32</value>
<description>It defines the size in bytes of a region, i.e. a stripe
size. < /description>
</property>
<property>
<name>strided.region spacing</name>
<value>10000</value>
<description>It defines the size in bytes between two consecutive
regions, i.e. a stride. < /description>
</property>
</configuration>

