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Abstract

In this thesis, we present a data-driven batch schedulisigisy Current CPU-centric batch schedulers ignore
the data needs within workloads and execute them by linkiegittransparently and directly to their needed data.
When scheduled on remote computational resources, tlgarglsolution of direct data access can incur an order
of magnitude performance penalty for data-intensive vaa#tt.

To concretely motivate this problem, we provide here a thtainalysis of six current data-intensive, scientific,
batch workloads. From this analysis, we derive quantiatisunds on expected scalability and demonstrate the
infeasibility of scheduling these workloads using curf@RiU-centric systems that lack data-awareness.

Adding data-awareness to CPU-centric batch schedulewsk careful coordination of both data and CPU
allocation thereby reducing the performance cost of reneatution. To achieve this coordinated schedule,
however, batch schedulers need complicity from storagesysto allow transfer of control over low-level storage
decisions from the storage system to the batch schedulexldW explicit storage control, the batch scheduler
can then carefully coordinate storage and CPU allocatisitgyla variety of data-driven scheduling policies.

We offer one such system. A modified batch scheduling systemnunderstands the nature of batch work-
loads as revealed by our new measurement study, that legetlag explicit storage control provided by our new
distributed file system, and that can use our new analyticadligtive models to select one of the five distinct
data-driven scheduling policies that we have created.
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Chapter 1

Introduction

Scheduling batch workloads in a distributed environmeiwhilenging. So challenging, in fact, that the data
needs of these workloads are mostly ignored by current bethkedulers. Batch schedulers can ignore these
data requirements by transparently transforming diskithenvironments to resemble the home environments of
executing programs. They perform this transformation bpgugterpostion and indirection. In doing so, they
enable a technique called remote I/O in which 1/O is red@@cuch that the programs access remote data directly.

Instead of considering the data requirements, batch st#rsedare CPU-centric in that they consider only
the computational needs of batch workloads. Data movemdhiese CPU-centric scheduling systems therefore
happens as an unplanned side-effect of job placement. As executes and initiates 1/0O operations, only then
does data flow to and from the job.

For many years, this approach has worked well and many impioproblems in genomics [5], video produc-
tion [101], simulation [22], document processing [36],alatining [4], electronic design automation [35], financial
services [81], and graphics rendering [64] have been salgaty the increased computational power offered by
batch computing.

However, two recent trends now threaten this technologyst,Riecent innovations in grid computing allow
users, and batch schedulers, access to an increasingljputisti set of remote computational resources. The
second trend is that datasets are increasing in size angkthigh has been observed to outpace the corresponding
increase in the ability of computational systems to trartsged process data [53]. Techniques which once worked
well for CPU-intensive workloads in a local environment caiffer orders of magnitude losses in throughput when
applied to data-intensive workloads in remote environsient

In this dissertation, we offer one approach to this problatata-driven batch schedulemshich consider
equally the data and CPU requirements of batch workloads.

As Denning noted in early computer systems that memory neanagt and process scheduling must be con-
sidered in a coordinated fashion [34], here we make the airabservation that batch scheduling systems can not
schedule their workloads independently of storage managem

Data-driven batch schedulers can coordinate the allatatictorage with the allocation of CPU and thereby
avoid the large performance drop-offs suffered by currectimiques. Developing these new data-driven schedulers
is challenging however. As we will see, data-driven batdhedalers require some additional basic workload
information, support from the storage system, new schegudblicies, and mechanisms to guide policy selection.

Figure 1.1 graphically illustrates the value of our conttibn. Shown are the slowdowns in total time to
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Slowdown

Data Intensive Jobs in Remote Environment

Figure 1.1:Slowdown in Total Time To Completion. This graph depicts the best-case performance for runnimgdata-
intensive applications on remote resources. The slowddwmws here is relative to our approach and occurs when these
workloads are scheduled using existing CPU-centric batttedulers which use remote 1/O to bind applications to their
data. For these experiments, we are showing the slowdowaotah time to completion for running 64 instances of each
application on a cluster of sixteen compute nodes.

completion for five scientific batch workloads when the wodds are scheduled using the current CPU-centric
scheduling approach as opposed to our new data-drivenagpro

In the remainder of this chapter, we will more carefully defimhat is meant by a batch scheduler, a batch
scheduling system, and batch workloads. We will examine tloanging trends have affected current batch sys-
tems and have created the challenge we are addressing her¢hewoffer our proposal for data-driven batch
schedulers and discuss our contributions towards ansgvéitis proposal. We conclude with a brief organizational
overview of the rest of the dissertation.

1.1 Batch Computing

1.1.1 Batch Scheduling Systems

Batch computing refers to a system of computing in which & dees not directly dispatch programs interac-
tively for execution but rather delegates this responigjtiib a batch scheduling system. The batch scheduler then
in turn dispatches the programs for execution, monitors 8tatus, and returns their output upon completion to
the user. Although batch schedulers are typically softywangrams themselves, and we will refer to them as such
in this dissertation, this is not necessarily the case;dh fa the early days of card reading computers, the “batch
scheduler” was often a human operator responsible forrigezirds into a computer [99].

Due to this separation between the user and the progrant) bamputing is not generally well-suited nor
designed for applications which require frequent intéoast with the users. More appropriate are long running
programs that do not require user input after initializatiBatch schedulers are appreciated by users because they
assume the drudgery of program dispatching and monitoridgrae the user for more creative endeavors.

In addition to being useful for executing and monitorlogg runningprograms, batch schedulers are useful
when users haveultiple programs to execute. Here again, batch schedulers can eghendrudgery and the
time-consuming process of dispatching, monitor, and ctiig the output of these multiple programs.

Finally, batch schedulers are extremely useful in disteducomputational settings where they can dispatch



multiple programs in parallel across multiple computatioresources. In such a case, in addition to its other
duties of dispatching, monitoring, and collecting outgh& batch scheduler is also responsible for monitoring a
collection of computational resources and implementinghesie for matching computational resources with the
programs that need them.

1.1.2 Batch Workloads

To use batch scheduling systems, users describe the jopsvirg executed along with instructions about
how to execute these jobs. These instructions may contimiation about external libraries that the programs
need, or arguments to be passed to the programs, or infamaliout the input and output paths for job 1/O.
Some scheduling systems allow the user to supply additiswalirements or preferences about the execution
environment for their jobs such as preferring machines waiftleast a gigabyte of memory or requiring machines
with file system access to particular files [85].

Although a batch workload might consist of only a single jalis more typical for many such jobs to be
described together and submitted to the batch system watkingle workload. There are several reasons why a
user might submit several jobs simultaneously insteadstfgisingle job.

One such reason might be that the user has now automatedy sihgle batch submission, work that was
previously done interactively. For instance, this work htigonsist of running a single job to produce some output
data, then running a second job to perform some transfoomafithe data produced by the first job. For example,
the user might be using proprietary software that can not ddified for one of these jobs. Therefore, instead of
submitting a single job to the batch system, the user sulariitsrtical” sequence of jobs which have an ordering
imposed between them. This ordering must be preserved dihe tata semantics of the jobs; the child cannot
correctly execute until the parent has completely produkedutput data which becomes input to the child.

Additionally, users often submit multiple vertical seques simultaneously such that their workloads consist
of a two-dimensional structure of some number of verticgusaces of jobs. Typically, each vertical sequence
of jobs in a workload is comprised of the same set of jobs. Tifierdnce between each vertical sequence is that
each is initiated with some difference in input parameteigput files. For example, users often submit the same
vertical sequences of jobs multiple times to perform a patansweep [70].

1.2 Recent Trends

Because of the tremendous success that CPU-centric batetdwders have had, they have attracted a larger,
and more diverse, set of users. As with any successful témiyodater users are less likely to be technically
savvy and are more likely to push the technology beyond itgral design. The result is that CPU-centric batch
schedulers are being increasingly used to schedule datasive workloads submitted by users who may not
understand this mismatch.

This mismatch between CPU-centric scheduling and datséinte workloads is further exacerbated by two
emerging trends in distributed computing: an increasdizaitiion of remote resources, and growth in dataset sizes.

Users, and batch scheduling systems, are increasingly tikéave access to remote computational resources.
Although many users and organizations have sufficient localputational resources to execute their workloads,
there will always exist some set of users that wish to scleethdir workloads on remote resources. The growth
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Figure 1.2:Worldwide Batch Computing Resources. This map shows a sampling of the batch computing resouregs th
were available within only the Condor scheduling system @mdid of 2004. This one snapshot contains almost 40,000 nodes
spread over roughly 1,000 clusters. Reproduced with pesiorisfrom [108].

and success of grid computing [45] is responsible for thisgased access to remote resources and is attested to
by the recent and wide-spread media attention surroundidgegmputing [28, 71, 72, 105].

An example of the availability of wide-area resource shmigiseen in Figure 1.2. This figure is a snapshot
from March 2004 of only a small subset of clusters availabtebfitch computing [108]. This subset contains only
clusters running the Condor system which have voluntagiged to be included in this measurement. Although
the total is difficult to estimate, this subset alone corga@imost 40,000 nodes spread over roughly 1,000 clusters.

The second exacerbating trend has been a recent explosimthgn dataset size. The size of users’ files has
been reported to increase by an order of magnitude thres imtbe last twenty-five years [13, 89, 118]. Similar
observations have been made in batch computing as well 3vith the most cited example being the data to be
produced by the Large Hadon Collider at the European phgsicter CERN [1]. When this operation commences
in 2007, it is expected to produce several petabytes of lmthand derived data annually for approximately 15
years.

Difficulties due to the increasing size of data are furthexoexbated because this growth has been observed to
outpace the corresponding increase in the abilities of ematipnal systems to move and process data [53].

1.3 The Problem

Current CPU-centric batch schedulers are ill-equippedatudie these emerging trends. Ignoring the 1/O of
workloads and allowing it to occur as an unplanned sidecefigjob placement can result in significant throughput
loss when scheduling data-intensive workloads on remateurees.

Consider, for example, a user who wishes to run a batch wadklo this environment. After developing
and debugging the workload on a home system, the user is teady batches of hundreds or thousands on all
available computing resources, using remote batch execsyistems such as Condor [69], LSF [119], PBS [109],
or Grid Engine [104]. In Figure 1.3 is a depiction of this aiion in which the user’s jobs are executing on several
machines in different compute clusters scattered acreswithe-area network.

Each job in the user’s workload is expected to use much of éineesinput data, while varying parameters



remote cluster remote cluster

remote cluster home cluster

Figure 1.3:The Target Environment. The figure presents a depiction of a typical CPU sharing emritent. The user
has their important data stored on a storage server in theimie cluster, and is running jobs on machines at geograplyical
dispersed clusters. Each box represents a machine, ancdhzukes are machines upon which the user is currently rgnnin
jobs. Input data and output data in this environment must bead between the home storage server and the jobs; temporary
data need not be returned to the home storage server.

and other small inputs. The necessary input data beginseoustér'shome storage servde.g, an FTP server),
and the output data, when generated, should eventually henitted to this home server. Current CPU-centric
batch computing systems present a user with two optionsuforing a workload: remote 1/0, which is the default
behavior, and pre-staging which requires additional, afidtantial, user effort.

The first option, remote /O, is to simply submit the worklo@adthe remote batch system and allow direct
processing on remote data. With this option, all input antbwuoccur on demand back to the home storage
device. Although this approach is simple, the throughpu déata-intensive workload will be drastically reduced
by two factors. First, wide-area network bandwidth is ndfisient to handle simultaneous reads from many data-
intensive pipelines running in parallel. Second, all otiipulirected back to the home site, including temporary
data that is not needed after the computation completes.

The second option, pre-staging, is for the user to manualtjigure the system to replicate input data sets in
the remote environment. This approach requires the useavi® dr obtain an account in the remote environment,
identify the necessary input data, transfer that data todhmte site, log into the remote system, unpack the data
in an appropriate location, configure the workload to recythe correct directories (possibly usihgnp for
temporary data), submit the workload, and manually dedl aiiy failures.

The entire process must be repeated whenever more datatodeelprocessed, new batch systems become
available, or existing systems no longer have capacity fier a6 the user. As is obvious from the description,
this configuration process is labor-intensive and erronpr additionally, usingt np can be challenging because
its availability cannot be guaranteed. Another limitatisrthat because the user has made these configurations
independently of the scheduling system, the schedulingsys not able to correctly checkpoint job output data.
Still, many users go to these lengths simply to run their \oz#s.

Traditional distributed file systems would be a better sotubut are typically not available due to admin-
istrative desire to preserve autonomy across domain boiesdaEven were such systems available, their fixed
policies prevent them from being viable for data-intendiatch workloads. Consider, for example, BLAST [5],

a commonly used genomic search program, consisting of &egimlg that searches through a large shared dataset
for protein string matches.

Assume a user were to run BLAST on a compute cluster of 100segigipped with a conventional distributed



file system such as AFS or NFS. With cold caches, all 100 nodiésndividually (and likely simultaneously)
access the home server with the same large demands, rgsolfoor performance as the dataset is redundantly
transferred over the wide area network. Once the cachesaied, each node will run at local disk speeds, but
only if the dataset can fit in its cache. If it cannot, the nodk thrash and generate an enormous amount of
repetitive traffic back to the home server. Further, lackiarkload information, each node must employ some
mechanism to protect the consistency and availabilitysoféiched data.

1.4 Our Proposal

To address this problem, we propatsgta-driven batch scheduling which batch schedulers consider equally
the data and CPU requirements of batch workloads. Adding-di@ten scheduling to batch schedulers is not
straight-forward; we propose that four necessary compsrierdevelop these schedulers are currently missing:

e Workload knowledge. To develop data-driven batch schedulers requires detaivledge both about the
general structure of batch workloads as well as specifidldetaout the particular workload to be scheduled.

e Distributed file-system support. Data-driven batch schedulers cannot implement datagadicies in
isolation. Rather they require support from the distriduite-system such that the batch scheduler, and not
the distributed file system, can carefully control exactiyidata is allocated.

e Data-driven scheduling policies.Of course, having storage control by itself is insufficieBatch sched-
ulers need new scheduling policies to plan and control tloedioated allocation of data and CPU.

e Policy selection. Finally, batch schedulers need some mechanism by which daeymake predictions
about the relative performance of different data-drivamesitiling policies and select the policy that is most
appropriate for any particular workload.

1.5 Our Contributions

We offer in this dissertation one such approach to the abmygogal. A modified data-driven batch scheduling
system that understands the nature of batch workloads ealeghby our new measurement study, that leverages the
explicit storage control provided by our new distributed filystem, and that can use our new analytical predictive
models to select one of the five distinct data-driven schiegydolicies that we have created. There are five main
contributions in this dissertation:

e Profiling workloads. This dissertation is built upon a solid foundation of engatimeasurement. In Chap-
ter 2, we present our measurement study of six, importargntific, data-intensive, batch workloads. In
addition to providing a unique and detailgdantitativestudy of batch workloads, these measurements are
important because they allow usdoalitatively characterize the structure of these workloads and create a
taxonomy by which they can be reasoned about.

We term this structure batch-pipeline workloa@nd use it to characterize the different types of data within
batch workloads. We then examine the sharing behavior fibir ethese types of data. The final contribution
of our measurement study is an analysis of the scalabilithefix studied applications. We conclude that



batch scheduling systems must understand the batch+mpediture of their workloads in order to achieve
high degrees of scalability (into the thousands) for datarsive workloads.

Distributed file system support. Batch scheduling systems cannot efficiently schedule idétasive work-
loads in isolation but rather must work in conjunction witfil@system that provides transport and storage of
data. Traditional distributed file systems, such as NFS &, Ahave been targeted at a particular computing
environment, namely a collection of interactively use@mlimachines. However, as past work has demon-
strated, different workloads lead to different desigag( FileNet [36] and the Google File System [50]); if
assumptions about usage patterns, sharing characteristiother aspects of the workload change, one must
reexamine the design decisions embedded within distidbiilsystems.

In Chapter 4, we make the similar observation that the spetifaracteristics of batch scheduling systems
force a reexamination of the distributed file system. We katecthat current distributed file systems are not
well-suited for batch workloads as they hide control of aggr decisions such as caching, consistency, and
replication. As batch schedulers have access to basic,andrdic, workload information, they are well
positioned to make these storage decisions more apprelgridio do so however, batch schedulers need a
distributed file system that explicitly allows external t@h

We allow this by introducing a new distributed file systeng Batch-Aware Distributed File System (BAD-
FS), and a modified data-driven batch scheduling system. &N\ data-driven batch scheduling by
exporting explicit control of storage decisions from thstdbuted file system to the batch scheduler. Using
some simple data-driven scheduling techniques, we demad@shat our modified system can achieve orders
of magnitude throughput improvements both over currentidiged file systems such as AFS as well as over
current batch scheduling techniques such as remote I/O.

Simulation framework. A minor contribution of our work is the development of a dgtdibatch scheduling
simulation framework, BAD-Sim, for studying data-drivesheduling policies for batch-pipeline workloads.
This simulator provides a detailed and nuanced view of ttséegy including the low-level components of
the distributed system such as memory, disks, and netwerkgel as the higher-level services which run
upon them. BAD-Sim includes the full machinery of BAD-FS aslivas our modified batch scheduling
system.

Data-driven scheduling. The fourth major contribution of this dissertation is oundst of data-driven
policies for scheduling batch-pipeline workloads. Exiegdon the simple policies we develop to illustrate
the importance of external storage control, in Chapter 4usthér develop five distinct, and more complex,
data-driven policies each of which leverages externabgmicontrol in slightly different ways.

Multiple policies are needed because there are severarpehce pitfalls possible when scheduling batch-
pipeline workloads in an environment in which storage isiffisient for the complete data needs of the
workloads. We identify three such pitfalls. First is an euélization of the network connection to refetch
data which could otherwise have been cached. Second is anutitidation of the available CPUs due to
concurrency limits imposed by data requirements. The tpitfall is an underutilization of the available
CPUs due to barriers within the workload.

Each policy we develop strives to minimize a particularagbitht the possible expense of the other two. As
the relative cost of each pitfall is dependent on differdmracteristics of the workload and the compute



environment, each policy may be better in some situationisvaosrse in others. The final contribution we
make here is to enumerate the set of workload and enviromingmracteristics which influence the relative
performance of the different policies and quantify how eelcaracteristic affects each policy. We discover
that what might be the best policy in some situations may et cause a loss of throughput of over 80%.

e Predictive modelling. Having quantified that the different data-driven policies aniquely sensitive to
different workload and environmental characteristics, fthal contribution that we make in this dissertation
is to create predictive analytical models that estimatedinédme for scheduling a batch-pipeline workload
using each particular data-driven policy.

We then demonstrate the value of these models by comparémg tih an ideal model which always makes
perfect predictions. Across the range of workload and envitental characteristics for three different syn-
thetic workloads, we find that our model consistently staithinv5% of ideal and never exceeds 30%.

1.6 Organization

The organization of the rest of this dissertation is as fedlo In Chapter 2, we provide an in-depth analysis
of batch workloads and present a measurement study of shesétworkloads from a range of the computational
sciences. In Chapter 3, we continue our discussion of whyentirapproaches for scheduling batch-pipeline
workloads on remote resources suffer from a range of pedgoom problems and present results illustrating how
these problems can be addressed with our new distributedytem BAD-FS. Then in Chapter 4, we examine
exactly how the batch scheduler can use this new distrildileeslystem to coordinate the allocation of data with the
allocation of compute resources and can use our prediatiakytical models to select the appropriate data-driven
scheduling policy for a particular workload in a particutampute environment. We compare our dissertation to
other related work in Chapter 5 and we conclude and discuigesfwork in Chapter 6.



Chapter 2

Profiling Batch-Pipeline Workloads

For many years, researchers have studied workload chasticgin order to evaluate their impact on current
and future systems architecture [14, 66, 74]. Most of theseipus application studies have focused on the
detailed behavior of single applications, whether sedakat parallel. For example, the caching behavior of the
SPEC workloads has long been a topic of intense scrutiny, [28Y the communication characteristics of parallel
applications has similarly been well documented [31, 116]1

However, applications are not always used in isolation odpction settings. Particularly in computational
science, the desired end-result is often the product of apgaod applications, each of which may be run hun-
dreds or thousands of times with varied inputs. Such appits are frequently executed in a high throughput
batch scheduling system such as Condor [69] and may be nthrimghigh-level workflow software such as
Chimera [46].

In this chapter, we present a study of six production sdiemntiorkloads. These workloads are from a wide and
diverse cross-section of the computational sciencesydimy astronomy, biology, geology, and physics; further
we believe they are representative of an even broader diasportant workloads.

We first present a general overview for each of the worklodescribing briefly the scientific goal of each, and
presenting their general structures in terms of job and diegpendencies. We then define and describe a common
structure for these workloads that we terrbadch-pipelineworkload. Batch-pipeline workloads are a well-known
abstraction in batch computing, yet they have been hemetafionamed, only vaguely defined and ill-understood.
In this chapter, we create a descriptive taxonomy that allosers, and batch scheduling systems, to strategically
reason about the complex dependencies within these waikloa

We then present a thorough characterization of the compng memory, and 1/0O demands of these work-
loads. Although individually a single job from these workits does not place a tremendous load on system
resources, we show that in combination the loads can be tredmving.

We then characterize the sharing that occurs in the worklbgdlifferentiating between different types of I/O.
Through this differentiation, we show that shared /O is doeninant component of all 1/O traffic within these
batch-pipeline workloads.

Most importantly, we analyze the implications for systerasign and find that wide-area network bandwidth
poses a serious scalability problem for these applicationkess attempts are made to eliminate shared 1/0. Suc-
cessful systems for these workloads must segregate theetyfpres of 1/O traffic in order to be able to scale success-
fully. We submit that pipeline data is at least as signifiaaproblem as batch data, and elucidate why traditional
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file systems are not appropriate for these workloads. Tlatyais then leads into Chapter 4 in which we discuss a
system we built using these design guidelines.

2.1 Applications

The applications characterized here were chosen from & raihgcientific disciplines. The selection criteria
were that the applications are attacking a major scientifjeative, are composed of sequential applications, and
require a scalable computing environment to accomplish thgoughput. We focus mostly on six applications
but in some measurements SETI@home [102] is included asna gloieference. With guidance from users, we
configured the workloads and selected the input parametecsrtespond to production use. Diagrams of the
applications are shown in Figure 2.1.

BLAST [5] searches genomic databases for matching proteins aelatides. Both queries and archived data
may include errors or gaps, and acceptable match similanigrameterized. Exhaustive search is often necessary.
A single executablehl ast p, reads a query sequence, searches through a shared dasaiobsetputs matches.

IBIS [41] is a global-scale simulation of Earth systems. IBISwdates effects of human activity on the global
environment,i.e.,, global warming.i bi s performs the simulation and emits a series of snapshotseofltibal
State.

CMS [56] is a high-energy physics experiment to begin operati@006. CMS testing software is a two-stage
pipeline; the first stage;nki n, given a random seed, generates and models the behavicredéated particles.
The output is a set of events that are fe@d tasi m which simulates the response of the particle detector fiflaé
output represents events that exceed the triggering wiceshthe detector.

Nautilus [103] is a simulation of molecular dynamics. An input configiion describes molecules within a
three-dimensional space. Newton’s equation is solveddon @article. Incremental snapshots are taken to periodi-
cally capture particle coordinates. The final snapshottengbassed back to the program as an initial configuration
for another simulation. Eventually, all snapshots are eted into a standard format usithg n2coor d and
consolidated into images usingsnol .

Messkit Hartree-Fock (HF) [30] is a simulation of the non-relativistic interactionstiyeen atomic nuclei
and electrons, allowing the computation of properties fa&chond strengths and reaction energies. Three distinct
executables comprise the calculati@et up initializes data files from input parametees, gos computes and
writes integrals corresponding to the atomic configuratiamd scf iteratively solves the self-consistent field
equations.

AMANDA [57] is an astrophysics experiment designed to observeicasrants such as gamma-ray bursts by
collecting the resulting neutrinos through their intei@ctwith the Earth’s mass. The first stage of the calibration
software,cor si ka, simulates the production of neutrinos and the primaryraaion which creates showers of
muons. cor ana translates the output into a standard high-energy physitedt. nmc propagates the muons
through the earth and ice while introducing noise from afphesic sources. Finallyanmasi n2 simulates the
response of the detector to incident muons.

SETI@homeis a search for meaningful patterns within space noise whichld indicate the presence of
extraterrestrial intelligence. Users who wish to partgin this cooperative endeavor all&ETI to run as a
background process on their computer. This process rafigatewnloads different sections of satellite imagery
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Figure 2.1: Application Schematics. These schematics summarize the structure of each applicatpeline. Circles
indicate individual processes, labeled with the name asttirction counts. Rounded boxes indicate data private ipaline.
Double boxes indicate data shared between pipelines inehb@trrows indicate data flow.
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and searches within them.

Some of the applications have a variable granularity. Ba#S@nd AMANDA process a variable number of
small, independently generated events. For these appfisatwe chose pipeline sizes of 250 events (CMS) and
100,000 showers (AMANDA), corresponding to typical protimec use. In both cases, the CPU and I/O resources
consumed by a pipeline scale linearly with the number of BvdBIS has multiple datasets of differing resolutions
in which the granularity of the resolution reflects the sizéhe dataset. In these experiments, we used a medium
sized dataset. IBIS and Nautilus perform single simulatioh variable length, while SETI, BLAST, and HF
operate on a work unit of fixed size.

Across these applications, the following characteristibdviors were observed:

A diamond-shaped storage profile Small initial inputs are generally created by humans oralidation tools
and expanded by early stages into large intermediate seduilese intermediates are often reduced by later stages
to small results to be interpreted by humans or incorporatieda database. Intermediate data, which often serves
as checkpoint or cached values, may be ephemeral in nature.

Multi-level working sets. Users can easily identify large logical collections of da¢gded by an application,
such as calibration tables and physical constants. However given execution, applications tend to select a
small working set of which users are not aware; this has fsgmit consequences for data replication and caching
techniques.

Significant data sharing. Although each application has a large configuration spa®rsiwsubmit large num-
bers of very similar jobs that access similar working setst éxample, analysis of Condor logs shows that the
usual batch size is over a thousand for AMANDA, CMS and BLAHHis property can be exploited for efficient
wide-area distribution over modest communication links.

2.2 Batch-Pipeline Workloads

One common characteristic of the applications that we stui@ that many of them consist of multiple jobs
that are logically dependent on each other such that a “cfaldican run only after its parent job successfully
completes. Within batch computing users often submit slatgmber of these vertical sequences within a single
workload each with slightly different input data or paraeret

We term this two-dimensional structurdatch-pipeline workloa@nd present in Figure 2.2 a diagram showing
both the structure of this type of workload and the relatifps between jobs and data within it. Although not all
batch workloads fit this pattern, many do and a study of thpe tyf workload is the focus of this dissertation.

In the diagram, circles represents jobs within the worklaad rectangles represent data. There are several
things to notice here. First, jobs within a vertical sequerapipeling have dependencies between them such that
each subsequent job may correctly execute only after theouijob in the pipeline has completed. Notice further
how parent jobs “communicate” with their children througle file system by leaving output data which becomes
input data to the children.

We classify three distinct types of data within a batch-ligeworkload: pipeline data, endpoint data, and
batch data. The first type is the data passed from parent b which we refer to apipelinedata. The second
type of data isendpointdata which refers to the input data to the initial job in a pipe and the output data
produced by the final job in a pipeline.

For the initial job in a pipeline, the input data is not proddaynamically by a parent during the execution of
the workload but rather must be produced prior to the wokaubmission. The final job in a pipeline is similar
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Figure 2.2:A Batch-Pipeline Workload. This diagram shows the two-dimensional structure of a baipeline workload
as well as the relationships within it between jobs and d&liecles represent processes and rectangles representvdaitzh
are labeled according to data type.

as it creates endpoint output data which is not consumed lypseguent child job. The pipeline data passed
between jobs is typically not interesting to the user andlmaconsidered temporary data; the endpoint outputs
however represent the results of the workload and corstite output that the batch scheduler returns to the user.

The third type of data ibatchdata which is data read shared by each pipeline. Finally,caseenience, we
sometimes refer in common to both pipeline and endpoint dsaivate data as it is accessed by only a single
pipeline as opposed to the batch data which is accessed hipl@pipelines.

By way of example, consider at a high level the BLAST appi@af5]. BLAST searches for protein and
nucleotide string matches within a genomic dataset. Themendataset which is searched by each pipeline is
batch data. Each pipeline searches for a different protemudeotide. Unique command line arguments or input
data files instruct each pipeline as to which protein or ratdde to search for. This unique data is referred to as
endpoint input data. The results of the search which comtédmmation as to whether any matches were found
and their location within the genome is termed the endpaiiput. Finally, any temporary data produced, such as
a transformation of the dataset or raw results which wersemently refined, is the temporary pipeline data.

Finally, we assume that, from the perspective of the bathbdding system, the jobs within these workloads
cannot be modified. In our experience, many scientific wartttoare the product of years of fine-tuning, and when
complete, are viewed as untouchable. Also, ease of use riamp; the less work for the user, the better.
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2.3 Methodology

For each application, the CPU, memory and 1/O behaviors aptuced. The CPU and memory behavior is
tracked with available hardware counters and statistioan3trument 1/O behavior, of a shared-library interposi-
tion agent [106] is used that replaces the 1/O routines irstAedard library. For each explicit I/0 event requested
by the application, the library records an event markingstiagt and end of the operation, the instruction count,
and other details about the 1/0O request. This technique eapplied to any application that is dynamically linked.

Access to memory-mapped files is traced with a user-levehpagchnique using the POSIXpr ot ect
feature. Access to memory-mapped regions generates deustpage fault (SIGSEGV) that may be handled
and traced by the shared library. Only one application (BLCAGses memory-mapped 1/O. In the analysis that
follows, page faults are considered equivalent to expiézid operations of one page size and non-sequential access
to memory-mapped pages is recorded as an explicit seektimpera

As with any such technique, the method necessarily intesfarnth the measurement. This phenomenon, the
Heisenberg Effect, is of course not limited to computerrsoie for example, it is similarly observed in anthropol-
ogy where it is referred to as tlishbowl effectvhich is evocative of the difficulty of studying a system iniafn
one is also a participant.€. a fish cannot study the fishbowl).

In this case, the library shares the address space of thet fangress and contributes to the system resources
charged against it. Each traced I/O event generates twoi@ddition to the actual 1/0O, so the number of real
operations is tripled. The library itself consumes usergrstiem CPU time as it works on behalf of the application,
so kernel measurements of these values cannot be relied Hparever, CPU time may be measured independently
of the 1/0 and tracing mechanism by inferring CPU intervatsf the gaps between trace events. In the analysis
below, “CPU Time” and refers to values computed using thegaicit measurements, while “Real Time” refers
to the wall clock time while tracing was in effect.

2.4 Workload Analysis

2.4.1 Resource Consumption

An overview of the resources consumed by a single pipelineach application is given in Table 2.1. Each
application may consist of multiple rows in the table; thadihg indicates each different application. Subsequent
tables are organized in the same way. For example, the BLASTEIS applications consist of only a single job
and therefore use only one row each in the table whereas CM\&ltilus, and AMANDA consist of multiple
jobs and require multiple rows. The statistics for eachiappibn consisting of multiple jobs are then summed in
atotal row.

In this table, real time refers to the total wall-clock timeeach of the applications when run without instru-
mentation overhead. Burst is the average number of ingingexecuted between 1/0O operations. We obtained
instruction counts using the performance monitoring cers(PMCs) available on x86-class processors. Finally,
we measured /O traffic using an interposition library teneept and record system calls pertaining to 1/0.

There are several things to notice about the resource cqrimumof these applications. First, these applications
have a wide variance in run times on current hardware, rgrfgiim a little more than a minute (BLAST) to a little
more than a day (IBIS). Second, considered individuallgséhapplications spend the majority of time consuming
CPU rather than 1/0. Third, memory requirements and progsees are all quite modest in comparison to total
I/O volume. Finally, notice also that, with the exceptionH#, all of the application pipelines have very modest
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Real Millions of Instructions Memory (MB) 1/0O Traffic
Application Time (s) Integer Float Burst Text Data Share MB Ops MB/s
seti  seti 41587.1 | 1953084.8 1523932.2 4.6 0.1 15.7 1.1 75.8 417260 0.00
blast blastp 264.2 12223.5 0.2 0.1 29 3238 2.0 330.1 88671 1.25
ibis  ibis 88024.3 | 7215213.8 4389746.8 104.7 0.7 24.0 1.4 336.1 110802 0.00
cms  cmkin 55.4 5260.4 743.8 6.1 | 194 5.0 2.6 7.5 988 0.14
cmsim 15595.0 | 492995.8 225679.6 0.4 87 704 4.3 | 3798.7 1915559 0.24
total 15650.4 | 498256.1 226423.4 04| 194 70.4 4.3 | 3806.2 1916546 0.24
hf  setup 0.2 76.6 0.4 0.0 0.5 4.0 1.3 9.1 2953 56.43
argos 597.6 | 179766.5 26760.7 0.8 0.9 25 1.4 663.8 254713 1.11
scf 19.8 132670.1 5327.6 0.2 0.5 10.3 1.3 | 3983.4 765562 201.06
total 617.6 | 312513.2 32088.6 0.3 0.9 10.3 1.4 | 4656.3 1023228 7.54

nautilus  nautilus 14047.6 | 767099.3 451195.0 18.6 0.3 146.6 1.2 270.6 65523 0.02
bin2coord 395.9 | 263954.4 280837.2 4.2 0.0 2.2 1.4 403.3 129727 1.02

rasmol 158.6 69612.8 3380.0 1.9 0.4 4.9 1.7 128.7 38431 0.81
total 14602.2 | 1100666.5 735412.2 7.9 0.4 146.6 1.7 802.7 233681 0.05
amanda corsika 2187.5 160066.5 4203.6 26.4 2.4 6.8 1.4 24.0 6225 0.01
corama 41.9 3758.4 37.9 0.3 0.5 3.2 1.1 49.4 12693 1.18
mmc 954.8 | 330189.1 7706.5 0.3 0.4 22.0 4.9 154.4 1141633 0.16
amasim2 3601.7 84783.8 20382.7 143.7 | 22.0 256.6 1.6 550.3 733 0.15
total 6785.9 | 578797.8 32330.7 0.5 | 22.0 256.6 4.9 778.0 1161275 0.11

Table 2.1: Resources Consumed. Shown in Table 2.1 are the total amounts of resources corgurrethis and in
subsequent tables, shading is used to differentiate betw&kerent application pipelines. Real time refers to toéat
wall-clock time of each of the applications when run withmgtrumentation overhead. Burst is the average number of
instructions executed between 1/0 operations. Instructiounts were obtained using the performance monitoringnte
(PMCs) available on x86-class processors. Traffic was nreasusing an interposition library to intercept and recorgstem
calls pertaining to /0.

bandwidth requirements.

2.4.2 1/0O Volumes

Table 2.2 details the 1/0 volume produced by each pipeliagest Traffic is the number of bytes that flow into
and out of the process. Unique 1/0O considers only unique kartges within this total traffic. Static I/O refers to
the total size of all of the files accessed and may be greaeruhique 1/O if applications read only portions of
the files.

Although these applications are conceived as a pipelineutfiplte stages, they are not connected by simple
data streams. Rather, each makes complex read/write ube @fe system, as indicated by the number of files
each accesses. Notice here again the wide discrepencydmeapplications which ranges from HF which accesses
only 9 unique files to Nautilus which accesses over 250.

Another observations is that SETI, CMS, HF, and to a lessgre#ge BLAST, all read input data multiples
times as indicated by the discrepancy between the Traffid_mgue rows in the Reads category. This suggests
that caching may be particularly important to them.

Further, over-writing of output data is also found in allglipes with the exception of AMANDA. Output over-
writing is usually done to update application-level cheamikgs in place. (We are somewhat alarmed to observe that
such checkpoints are unsafely written directly over existiata, rather than written to a new file and atomically
replaced by renaming it.)

Finally, several pipelines are distributed with large eclions of data that may be of use to many runs. How-
ever, any typical run only accesses a small portion commaintdar runs. For example, the static size of the
BLAST dataset exceeds the uniqgue amount read by the applicay 45%. This suggests that systems which
prestage entire data sets may sometimes be performing essaay work.
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Total 1/0 Reads Writes
Application  Files  Traffic ~ Unique  Static  Files  Traffic  Unique  Static  Files Traffic Unique  Static
seti 14 75.77 3.02 3.02 12 71.62 0.72 1.04 11 4.15 2.36 2.68
blastp 11 330.11 323.59 586.21 10 329.99 323.46 586.09 1 0.12 0.12 0.12
ibis 136  336.08 73.64 73.64 | 132 140.08 73.48 73.48 | 118 196.00 66.66  66.66
cmkin 4 7.49 3.88 3.88 2 0.00 0.00 0.00 2 7.49 3.88 3.88
cmsim 16 3798.74 116.00 126.18 11 3735.24 52.86  63.05 5 63.50 63.13  63.13
total 17 3806.22 119.88 130.06 11 3735.24 52.86 63.05 6 70.98 67.01 67.01
setup 5 9.13 0.40 0.40 3 5.44 0.26 0.26 3 3.69 0.39 0.40
argos 5 663.76 663.75 663.97 2 0.04 0.03 0.26 4 663.73 663.74 663.97
scf 11 3983.40 664.61 664.61 9 3979.33 663.79 664.60 8 4.07 2.50 2.69
total 11 4656.30 666.54 666.54 9 3984.81 663.80 664.60 9 67149 666.53 666.53
nautilus 17 270.64 32.90 32.90 7 4.25 4.25 4.25 10 266.40 28.66 28.66
bin2coord 247  403.27 273.87 273.87| 123 152.78 152.66 152.66 | 241 250.49 249.39 249.39
rasmol 242 128.75 128.76 128.76 124 115.87 115.88 115.88 120 12.88 12.88 12.88
total 501 802.66 435.48 435.48 | 252  272.90 272.74 272.74| 369 529.76 290.94 290.94
corsika 8 23.96 23.96  23.96 5 0.76 0.75 0.75 3 23.21 2321 2321
corama 6 49.37 49.37 49.37 3 23.17 23.17 23.17 3 26.20 26.20 26.20
mmc 11 154.36 154.36 154.36 9 28.92 28.92  28.92 2 12543 12543 125.43
amasim2 29 550.35 550.40 635.78 27 545.04 545.09 630.47 3 5.8l 5.8 5.8
total 46 778.04 778.09 863.42 40 597.89 597.96 683.32 7 180.14 180.11 180.11

Table 2.2:1/0 Volume. This table shows the total amounts of I/O performed. Tradfitbheé number of bytes that flow into
and out of the process. Unique I/O considers only uniqueliiaytges within this total traffic. Static I/O refers to thedbsize
of all of the files accessed and may be greater than unique E@glications read only portions of the files.

2.4.3 1/O Operations

The distribution of I/O operations is given in Table 2.3. T¥eek column includes non-sequential access to
memory-mapped pages and ignores aleek operations which do not actually change the file offset. Theer
column sums a number of generally uncommon operations fichc | andaccess.

Notice that many of these applications have a high degreanofam access, as shown by the ratic eeks
toreads andw i t es. This results from the nature of the data files accessed bgrttggrams, generally with
complex, self-referencing, internal structure, and amitts many previous file system studies which indicate the
dominance of sequential 1/0 [13].

This suggests that these applications are not entirelgdediwith computational performance as their paramount
goal. Rather they are presumably designed by scientisteinrespective fields who choose to focus on their own
science and wish to use computers with as little fuss aslgessi

Further these applications are undoubtedly developee@rmentally and are presumably initially run a single
pipeline at a time, by a single scientist, on a single compute the application evolve however it becomes easier
to understand and interpret its results and it can be padkiagarge submissions for batch computing. Moving
now into a distributed environment, the penalty for randaoeas may become significantly higher, especially if
it is compounded by concurrent access to the same file byptaiitistances of the application.

Finally, the high numbers in th& her column reflect the fact thdti n2coor d andr asnol are driven by
shell scripts which perform mamyeaddi r operations.

2.4.4 1/0O Types

To characterize the different types of sharing in batclejoied workloads, we have divided the I/O traffic into
three roles as shown earlier in Figure 2Ehdpointtraffic consists of the initial inputs and final outputs thet a
unique to each pipeline. They must be read from and writteh@édiome storage server regardless of the system
design. Pipeline traffic consists of intermediate data passed between pgaliages or even intermediate data
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Appl. Open (%) Dup (%) Close(%) Read (%) Write (%) Seek(%) Stat (%) Other (%)
seti 64595 16 0 0 | 64596 16 64266 15 32872 8 63154 15 | 127K 31 15 0
blastp 18 0 11 0 18 0 84547 95 1556 2 2478 3 37 0 5 0
ibis 1044 1 0 0 1044 1 26866 24 28985 26 51527 47 | 1208 1| 122 O
cmkin 2 0 0 0 2 0 2 0 492 50 479 49 8 1 2 0
cmsim 17 0 0 0 16 0 | 952859 48 18468 1 | 944125 49 47 0 24 0
total 19 0 0 0 18 0 | 952861 48 18960 1 | 944604 49 55 0 26 0
setup 6 0 0 0 6 0 1061 36 735 25 1118 38 19 1 6 0
argos 3 0 0 0 3 0 8 0 127569 50 | 127106 50 18 0 4 0
scf 34 0 0 0 34 0 | 509642 67 922 0 | 254781 33 121 O 18 0
total 43 0 0 0 43 0 | 510711 50 129226 13 | 383005 37 158 0 28 0
nautilus 497 1 0 0 488 1 1095 2 62573 96 188 0 678 1 1 0
bin2coord | 1190 1 | 6977 5 | 12238 9 33623 26 65109 50 & 0 407 0 | 10K 8
rasmol 359 1 22 0 517 1 29956 78 3457 9 1 0 252 1 3K 10
total 2046 1 | 6999 3 | 13243 6 64674 28 131139 56 192 0| 1337 1 | 14K 6
corsika 13 0 0 0 13 0 199 3 5943 96 8 0 36 1 10 0
corama 4 0 0 0 4 0 5936 47 6728 53 2 0 12 0 4 0
mmc 8 0 0 0 9 0 29906 3 | 1111686 97 0 0 7 0 7 0
amasim2 30 4 0 0 28 4 577 79 24 3 4 1 57 8 10 1
total 55 0 0 0 54 0 36618 3 | 1124381 97 14 0 112 0 31 0

Table 2.3:1/0 Instruction Mix.  Shown here are the total number of the different types of w&riictions executed by
each of the applications. THaeek column includes non-sequential access to memory-mappgs@and ignores all seek
operations which do not actually change the file offset. @thleer column sums a number of generally uncommon operations
such ad oct| andaccess.

passed between different phases of a single stagkhtraffic is input data that are identical across all pipelines
Through our understanding of each application, we idedtifeery file accessed as either endpoint, pipeline, or
batch, and computed the traffic performed in each categsighawn in Table 2.4.

We immediately see that comparatively little traffic is ne@édt the endpoints; the bulk is either pipeline or
batch, depending on the application. Only IBIS has a sigmfi@mount of endpoint traffic relative to its total.
This indicates that the scalability of systems that runehagsplications will depend on their ability to differengat
between these different types of /0.

Finally, examining across both Tables 2.3 and 2.4, we naitahvery large number apens are issued
relative to the number of files actually accessed. Typicddlyigned on standalone workstations, these applications
are not optimized for the realities of distributed compgtimhere opening a file for access can be many times
more expensive than issuing a read or write.

2.4.5 Caching Implications

To examine the sharing potential of each workload, we ségadithe pipeline and batch I/O traces and replayed
them over cache simulators of various sizes. These traces ettained by using an interposition library and
logging each system call performed. We assume a 4 KB bloekisithe simulator. Note that the simulator used
here is relatively simple and is different from the simutat@ discuss in more detail in Chapter 4.

These results are shown in Figures 2.3 and 2.4. Note that weiheluded the size of the executable files
implicitly in these calculations as batch data.

In general, for both types of sharing, the necessary cazhe are small with respect to both the I/O volume and
the sizes of typical main memories today. There are somemtAMANDA has a large amount of batch shared
data (over half a GB) that is read only once, and thus a cachetisffective until very large sizes. However,
AMANDA also has a very high pipeline hit rate at small cacheesidue to a large number of single-byte 1/10
requests. Due to its high degree of re-reading and outputwoiiemg, CMS needs only very small cache sizes to
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Endpoint I/O (MB) Pipeline 1/O (MB) Batch 1/0 (MB)

Appl. Files Traffic  Unique Static Files Traffic  Unique  Static Files Traffic  Unique  Static
seti 2 0.34 0.34 0.34 12 75.43 2.68 2.68 0 0.00 0.00 0.00
blastp 2 0.12 0.12 0.12 0 0.00 0.00 0.00 9 329.99 323.46 586.09
ibis 20 179.92 53.97 53.97 99 148.27 12.69 12.69 17 7.89 6.98 6.98
cmkin 2 0.07 0.07 0.07 1 7.42 3.81 3.81 1 0.00 0.00 0.00
cmsim 6 63.50 63.13 63.13 1 5.56 3.81 3.81 9 3729.67 49.04 59.24
total 6 63.56 63.20 63.20 2 12.99 7.62 7.62 9 3729.67 49.04 59.24
setup 3 0.14 0.14 0.14 2 8.99 0.26 0.26 0 0.00 0.00 0.00
argos 3 1.81 1.81 1.81 2 661.95 661.93 662.17 0 0.00 0.00 0.00
scf 3 0.01 0.01 0.01 7 3983.39 664.59 664.59 1 0.00 0.00 0.00
total 3 1.96 1.94 1.94 7 4654.34 664.59 664.59 1 0.00 0.00 0.00
nautilus 6 1.18 1.10 1.10 9 266.32 28.66 28.66 2 3.14 3.14 3.14
bin2coord 1 0.00 0.00 0.00 | 241  403.25 273.85 273.85 5 0.02 0.01 0.01
rasmol 119 12.88 12.88 12.88 120 115.79  115.79 115.79 3 0.08 0.09 0.09
total 124 14.06 13.99 1399 | 369 785.37 418.25 418.25 8 3.24 3.24 3.24
corsika 2 0.04 0.04 0.04 8 23.17 23.17 2317 8 0.75 0.75 0.75
corama 3 0.00 0.00 0.00 3 49.37 49.37 49.37 0 0.00 0.00 0.00
mmc 0 0.00 0.00 0.00 6 151.63 151.63 151.63 5 2.73 2.73 2.73
amasim2 5 5.8l 5.8 5.8 2 40.00 40.00 125.43 22 505.04 505.04 505.04
total 6 5.22 5.21 5.21 11 264.31 264.29 349.69 29 508.52 508.52 508.52

Table 2.4:1/0 Types. Shown here are the total amounts of each type of 1/0 perforntattipoint traffic consists of
the initial inputs and final outputs that are unique to eaclplagation. Pipeline traffic is intermediate data passedviestn
pipeline stages or even intermediate data passed betwéeredit phases of a single stage. Batch traffic is input dadd are
shared across different instances of the pipeline. Tradfithe number of bytes that flow into and out of the process. ugniq
I/O considers only unique byte ranges within this totalficafStatic I/O refers to the total size of all of the files acszband
may be less than unique /O if applications read only poriofthe files.

effectively maximize its hit rates. BLAST has no pipelingalalBIS, though one stage, has pipeline data in the
form of checkpoints written and read multiple times.

The high hit rates observed here, in some cases approachdi are due to two reasons. First, as seen in
Table 2.2, many of the applications tend to re-access deqaéntly. Second, the granularity of the I/O’s performed
is often smaller than the simulated cache size. In this cadg,the first access to a portion of the block registers
as a cache miss, subsequent accesses, even to differeahpaf the block, will then be recorded as cache hits
(so long as the block has not been evicted in the interim).

Rational for the high hit rates is evidenced further by exang Figure 2.5 which shows the cumulative distri-
butions of 1/0 operations performed by each application fasetion of the I/O size. Notice here for example that
Nautilus and AMANDA in particular perform almost all of tméiO at a granularity smaller than 4 KB.

2.4.6 Phase behavior

Timelines of CPU and I/O activity are shown in Figure 2.6. 3&émelines show the phase behavior of these
applications at both the process level and the pipelind.léver example, BLAST consists of a scanning phase
that reads the entire protein database sequentially, @mdréturns to selected portions non-sequentially, regulti
in much lower input bandwidth.

Both BLAST and HF are input-bound for significant intervab&th while performing sequential 1/0. IBIS
and AMANDA show periodic output bursts, suggesting goodaspmities for overlapping CPU and 1/O bursts.
While not obviously periodic, Nautilus alternates long CBlsts of several hundred seconds with periods of
shorter CPU and output bursts. Clear division in the I/O atlthe process level can be seen in HF, Nautilus, and
AMANDA.
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Figure 2.3:Batch Cache SimulationThese graphs show the cache hit rates obtained by re-ruramin{ trace of the batch
data accesses for each application on a simulated cacheanitbck size of 4 KB.

2.4.7 Balanced System Implications

Finally we analyze and present in Table 2.5 how these apigiicarelate to Amdahl’s long standing system
balance ratios [6], recently amended by Gray [52]. Thesesrof thumb guide the selection of CPU, memory,
and 1/O resources in the design of a “balanced” system. Theskloads have CPU-IO ratios (measured in
MIPS/MBPS) far exceeding Amdahl’s ideal value of eight,idading reliance on computation rather than 1/0. The
ratio of memory to CPU speed, known as alpha, is near or belowlakl’s value of one, and with the exception
of the last component of AMANDA, never comes close to Gragtig of four. This also indicates reliance on
computation rather than memory. Finally, the ratio of CPlrimctions to I/O instructions is several orders of
magnitude larger than 50,000. With respect to a single ricstaf each pipeline, a commaodity computing node
engineered to Amdahl’s metrics is considerably overpiomisd with 1/0 bandwidth and memory capacity. The
aggregation of multiple pipelines however has more sigaificieeds, described below.

2.5 System Implications

Each of these workloads are potentially infinite. In thesgbj@m domains, the ability to harness more com-
puting power enables higher resolution, more parameteit,l@ver statistical uncertainties. Current users of
these applications wish to scale up throughput by runnimyreds or thousands simultaneously. At this scale,
applications normally considered CPU-bound become I/Ghbavhen considered in aggregate.

To give some idea of the growing envelope of current scientilimputing, consider that in the spring of 2002,
the CMS pipeline was used to simulate 5 million events dididgo 20,000 pipelined jobs, consuming 6 CPU-
years and producing a terabyte of output. This batch wasaslyall fraction attempted as a test run before full
production begins in 2007. Successive yearly workloadsapected to continuing growing. All the necessary
code and data are published in authoritative form by theraxgat's central site. Likewise, all simulation outputs
must eventually be moved back for archival storage. Whem.énge Hadron Collider (LHC) [1] at the European
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Figure 2.4:Pipeline Cache SimulationThese graphs show the cache hit rates obtained by re-ruranin¢O trace of the
pipeline data accesses for each application on a simulagethe with a block size of 4 KB.

physics center CERN commences this operation in 2007, kgeated to produce several petabytes of both raw
andderived data annually for approximately 15 years.

In this section, we will explore the general properties ahpaoting and storage systems that may be built to
satisfy these workloads. We consider here the provisioninifpe necessary resources and postpone our discus-
sion of designing storage systems for these workloads Ghélpter 3 and our discussion of detailed scheduling
algorithms for data management until Chapter 4.

2.5.1 Endpoint Scalability

Regardless of the capacity of individual computing nodes uitimate scalability of these workloads is limited
by competition for shared resources. We assume that eadtioadrrelies on a central site for the authenticating
and archiving input and output data. However, we have detraied that actual endpoint I/O traffic is a relatively
small fraction of the total for all of these applicationswé are able to eliminate all non-endpoint traffic from the
endpoint server through techniques such as caching aridatmh then we may see significant gains in scalability.

Of course, traffic elimination must be carried out carefuipeline-shared traffic may only be eliminated if it
is truly of no use to the end user. Such intermediate datatrbigmecessary to return for debugging or even for
archival if the ability to reproduce it is questionable. &ashared may only be eliminated within the constraints
of maintaining the consistency and authenticity of potlytichanging input data. Traffic elimination cannot be
done blindly without some consideration of how the data ateadly used outside the computing system.

That said, we may consider the limits of a system for exegugirch workloads based on its ability to eliminate
shared traffic. Figure 2.7 shows how each of the selectedtcagiphs would scale in four systems each eliminating
some category of traffic. We assume the presence of a buffstincture sufficient to completely overlap all CPU
and I/O; figures assume a 2000 MIPS CPU and show MB per seco@#dftime. Four horizontal lines show
comtemporary milestones (as of 2005) in I/0 bandwidth. Tdveekt, at 1 MB/s, represents wide-area network
bandwidth, the next, at 12 MB/s, represents local-area or&tWwandwidth, the next, at 40 MB/s, represents a
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Figure 2.5:1/0 Size Distributions These graphs show the cumulative distribution of I/O openatas a function of I/O
size. For example, almost all of the 400,000 operationsgueréd by CMS are at the 4 KBsize. Conversely, Nautilus and
AMANDA performed almost no operations at this size or larger

commodity hard disk, and finally, the uppermost, at 1500 Migfsresents a a high-end storage server and network.

The leftmost graph shows the scalability of a system thatesaall traffic to the endpoint server. In this
discipline, a high end storage device is needed for systdmerg modest size. Only IBIS and SETI would
be able to scale to a width approaching 100,000. If batcheshaaffic is eliminated, we will make significant
improvements in CMS and Nautilus, as shown in the seconchgi@p the other hand, if pipeline-shared traffic is
eliminated, we observe significant gains for SETI, HF, andtNzs, as shown in the third. Once both batch and
pipeline data is eliminated and only endpoint I/O is consgdethen we reach the limit shown in the final graph.
All of the applications shown could scale to a width greatemt 100 across the wide-area network, 1000 with
a commodity storage server in a local-area network, and H0@y000 with high-end storage. SETI alone could
potentially scale to 1 million CPUs, an indicator of its sipéized design for wide-area deployment.

2.5.2 Software Architecture

In order to scale to large sizes, software architecturethfsge workloads must strive to eliminate batch-shared
and pipeline-shared data from endpoint interactions wieerpossible, within the constraints of security, persis-
tence, and performance. Traditional file systems do notestrese applications because their naming and con-
sistency requirements are targeted to interactive cotipgrasers. These applications require a data management
system that has specialized requirements for workload/sisaffailure recovery, and resource management.

By itself, the issue of batch input sharing has receivedifsigmt attention in the grid computing community.
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Figure 2.6:Application Timelines These figures show the I/O and CPU utilization of the applicetas a function of time
and are designed to reveal any phase behavior either betjgbsmwithin the application or within individual jobs theetges.

Deployed systems such as SRB [83] and GDMP [94] manage wiistsibuted and well-known batch shared
data. Stork [60] is a more recently proposed system whidlodoices powerful data transfer techniques which
the user can employ for both batch data and for endpoint dedditional techniques for discovering [112] and
replicating [86] batch data have been proposed as well.

Without diminishing the importance of batch sharing, treuesof pipeline sharing is a very different problem
that has been relatively neglected. As Figure 2.7 showsotadization of both types of I/0 is necessary to achieve
high scalability. The treatment of pipeline-shared datastmecessarily be different than that of batch shared data,
because it will have only a single writer and a single rea@éore it is no longer needed. Pipeline-shared outputs
will require some facility for discovery by the reader of thiata, but need not be advertised to the same degree
as batch-shared data. The loss of a pipeline-shared outputequire the re-execution of a previous computation
stage.

Solutions to both pipeline and batch sharing problems reghiat an application’s I/O be classified into each
of the three roles with some degree of accuracy. Customagigins such as SETI have succeeded in attaining
wide scalability by virtue of manual 1/O division: all endpbl/O happens via explicit network communication.
Yet, we can hardly expect that all valuable applicationd kel re-written for a distributed environment. Ideally,
such I/O roles would be detected automatically. Such anoagpr is taken by the TREC [111] system, which
deduces program dependencies from I/O behavior. We migbtrabsonably ask the user to provide hints of I/O
roles to the system without modifying applications dingctl
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Figure 2.7: Scalability of /0O Roles. These graphs show how the scalability of these applicatiamsbe improved by
up to several orders of magnitude when batch-shared andipgshared I/O are not performed at the endpoint servee Th
three horizontal lines show current milestones (as of 2003)0O bandwidth. The upper, at 1500 MB/s, represents a high-
end storage center, the next, at 40 MB/s, represents a coiynbisk, the next, at 12 MB/s, represents local-area nekwor
bandwidth, and the lowest, at 1 MB/s, represents wide-aetaork bandwidth.
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CPU/IO MEM/CPU  CPU/IO

Appl. (MIPS/MBPS)  (MB/MIPS) (instr/op)
seti 45888 0.15 8737 K
blastp 37 26.77 144 K
ibis 34530 0.20 109823 K
cmkin 801 0.26 6372 K
cmsim 189 1.86 393 K
total 190 2.09 396 K
setup 8 0.06 27K
argos 311 0.02 850 K
scf 34 0.30 189 K
total 74 0.16 353 K
nautilus 4501 1.71 19496 K
bin2coord 1350 0.00 4403 K
rasmol 566 0.02 1991 K
total 2287 1.20 8238 K
corsika 6854 0.14 27670K
corama 76 0.06 313 K
mmc 2189 0.10 310K
amasim?2 191 12.48 150443 K
total 785 3.77 551 K
Amdahl 8 1.00 50 K
Gray 8 1-4 >50 K

Table 2.5: Balanced System Ratios.This table shows ratios between the I/O, memory, and CPUinaments of these
applications. We compare our observed ratios to those waily proposed by Gene Amdahl [6] and later amended by Jim
Gray [52].

A number of file systems take account of the conventional evisthat quickly-deleted data is a significant
source of traffic in general-purpose workload. Howevers tigcognition has limited application due to the re-
quirements of reliability and consistency in interactiystems. For example, NFS permits a 30-60 second delay
between application writes and data movement to the sefene this delay made to be minutes or hours in order
to accommodate pipeline sharing, the reduction in unnacgsgites would be accompanied by a much increased
danger of data loss during a crash and some very unusuakteamsi semantics. The session semantics of AFS
are even worse: closing a file is a blocking operation thatef®ithe write-back of dirty data. Not only would all
vertically shared data be written back at each of the (nuosjrdose operations, but the CPU would be held idle
between pipelines, offering no possibility of CPU-I/O degr.

General-purpose file systems operate under the assumptibmbst data must eventually flow back to the
archival site. These workloads require the opposite assompmost created data should remaihere it is
createduntil an explicit operation by the writer, the system, orhars the user forces it into archival storage. This
improves overlap and eliminates unnecessary writes, loutases the danger that I/O operations waiting to be
written back may fail due to permissions, disconnectioraror of the many other sources of error in a distributed
file system. This is acceptable in a batch system, as longdsastailed 1/0 can be detected, matched with the
process that issued it, and a re-execution of the job canrbedo

One approach which we will present in detail in Chapter 4 igptiog this 1/O information with a workflow
manager, such as Condor's DAGMan or Globus’ Chimera [46 lod which already track the dependencies in
general graphs of jobs. In both of these systems, 1/0 agtigipresumed to be a reliable (and centralized) side
effect of execution. However, if the creation and positignof workload data is integrated into the workflow, such
data can be efficiently shared while still maintaining thegiloility of error recovery.
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2.6 Discussion

Applications are not run in isolation. In production sejsn scripting and workflow tools are used to glue
together series of applications into pipelines; a paricplpeline may be run many thousands of times over varied
inputs to achieve the goals of the users. We term such watklbatch-pipelined, as batches of pipelines are run
at a given instant.

In this chapter, we characterize a collection of scientifitch workloads. Beyond typical quantitative charac-
terizations of processing, memory, and 1/0 demands, weyldrth the more general qualitative nature of these
workloads and organize them into a taxonomy which we terrahspipeline. By characterizing and defining this
structure, we allow users and batch scheduling systemdility £o more carefully reason about and plan for these
workloads.

The key to managing these workloads is I/O classification.s8yregating 1/O traffic by type, and through
aggressively exploiting sharing characteristics, penéomce can be improved by many orders of magnitude as we
will now show in Chapter 3.
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Chapter 3

Distributed File Systems for Batch-Pipeline
Workloads

Traditional distributed file systems, such as NFS and AF8e lewolved on a solid foundation of empirical
measurement. By studying expected workload patterns B,.38Y, 96, 114], researchers and developers have long
been able to make appropriate trade-offs in system degigrelty building systems that work well for the work-
loads of interest. Most previous distributed file systemsehzeen targeted at a particular computing environment,
namely a collection of interactively used client machirtdewever, as past work has demonstrated, different work-
loads lead to different designs.@, FileNet [36] and the Google File System [50]); if assumpsi@bout usage
patterns, sharing characteristics, or other aspects afdhidoad change, one must reexamine the design decisions
embedded within distributed file systems.

Having conducted our own measurement study of batch-pipeliorkloads as described in Chapter 2, we
are now ready to evaluate whether the design decisionsnwithiirent distributed file systems are well-suited
for batch-pipeline workloads. Specifically, we considex thallenge of scheduling batch-pipeline workloads in
remote environments in which storage may be scarce and tteeavea connection to the home storage server may
be prohibitively slow.

Batch workloads are typically run in controlled local-amaster environments [69, 119]. However, organiza-
tions that have large workload demands increasingly nega washare resources across the wide-area, both to
lower costs and to increase productivity. One approach ¢essing resources across the wide-area is to simply
run a local-area batch system across multiple clustersatieaspread over the wide-area and to use a distributed
file system as a backplane for data access.

Unfortunately, this approach is fraught with difficultyrdely due to the way in which 1/O is handled. The
primary problem with using a traditional distributed filesggm is in its approach toontrol: many decisions
concerning caching, consistency, and fault tolerance a@eimmplicitly within the file system. Although these
decisions are reasonable for the workloads for which thdésesyistems were designed, they are ill-suited for
a wide-area batch computing system. For example, to mieimié#a movement across the wide-area, the system
must carefully use the cache space of remote clusters; lwyeaching decisions are buried deep within distributed
file systems, thus preventing such control.

To mitigate these problems and enable the utilization ofoteralusters for 1/0O-intensive batch workloads, we
introduce the Batch-Aware Distributed File System (BADYHBAD-FS differs from traditional distributed file
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systems in its approach to control; BAD-FS exposes degsitommonly hidden inside of a distributed file system
to an external workload-savvy scheduler. BAD-FS leavesakistency, caching, and replication decisions to this
scheduler, thus enablirexplicit and workload-specific control of file system behavior.

The main reason to migrate control from the file system to tieduler isinformation— the scheduler has
intimate knowledge of the workload that is running and caplakthat knowledge to improve performance and
streamline failure handling. The combination of workloatbrmation and explicit control of the file system leads
to three distinct benefits over traditional approaches:

e Enhanced performance. By carefully managing remote cluster disk caches in a catperfashion, and
by controlling 1/0 such that only needed data is transpoaerdss the wide-area, BAD-FS minimizes wide-area
traffic and improves throughput. Using workload knowledB&D-FS further improves performance by using
capacity-aware scheduling to avoid thrashing.

e Improved failure handling. Using basic workload information, the scheduler can deteemvhether to
make replicas of data based on the cost of generating that datl not indiscriminately as is typical in many
file systems. Data loss is therefore treated uniformly asrfopeance problem. The scheduler has the ability
to regenerate a lost file by rerunning the application thategged it and hence only replicates when the cost of
regeneration is high.

e Simplified implementation. Detailed workload information allows a simpler implemeita. For example,
BAD-FS provides a cooperative cache but does not implemeatlae consistency protocol. Through exact knowl-
edge of data dependencies, it is the scheduler that ensugsr @ccess ordering among jobs. Previous work has
demonstrated the difficulties of building a more generabevative caching scheme [8, 23].

We demonstrate the benefits of explicit control via our gygie implementation of BAD-FS. Using synthetic
workloads, we demonstrate that BAD-FS can reduce widel&@emaffic by an order of magnitude, can avoid per-
formance faults through capacity-aware scheduling, andoaactively replicate data to obtain high performance
in spite of remote failure. Using real workloads, we demiaistthe practical benefits of our system: I/O-intensive
batch workloads can be run upon remote resources both easilwith high performance.

Finally, BAD-FS achieves these ends while maintaining aitédonomy and support for unmodified legacy
applications. Both of these practical constraints are imamb for acceptance in wide-area batch computing envi-
ronments.

In the remainder of this chapter, we describe assumptionstahe expected environment and workload,
discuss the architecture of our system, present our expatahevaluation, and end this chapter with some sum-
mary observations about the need for a new batch-awarébdistl file system that exports storage control to a
workload-savvy scheduler.

3.1 Architecture

In this section, we present the architecture and implentientaf BAD-FS. The main goal of the design of
BAD-FS is to export sufficient control to a remote scheduléris external control allows the batch scheduler to
deliver improved performance and better fault-handlinglf@-intensive batch-pipeline workloads run on remote
clusters.

BAD-FS is structured as is shown in Figure 3.1. Two types ofeseprocesses manage local resources. A
compute serveexports the ability to transfer and execute an ordinary pssgram on a remote CPU. gtorage
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Figure 3.1:System Architecture. This figure summarizes the architecture of BAD-FS, with thvehelements shaded
gray. Circles are compute servers, which execute batch j&ugiares are storage servers, which hold cached inputs and
temporary outputs. Both types of servers report to a catakyger, which records the state of the system. The schealsssr
information from the catalog to direct the system by configgistorage devices and submitting batch jobs. The grayehap
are novel elements in our design; the white are standard amapts found in batch scheduling systems.

serverexports access to disk and memory resources via remotedun@cealls that resemble standard file system
operations. It also permits remote users to allocate spacanvabstraction calledolumes Interposition agents
bind unmodified workloads running on compute servers toagmrservers. Both types of servers periodically
report themselves to@atalog serverwhich summarizes the current state of the systeractfedulemperiodically
examines the state of the catalog, considers the work to be, dmd assigns jobs to compute servers and data
to storage servers. The scheduler may obtain data, exéesitaimd inputs from any number of external storage
sites. For simplicity, we assume the user has all the negedata stored at a singleome storage servesuch as a
standard FTP server.

From the perspective of the scheduler, compute and stomgers are logically independent. A specialized
device might run only one type of server process: for exanmgtiiskless workstation runs only a compute server,
whereas a storage appliance runs only a storage server. vidveetypical workstation or cluster node has both
computing and disk resources and thus runs both.

BAD-FS may be run in an environment with multiple owners artdgn failure rate. In addition to the usual
network and system errors, BAD-FS must be prepared to hawéigonfailures in which shared resources may be
revoked without warning. An additional challenge is that thpid rate of change in such systems creates possibly
stale information in the catalog. BAD-FS must also be pregao discover that the servers it attempts to harness
may no longer be available.

The BAD-FS implementation makes use of several standar¢poonents. Namely, the compute servers are
Condor [69]startd processes, the storage servers are modified NeST storalignapp [18], the interposition
agents are Parrot [107] agents, and the catalog is the ComatchmakerThe servers advertise themselves to the
catalog via the ClassAd [85] resource description language

3.1.1 Storage Servers

Storage servers are responsible for exporting the rawgaatthe remote sites in a manner that allows efficient
management by remote schedulers. A storage server doeaveoaltixed policy for managing its space. Rather,
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it makes several policies accessible to external users vayocarve up the available space for caching, buffering,
or other tasks as they see fit. Using an abstraction catbidnes storage servers allow users to allocate space
with a name, a lifetime, and a type that specifies the policwhigch to internally manage the space. The BAD-FS

storage server exports two distinct volume types: scrabbimves and cache volumes.

A scratch volumés a self-contained read-write file system, typically usetbtalize access to temporary data.
The scheduler can use scratch volumes for pipeline datagastween jobs and as a buffer for endpoint output.
Using scratch volumes, the scheduler minimizes home sémffic by localizing pipeline 1/O and only writing
endpoint data when a pipeline successfully completes. firmipefficient backup, a storage server can be directed
to duplicate a scratch volume onto another server.

A cache volumés a read-only view of a home server, created by specifyieghtime of the home server and
path, a caching policyi.€., LRU or MRU), and a maximum storage size. Multiple cache nas can be bound
into a cooperative cache voluntgy specifying the name of a catalog server, which the stosageers query to
discover their peers. A number of algorithms [33, 38] existrhanaging a cooperative cache, but it is not our
intent to explore the range of these algorithms here. Ratieidescribe a reasonable algorithm for this system
and explain how it is used by the scheduler.

Cooperative disk cache

The cooperative cache is built using a distributed hasle &, 68]. The keys in the table are block addresses,
and the values specify which server is primarily respoestbl that block. To avoid wide-area traffic, only the
primary server will fetch a block from the home server anddtieer servers will create secondary copies from
the primary (.e. the nodes self-organize into a multi-cast tree of depth tWwilhen space is needed, secondary
data is evicted before primary. To approximate locality; initial implementation only forms cooperative caches
between peers in the same subnetwork. We present a briefdiea of other alternatives later in this dissertation
in Chapter 6.

Failures within the cooperative cache, including pantisioare easily managed but may cause slowdown.
Should a cooperative cache be internally partitioned, tivagry blocks that were assigned to the now missing
peers will be reassigned. As long as the home server is dloleegsartitioned cooperative caches will be able to
refetch any lost data and continue without any noticealdtuhance (beyond runtime perturbation) to running
jobs.

This approach to cooperative caching has two importanemiffces from previous work. First, because data
dependencies are completely specified by the schedulem wetdeed to implement a cache consistency scheme.
Once read, all data are considered current until the schedwialidates the volume. This design decision greatly
simplifies our implementation; previous work has demonestrahe many difficulties of building a more general
cooperative caching scheme [8, 23]. Second, unlike previmoperative caching schemes that manage cluster
memory [33, 38], our cooperative cache stores data on lisks Although managing memory caches cooper-
atively could also be advantageous, the most importaninigdition to make in our environment is to avoid data
movement across the wide-area; managing remote disk cictiessimplest and most effective way to do so.
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Figure 3.2:Workflow and Scheduler Examples. Shown here is an example of the declarative workflow langtizae
describes a batch-pipelined workload in (A), the logicgdresentation of this workload in (B), and the execution gamu-
lated by the scheduler from this workload in (C).

Local vs. Global Control

Note that volumes export only a certain degree of controhéoscheduler. Namely, by creating and deleting
volumes, the scheduler controls which data sets residesingiimote cluster. However, the storage servers retain
control over per-block decisions. Two such important denis made locally by the storage servers are the assign-
ment of primary blocks in the cooperative cache and cachanielection. Of course, if the scheduler is careful
in space allocation, the cache will only victimize blockatthre no longer needed. In general, we have found this
separation of global and local control to be suitable forwarkloads. Although more work needs to be done to
precisely identify the balance point, it is clear that a ¢radf is better than either extreme. Complete local control
the current approach, suffers because the policies embeditien distributed file systems are inappropriate for
batch workloads. The other extreme, complete global chritravhich the scheduler makes decisions for each
block of data, would require exorbitant complexity in théeduler and would incur excessive network traffic to
exert this fine-grained control.

3.1.2 Interposition Agents

In order to permit ordinary workloads to make use of storageess, arinterposition agenf58] transforms
POSIX I/O operations into storage server calls. The agemipping from logical path names to physical storage
volumes is provided by the scheduler at runtime. Togetheragent and the volume abstraction can hide a large
number of errors from the job and the end user. For exampejdfume no longer exists, whether due to accidental
failure or deliberate preemption, a storage server retunsquevolume loserror to the agent. Upon discovering
this, the agent forcibly terminates the job, indicatingthaould not run correctly in the given environment. This
gives the scheduler clear indication of failures and alliws take transparent recovery actions.
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3.1.3 The Scheduler

The BAD-FS scheduler directs the execution of a workload @npute and storage servers by combining a
static workload description with dynamic knowledge of tlystem state. Specifically, the scheduler minimizes
traffic across the wide-area by differentiating 1/0 typed @ieating each appropriately, carefully managing remote
storage to avoid thrashing and replicating output datagbineay if that data is expensive to regenerate.

Workflow language

Figure 3.2-A shows a simple workflow script in which the keydjoob names a job and binds it to a description
file, which specifies the information needed to execute ttatRar ent indicates an ordering between two jobs.
Thevol ume keyword names the data sources required by the workloadexamnple, volumé1 comes from an
FTP server, while volumgsl andp2 are empty scratch volumes. Volume sizes are provided tev#éifie scheduler
to allocate space appropriately. Timeunt keyword binds a volume into a job’s namespace. For examgples, |
a andc access volumé1 as/ nydat a, while jobsa andb share volume1 via the path/ t np. Theext ract
command indicates which files of interest must be commitbetthé home storage servere(which are endpoint
outputs). In this case, each pipeline produces ftleat must be retrieved and uniquely renamed.

Figure 3.2-B shows the graphical presentation of this ve@i#tland maps to the scheduler’'s internal data
structures used to represent it. In Figure 3.2-C is the sdbesl plan for executing job c:

The scheduler queries the catalog for the current sydisie and decides where to place job ¢ and its data.
The scheduler creates volumes bl and p2 on a storage. server

Job c is dispatched to the compute server.

Job ¢ executes, accessing its volumes via the agent.

After jobs ¢ and d complete, the scheduler extracts x fr@m p

S A

The scheduler frees volumes bl and p2.

I/O Scoping

Unlike most file systems, BAD-FS is aware of the flow of its dd&teom the workflow language, the scheduler
knows where data originates and where it will be needed. dllisvs it to create a customized environment for
each job and minimize traffic to the home server. We referigahl/O scoping

I/O scoping minimizes traffic in two ways. First, cooperativache volumes are used to hold read-only batch
data such ab1 in Figure 3.2-A. Such volumes may be reused without modi6oalby a large number of jobs.
Second, scratch volumes, suchpasin Figure 3.2-A, are used to localize pipeline data. As a jeécates, it
accesses only those volumes that were explicitly createit; filne home storage server is accessed only once for
batch data and not at all for pipeline.

Consistency management

With the workload information expressed in the workflow laage, the scheduler neatly addresses the issue
of consistency management. All of the required dependsrizgénveen jobs and data are specified directly. Since
the scheduler only runs jobs so as to meet these constrtistg is no need to implement a cache consistency
protocol among the BAD-FS storage servers.
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The user may make mistakes in the workflow description thatatBect both cache consistency and correct
failure recovery. However, through an understanding ofetkgected workload behavior as specified by the user,
the scheduler can easily detect these mistakes and warrsé¢hehat the results of the workload may have been
compromised. We have not implemented these detectionrésatout the architecture readily admits them.

Capacity-Aware Scheduling

The scheduler is responsible for throttling a running woakl to avoid performance faults and maximize
throughput. By carefully allocating volumes, the schedaleids overflowing storage or thrashing caches. Al-
though disk capacity is rapidly increasing, the size of dalis is also growing and space management remains
important [8, 43, 53, 56].

The scheduler manages space by retrieving a list of avaiktbrage from the catalog server and selecting the
ready job with the least unfulfilled storage needs, whetliyge pr batch. If the scheduler is able to allocate all of
that job’s volumes, then it allocates and configures thes@mnes and schedules the job. If there are no jobs to
execute or not enough available space, then the scheduitsr faaa job to complete, more resources to arrive,
or for a failure to occur. Note that due to a lack of completbgl control, the scheduler may need to slightly
overprovision when the needed volume size approachesdragstcapacity.

In other scheduling domains, selecting the smallest jobdas result in starvation. In this domain, however,
starvation is avoided because a workflow is a static entiégeted by one scheduler. Although smaller jobs will run
first, all jobs will eventually be run. Multiple workflows oruitiple users are represented by multiple schedulers,
each operating independently. At that level, an entire flmrkcould starve another, but that is beyond our ability
to control. We briefly discuss additional scheduling chradles presented by multiple workloads in Chapter 6.

Failure Handling

Finally, the scheduler makes BAD-FS robust to failures hydfiag failures of jobs, storage servers, the cata-
log, and itself. One aspect of batch workloads that we |lgeeis job idempotency; a job can simply be rerun in
order to regenerate its output.

The scheduler contains hard-wired logic by which it waits gassive indications of failure in compute and
storage servers and then conducts active probes to verifiyexample, if a job exits abnormally with an error
indicating a failure detected by the interposition agdrntthe scheduler suspects that the storage servers housing
one or more of the volumes assigned to the job are faulty. ¢hedsuler then probes the servers. If all volumes are
healthy, it assumes the job encountered transient comatiioricproblems and simply reruns it. However, if the
volumes have failed or are unreachable for some period &, tihey are assumed lost.

The failure of a volume affects the jobs that use it. As a desigplification, the scheduler considers a partial
volume failure to be a failure of the entire volume. Runnialyg that rely on a failed volume must be stopped. In
addition, failures can cascade; completed processewthsgto a volume must be rolled back and re-run. In order
to avoid these expensive restarts of a pipeline, the sceeduy checkpoint scratch volumes as pipeline stages
complete.

Of course, determining an optimal checkpoint interval iokhproblem [48]. The solution depends upon the
likelihood of failure, the value of a checkpoint, and thetdoscreate it. Unlike most systems, BAD-FS can solve
this problem automatically, because the scheduler is iriguerposition to measure the controlling variables. The
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scheduler performs a simple cost-benefit analysis at ma-to determine if a checkpoint is worthwhile.

The algorithm works as follows. The scheduler tracks theamatime to replicate a scratch volume. This cost
is initially assumed to be zero in order to trigger at least m@plication and measurement. To determine the benefit
of replication, the scheduler tracks the number of job andage failures and computes the mean-time-to-failure
across all devices in the system.

The benefit of replicating a volume is the sum of the run tinfabase jobs completed so far in the applicable
pipeline multiplied by the probability of failure. If the hefit exceeds the cost, then the scheduler replicates the
volume on another storage server as insurance againsefaithen the original fails, the scheduler can restart the
pipeline using the saved copy.

Due to its robust failure semantics, the scheduler needaradla network partitions any differently than other
failures. When partitions are formed between the schediidrcompute servers, the scheduler may choose to
reschedule any jobs that were running on the other side giahéion. In such a situation, it is possible that the
partition could be resolved, at which point the scheduldirfimd that multiple servers are executing the same jobs.
Note that this will not introduce errors because each jolesrio distinct scratch volumes. The scheduler may
choose one output to extract and then discard the other.

3.1.4 Practical Issues

One of the primary obstacles to deploying a new distributesdesn is the need for a friendly administrator.
Whether deploying an operating system, a file system, or ehtmtstem, the vast majority of such software
requires a privileged user to install and oversee the soéw@uch requirements make many forms of distributed
computing a practical impossibility; the larger and morevpdul the facility, the more difficult it is for an ordinary
user to obtain administrative privileges. To this end, BAB-is packaged as\artual batch systenthat can be
deployed over an existing batch system without speciailpggs. This technique is patterned after the “glide-in
job” described by Fregt al. [47] and is similar in spirit to recursive virtual machines].

To run BAD-FS, an ordinary user need only to be able to subobi$ jinto an existing batch system. BAD-
FS bootstraps itself on these systems, relying on the badlityado queue and run a self-extracting executable
program containing the storage and compute servers andtdipasition agent. Once deployed, the servers report
to a catalog server, and the scheduler may then harnessabeirces. Note that the scheduling of the virtual batch
jobs is at the discretion of the host system; these jobs maytédeaved in time and space with jobs submitted by
other users. We have used this technique to deploy BAD-FGsaweral existing Condor and PBS batch systems.

Another practical issue is security. BAD-FS currently ugesGrid Security Infrastructure (GSI) [44], a public
key system that delegates authority to remote processesgthrthe use of time-limited proxy certificates. To
bootstrap the system, the submitting user must enter a pegsavunlock the private key at his/her home node and
generate a proxy certificate with a user-settable timeobe g@roxy certificate is delegated to the remote system
and used by the storage servers to authenticate back to mhe $torage server. This requires that users trust the
host system not to steal their secrets, which is reasonalsl€2c environment.

3.2 User Burden

To many readers accustomed to working in an interactiveremvient, specifying this degree of workload
information may seem like an unusual burden. We point out @ahaser intending to execute batch-pipelined
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workloads must be exceptionally organized. Batch useesdyr provide this information, but it is scattered across
shell scripts, make files, and batch submission files. Intextdio imparting needed information to the BAD-FS
scheduler, the workflow language actually reduces userebung collecting all of this dispersed information into
a coherent whole.

Although user burden can be reduced in this way, whetherdhelting burden is acceptable to the batch
user remains to be seen. While users should be able to pyagetacterize the different data types within their
workloads, a further unanswered question is their abibtyadcurately quantity the amounts of data within each
type. Although more studies are necessary to properly artbigequestion, valid arguments can be made for both
possible answers.

Batch users should be both able and willing to provide bastarate workload information for several reasons.
First, the “typical” batch user is likely to be more techriigadept than an interactive one and therefore more
easily able to observe, profile and describe the I/O behadfidheir workloads. Further, our target workloads
are submitted by “super-users” who submit workloads wittthavidths into the hundreds and thousands. This
massive amount of work suggests both that these users hdtiplenapportunities to observe and profile their
workloads as well as an increased incentive to do so.

Further, the number of degrees of separation between ba#ch and the developers of batch software is likely
fewer than that between interactive users and the devalagdénteractive software. Batch users are much more
likely to either have developed their own software or to hiaeerited it from a colleague. As such, these users
have an advantageous perspective which allows introgpeirtio the behavior of their workloads.

However, for several reasons it is also likely that users stayggle to provide accurate and precise workload
information. Previous studies of runtime prediction haverfd that user estimates are rather poor [27, 65, 75].
As such, their ability to provide 1/O predictions is likely be similarly poor or even poorer as I/O predictions are
arguably more difficult than runtimes. Second, the numbelegiees of separation between users and developers
in batch systems, while fewer than in interactive, is grayiklore users are using inherited programs which may
have seen multiple iterations of inheritance; also, theofigeoprietary programs such as BLAST is frequent.

Finally, even should users be able to provide this inforamtit is clear that they would almost always prefer
not to. These users would prefer to concentrate on the slefidiheir own studies blissfully ignorant of the internal
workings of the batch scheduling system.

3.3 Experimental Evaluation

In this section, we present an experimental evaluation obB#5 under a variety of workloads. We first
present our methodology, and then focus on 1/O scoping,ciggaware scheduling, and failure handling, using
synthetic workloads to understand system behavior. Seagagresent our experience running real workloads
on our system in a controlled environment. Finally, we déscaur initial experience using BAD-FS to run real
workloads across multiple clusters in the wild.

3.3.1 Methodology

In the initial experiments in this section, we construct avilsnment in which we assume the user’s input data
is stored on a home server and the user has access to a rermuigtealuster. Once all pipelines have run and all
output data is safely stored back at the home server, thelmeatks considered complete.
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Figure 3.3:1/0 Scoping: Traffic Reduction and Run Times.

We assume that the workload is run on a remote cluster of meshaccessible from the user’'s home server
via a wide-area link. To emulate this scenario, we limit taadwidth to the home server to 1 MB/s via a simple
network delay engine similar to DummyNet [87]. Thus, all B&ween the remotely run jobs and the home server
must traverse this slow link. The cluster itself is takemira dedicated compute pool of Condor nodes at the
University of Wisconsin, connected via a 100 Mbit/s Ethéswitch. Each node has two Pentium-3 processors,
1 GB of physical memory and a 9 GB IBM SCSiI drive, of which only @B patrtition is made available to Condor
jobs. Of these 1 GB partitions, typically only about halfvaigable at any one time as the rest awaits lazy garbage
collection.

To explore the performance of BAD-FS under a range of workieeenarios, we utilize a parameterized syn-
thetic batch-pipeline workload. The synthetic workload ba configured to perform varying amounts of endpoint,
batch, and pipeline 1/0, compute for different lengths ofdj and can exhibit different amounts of both batch and
pipeline parallelism. As each experiment requires difiegarameters, we leave those descriptions for the indi-
vidual figure captions. However, given our previous resimte/orkload analysis as described previously in this
dissertation in Chapter 2, we focus batch-intensivavorkloads, which exhibit a high degree of batch sharing
but little pipeline or endpoint I/O, andipe-intensivewhich perform large amounts of pipeline 1/0 but generate
little batch or endpoint 1/0. Note tha&ndpoint-intensivevorkloads are not discussed as these workloads would
not benefit from BAD-FS. Rather, these workloads would bd-getved either through remote 1/O or through a
more explicit, user-defined, data movements as in the Systies [60].

3.3.2 1/0O Scoping

The results of the first experiment, as shown in Figure 3.&)atestrate how BAD-FS uses I/0O scoping to
minimize traffic across the wide area by localizing pipelif@ in scratch volumes and reusing batch data in
cooperative cache volumes. These graphs show the totalrarmaboetwork traffic generated by and runtimes for
a number of different workloads with different optimizat®enabled. For this experiment, we run 48 synthetic
pipelines of depth 4, each of which generates a total of 100/aBAcross the x-axis we vary the relative amounts
of batch I/0O and pipeline I/O. For example, at 100% Batch wbekload generates 100 MB of batch I/O and no
pipeline. As is common in these types of workloads, the arhotiendpoint 1/0 is small (1 KB). The leftmost
graph shows the total amount of home server traffic; the rigiows total runtimes when the home server is
accessed over an emulated wide-area network (set at 1 MB/s).

Although these optimizations are straightforward, thdiility to increase throughput is significant. In this
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experiment, we repeatedly run the same synthetic worklead/idry the relative amount of batch and pipeline
I/0. We compare a number of different system configuratidnghe remoteconfiguration, all I/O is sent to the
home node. Against this baseline, we comparepipeline localizationand cachingoptimizations. Finally, both
optimizations are combined in the BAD-FS configuration. éNtiat in these experiments, we assume copious
cache space and a controlled environment; neither capaeiye scheduling nor failure recovery is needed.

The left-hand graph shows the total 1/O that is transfernegt the wide-area network. Not surprisingly, the
cooperative cache greatly reduces batch traffic to the hamde by ensuring that all but the first reference to
a batch data set is retrieved from the cache. We can also aethé¢hpipeline localization optimizations work as
expected, removing pipeline I/O entirely from the home gerfinally, we see that neither optimization in isolation
is sufficient; only the BAD-FS configuration that combinestbis able to minimize network traffic throughout the
entire workload range. The right-hand graph in Figure 3@wshthe runtimes of the workloads on our emulated
remote cluster. From this graph, we can see the direct inthattvide-area traffic has on runtime.

3.3.3 Capacity-Aware Scheduling

Next, we examine the benefits of explicit storage manageme&he previous experiments were run in an
environment where storage was not used to near capacith tétincreasing size of batch data sets and storage
sharing by jobs and users, the scheduler must carefully gearemote space so as to avoid over-allocations
of storage. Storage must be carefully allocated becausev@ratiocation of batch data can lead to wide-area
thrashing as data which is redundantly accessed must badeudily fetched from the home storage server. An
over-allocation of pipeline data, on the other hand, caseawrite failures.

For these experiments, we compare the capacity-aware BaBeReduler to two simple variantsdepth-first
scheduler and breadth-firstscheduler. These algorithms are not aware of the data né#dusworkload and base
decisions solely on the job structure within it. Depth-fgghply assigns a single pipeline to each available CPU
and runs all jobs in the pipeline to completion before stgranother. Conversely, breadth-first attempts to execute
all jobs at a particular depth before descending to the nentdntal slice of the workload.

Each type of traversal may be correct for certain types okisads, but can lead to poor storage allocations in
others. For example, depth-first scheduling of a batcgite workload is more likely to cause thrashing because
it attempts to simultaneously cache all of the batch dega&imilarly, breadth-first scheduling of a pipe-intensive
workload is more likely to over-allocate storage becauseeiaites allocations for all pipelines before completing
any.

3.3.4 Batch-intensive Capacity-Aware Scheduling

Figure 3.4 illustrates the importance of capacity-awateedaling through measurements of batch-intensive
workloads scheduled using various algorithms. We can makevaer of observations from these graphs. First,
the similarity between the graphs validates that the wide-aetwork link is an important bottleneck resource.
Second, as expected, the different policies achieve simgfallts as long as the entirety of all four batch data sets
fits within the caches.g., up to 25%). As the size of the batch data approaches thecagiakity of the cooperative
cache, the runtime and wide-area traffic increase for diéysthscheduling. As the total batch data no longer fits
in cache, depth-first scheduling must refetch batch datadoh pipeline. In this case, this results in three extra
fetches because with 64 pipelines and 16 compute servetsseaver executes four pipelines.
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Figure 3.4:Batch-intensive Explicit Storage Management. These graphs show the benefits of explicit storage man-
agement under a batch-intensive workload. The workloagistsof 32 4-stage pipelines; within each stage, each g®ce
streams through a shared batch file (i.e., there are 4 bateks fibtal). Batch file size is varied as a percentage of thd tota
amount of cooperative cache space available across the tiésim the experiment. All other I/O amounts are negligible.
Each of 16 nodes has local storage which is used as a portidheo€ache. The total cache size available is set to 8 GB
(100% on the x-axis), which reflects our observations oflab#e storage in the UW Condor pool. The upper graph shows
the runtime and the lower presents the amount of wide-agffidrgenerated, normalized to the size of the batch data.

Third, note that the runtime actually begins to increasghdlly before 25%. The reason for this inefficiency is
the lack of complete global control allowed through the entivolume interface. In this case, the local cooperative
cache hash function is not perfectly distributing data s€its peers; when the cache nears full utilization, thig/ske
overloads some nodes and results in extra traffic to the hemers Because we believe that this trade-off between
local and global control is correct, the implication her¢hiat the scheduler must be aware not only of the overall
utilization of the cooperative cache, but also of the udiiian of each peer.

Finally, breadth-first and BAD-FS scheduling are able tairelinear performance in this regime because they
ensure that the total amount of batch data accessed at ayrenéoes not exceed the capacity of the cooperative
cache. However, once each individual batch dataset exteedapacity of the cooperative cache, the performance
of breadth-first and BAD-FS scheduling converges with tHadepth-first. Note that the same inefficiency that
caused depth-first to deviate slightly before 25% causeddhiappen slightly before 100%.

Finally, even in the regime in which all of the batch data fiithim the cooperative cache, BAD-FS slightly
outperforms both breadth- and depth-first scheduling. Duis explicit control of the caches, the BAD-FS sched-
uler is able to control the replacement policy of the caclBgsexplicitly flushing old batch data from the storage
servers as it descends through the workload, the schedderaises their hit rates by freeing more room in the
caches. In this regime in which the batch data is stripedsadite cooperative cache, doing so does not reduce the
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Figure 3.5:Pipe-intensive Explicit Storage Management. These graphs depict the benéefits of explicit storage managem
under a pipe-intensive workload. The workload consists2of-3tage pipelines, and pipe data size is varied as a percent
of total storage available. All other I/O amounts are neilg. There are 16 compute servers and 1 storage server i thi

experiment (representing a set of diskless clients and glesiserver). The storage space at the server is constrained t
512 MB. The upper graph shows the runtime and the lower ptesea number of failed jobs induced by each strategy.

amount of traffic to the home node, but it does increase theiahwd cache space each storage server has available
for secondary data and thereby reduces the amount of laeateffic within the cooperative cache. A secondary
reason for this improvement is that the pure breadth-fitsédaler waits for all processes in one batch to complete
before scheduling the next; the BAD-FS scheduler instedidoegin the execution of the processes in the next
stage of the pipeline if there is room for their data in thehea¢hus improving machine utilization and increasing
throughput.

3.3.5 Pipe-intensive Capacity-Aware Scheduling

In our next set of cache management experiments, we focuspimeline-intensive workload instead of a
batch-intensive one. In this case, we expect the capasityeaapproach to follow the depth-first strategy more
closely. Results are presented in Figure 3.5.

In the lower graph, we plot the number of failed jobs that esithtegy induces. Job failure arise in this
workload when there is a shortage of space for pipeline dutpguch a scenario, a job that runs out of space for
pipeline data aborts and must be rerun at some later timeces;léme number of job failures due to lack of space is
a good indicator of the scheduler’s success in schedulipglipie-intensive jobs under space constraints.

From the graph, we can observe that breadth-first schedigingable to prevent thrashing. In contrast, the
capacity-aware BAD-FS scheduler does not exceed the biaipace for pipelines and thus never observes an
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Figure 3.6:Failure Handling. This graph shows the behavior of the cost-benefit stratedgmuifferent failure scenarios.
Shown are two different workloads of width 64, depth 3 androimeite of CPU time; one performs a small amount of pipeline
I/0, the other a large amount. Each is run both during periofiigh and low rates of failure. Failures were induced using
an artificial failure generator which formatted disks at dom with a mean time between failures of 180 seconds, roughly
corresponding to the total runtime of a single pipe.

aborted job. This careful allocation results in a draslycadduced runtime which is shown in the upper graph.

The stair-step pattern in the runtime of BAD-FS results fitbim careful allocation. When the size of the data
in each pipeline is between 25% and 33% of the total stora@®-BS schedules workload jobs on only 3 of the 16
available CPUs; between 33% and 50% on just two; and as theedaéeds 50%, BAD-FS allocates only a single
CPU at a time. Notice that BAD-FS achieves runtimes comparabbetter than that of depth-first scheduling
without any wasted resource consumption.

3.3.6 Failure Handling

We now show the behavior of BAD-FS under varying failure dtads in Figure 3.6. Recall that unlike
traditional distributed systems, the BAD-FS schedulemigexactly how to re-create a lost output file; therefore,
whether to make a replica of a file on the remote cluster shdejiend on the cost of generating the data versus
the cost of replicating it. This choice varies with the woddl and the system conditions. Figure 3.6 shows
how the BAD-FS cost-benefit analysis adapts to a variety oklwads and conditions. We compare to two naive
algorithms: always-copy which replicates a pipeline volume after each of its stagmapletes andever-copy
which does not replicate at all.

We draw several conclusions from this graph. In an envirartrmgthout failure, replication leads to exces-
sive overhead that increases with the amount of data. Ircése BAD-FS outperforms always-copy but does not
quite match never-copy because of the initial replicatiameieds to seed its analysis. In an environment with fre-
guent failure, itis not surprising that BAD-FS outperformesser-copy. Less intuitively, BAD-FS also outperforms
always-copy. In this case, given the particulars of the Veatt and the failure rate, replicating is only worth-
while after the second stage; BAD-FS correctly avoids oaping after the first stage while always-copy naively
replicates after all stages.

3.3.7 Workload Experience

We conclude with demonstrations of the system running reaklads. In the first demonstration as pre-
sented in Figure 3.7, we compare the runtime performanceéA8f-BS to other methods of utilizing local storage
resources.
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Figure 3.7:Workload Experience.
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The upper graph shows runtimes for real jobs when the wotkisaexecuted on a

cluster separated from the home node by an emulated wideliate(set to 1 MB/s). The lower graph repeats the experiment
but locates the home node within the same local area netwdmte that the y-axis is shown in log scale to accentuate point
of interest. For each measurement, we present averagemenfor the first jobs to run on each storage server when the

storage cache isold (C) and for the subsequent jobs which run when the cachaim (W).
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These graphs show runtime measurements of real workloads.edeh workload, we submit 64 pipelines
into a dedicated Condor pool of 16 CPUs. This Condor pool ss&s local storage resources in one of three
configurationsremotein which all 1/O is redirected back to the home nodigndalonewhich emulates AFS-like
caching to the home server; aBRD-FS We were unable to actually use AFS due to a lack of admimgtrat
privelege to manipulate the kernels of our batch computaspurces; notice this is the same problem that limits
the practical deployment of many existing distributed fitstems in a grid environment.

For each measurement, we present average runtime for thfissto run on each storage server when the
storage cache isold (C) and for the subsequent jobs which run when the cacheuisn (W). From these graphs,
we can draw several conclusions. First, BAD-FS equals oeeds the performance of remote 1/O or standalone
caching for all of the workloads in all of the configuratiorfi$iese workloads, described previously in this disser-
tation in Chapter 2, all have large degrees of either batgipmiine data sharing. Note that workloads whose 1/0
consists entirely of endpoint data would gain no benefit fmmsystem.

Second, the benefit of caching, either cooperatively oranddlone mode, is greater for batch-intensive work-
loads, such as BLAST, than it is for more pipe-intensive aeh as HF. In these pipe-intensive workloads, the
important optimization is pipeline localization, whichgsrformed by both BAD-FS and standalone.

Third, cooperative caching in BAD-FS can outperform stdmua both during cold and warm phases of ex-
ecution. If the entire batch data set fits on each storageiseghen cooperative caching is only an improvement
while the data is being initially paged in. However, shouid tlata exceed the capacity of any of the caches, then
cooperative caching, unlike standalone, is able to agtgdba cache space and fit the working set.

This benefit of cooperative caching with warm caches istifiied in the BLAST measurements in the graph
on the left of Figure 3.7. Logfile analysis showed that twoh# storage servers had slightly less cache space
(~500 MB) than was needed for the total BLAST batch date0Q MB). As subsequent jobs accessed these
servers, they were forced to refetch data. Refetchinginfitee wide-area home server in the standalone case was
much more expensive than refetching from the cooperatichecas in BAD-FS. With a local-area home server
this performance advantage disappears. The differentvimhef these two servers also explains the increased
variability shown in these measurements.

Fourth, the penalty for performing remote 1/O to the homeenidless severe but still significant when the
home node is in the same local-area network as the execsterclihis result illustrates that BAD-FS can improve
performance even when the bandwidth to the home server shvausly a limiting resource.

Finally, comparing across graphs we make the further obtiervthat BAD-FS performance is almost inde-
pendent of the connection to the home server when cachesldrarcd becomes independent once they are warm.
Using I/0 scoping, BAD-FS is able to achieve local perforoeaim remote environments.

3.3.8 Inthe Wild

Thus far, our evaluations have been conducted in contra@fedonments. We conclude our experimental
presentation with a demonstration that BAD-FS is capabtgefating in an uncontrolled, real world environment.

We created a wide-area BAD-FS system out of two existinghbaystems. At the University of Wiscon-
sin (UW), a large Condor system of over one thousand CPURjdimgy workstations, clusters, and classroom
machines, is shared among a large number of users. At thestditivof New Mexico (UNM), a PBS system
manages a cluster of over 200 dedicated machines.

We established a personal scheduler, catalog, and honagstserver for our use at Wisconsin and then
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Figure 3.8:In the Wild These three graphs present a timeline of the behavior ofgel&MS workload run using BAD-FS.
The workload consisted of 2500 CMS pipelines and was runavieresources could be scavenged from a collection of
CPUs at the University of New Mexico running PBS and from CBUthe University of Wisconsin running Condor. The
topmost timeline presents the total number of CPUs, thelm&ltbws number of jobs running and cumulative jobs congblete
and the bottom shows the cumulative traffic incurred at thméistorage server.
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submitted a large number of BAD-FS bootstrap jobs to bothhaystems without installing any special software
at either of the locations. We then directed the schedul@xézute a large workload consisting of 2500 CMS
pipelines using whatever resources became available.

Figure 3.8 is a timeline of the execution of this workload. éxpected, the number of CPUs available to us
varied widely, due to competition with other users, the latlity of idle workstations (at UW), and the vagaries
of each batch scheduler. UNM consistently provided twerfyJ€, later jumping to forty after nine hours. Two
spikes in the available CPUs between 4 and 6 hours are due twdakh and recovery of the catalog server; this
resulted in a loss of monitoring data, but not of running jobs

The benefits of cooperative caching are underscored in sdghamic environment. In the bottom graph, the
cumulative read traffic from the home node is shown to haveraéwills and plateaus. The hills correspond to
large spikes in the number of available CPUs.

Whenever CPUs from a new subnet begin executing, they fetchdtch data from the home node. However,
smaller hills in the number of available CPUs do not have &cebn the amount of home read traffic because a
new server entering an already established cooperativee ¢éa@ble to fetch most of the batch data from its peers.

Note further that BAD-FS is able to complete the workload irekatively short amount of time compared
to remote I/O. Using the measurements for CMS from Figure \8&/can compare the BAD-FS runtime to the
expected runtime we would achieve if we ran the same worklsaty remote 1/0 over a wide-area network. Even
making generous assumptions such as an infinite abilityaie st the home node and an always available pool of
the maximum number of CPUs that we saw in the BAD-FS run, ustngpte I/O would still take over 29 hours
compared to just 12 using BAD-FS.

Finally, Figure 3.8 illustrates that both the design andlemgntation of BAD-FS are suitable for running
I/O intensive, batch-pipeline workloads across multiplacontrolled real world clusters. Through failures and
disconnections, BAD-FS continues making steady progmesapving the burden from the user of scheduling,
monitoring, and resubmitting jobs.

3.4 Discussion

Allowing external control has long been recognized as a pimvechnique to improve many aspects of system
performance. By moving control to the external user of asgysthat system allows the user to dictate the policy
that is most appropriate to the individual nature of theirkvdSystems lacking mechanisms for external control
can only speculate. However, many systems have proven tdep at speculation and work well for the majority
of their workloads. In this paper we have argued that thendishature of batch-pipeline workloads is not well
matched by the design of traditional distributed file systemd the need therefore for external control is greater.

We have described BAD-FS, a distributed file system that se@danternal control decisions to an external
scheduler. Using basic knowledge of workload charactesisthe scheduler carefully manages remote resources
and facilitates the execution of 1/O intensive batch jobsoth wide-area and local-area clusters. Through syn-
thetic and real workload measurements in both controlletiiartontrolled environments, we have demonstrated
the ability of BAD-FS to use workload specific knowledge tgimve throughput by selecting appropriate storage
policies in regards to I/O scoping, space allocation antHoesefit replication.

However, although it does include some rudimentary sclimglplolicies, the main focus of this chapter is not
a detailed study of data-driven scheduling for batch-jigelvorkloads. Rather the focus as we have presented it
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here is on the design of the distributed file system that alldata-driven scheduling.

We now turn in Chapter 4 to a more detailed focus on data-drseheduling. Specifically, we answer the
guestion of how a batch scheduler can leverage externaggarontrol to produce a data-driven schedule for
executing data-intensive batch-pipeline workloads inremwnents in which storage is scarce.
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Chapter 4

Scheduling Batch-Pipeline Workloads

In Chapter 3 we show how a batch-aware distributed file syst@mallowdata-driven schedulingf batch-
pipeline workloads by transferring control of storage dieis from the storage layer to the batch scheduling
system. Data-driven scheduling is needed whenever spacassrainedj.e. whenever the total amount of data
accessed by a batch-pipeline workload exceeds the stoapgeity of the compute resources.

Although current CPU-centric scheduling policies can bedu® schedule space-constrained batch-pipeline
workloads without introducing any correctness violatiotitey can incur orders of magnitude throughput loss
as we demonstrate in Chapter 3. Recent trends in increasiagat sizes in batch computing [43, 53] and the
observation that this growth is outpacing the ability of guiters to process data [53] lead to an ever-increasing
need to supplement these current CPU-centric scheduliigjgsowith data-driven policies as well.

While we do present some rudimentary scheduling polici€shiapter 3, the focus there is on the design of the
distributed file system that allows data-driven scheduliNgw, in this chapter, we examine in greater and more
formal detail how data-driven scheduling is implementedtigh the data allocation and job placement decisions
made by the data-aware batch scheduler. To do so, we ineahda validate our simulator, BAD-Sim, that allows
for a shorter development cycle as well as a clearer viewthgantricacies of the distributed system.

We then codify some simplifying assumptions about the wiatts into a new abstraction we call a canonical
batch-pipeline workload. Using three representative nexab workloads and defining five possible scheduling
strategies, we examine the effect of changing severalrdiffevorkload and environmental characteristics. We
show how each of the different scheduling strategies ica#fteby each of these changes by analyzing several
performance metrics such as CPU utilization, wide-aresvordt traffic, and the total completion time of the
workload.

Finally, we formalize predictive analytical models for baaf the five possible scheduling strategies and
demonstrate high levels of accuracy in their predictivditas. We then show that across the entire set of ex-
perimentation that the models usually predict the “bestitsgy and more importantly that thegverpredict the
“worst.”

4.1 Methodology

To more closely examine scheduling decisions within the BA®framework, we developed a detailed discrete
event batch computation simulator, BAD-Sim. This simulatonsists of three main parts: one, the base compute
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platform, two, the BAD-FS distributed file system and thitbe, scheduler which dictates job and data allocations.

The base compute platform is a simulated set of intercordecdmputers. Each simulated computer has a
disk, a buffer cache, and a network. These components areletbds queues with capacities, bandwidths, and
latencies. As we are interested in studying the schedulfiti@adntensive workloads in a grid environment, we did
not attempt to simulate any “lower” level machine compogesuich as buses or processors.

Built on top of the base compute platform, we further sinailiie full BAD-FS distributed file system. Each
simulated machine within the compute cluster thereforeldinto a cooperative cache with its peers as well as
exports the storage allocation mechanisms which allowdritgvel planning by the BAD-FS scheduler.

The third part of the simulator is the data-aware batch adeedvhich gathers both workload and environ-
mental information and then creates a capacity-aware plawdrkload execution. The scheduler uses the storage
allocation mechanisms exported from the file system to ptemeerallocations of storage by carefully coordinating
data and job allocations.

The scheduler gets environmental and workload informatiom descriptive information provided to the
simulator. The environmental description defines the wa&ribandwidths, latencies, and capacities of both the
cluster compute nodes as well as the home storage node.

Although BAD-Sim is capable of modeling multiple distinairapute clusters, in our study we examined only
the base case of a single compute cluster linked via a wie-aetwork to a remote home storage server. The
workload description file is identical to that presented mma@ter 3, with the only exception being that the jobs
specified are not executables suited to running in a reagisybut rather point to files containing a descriptive
trace of the job behavior. We include a validation of our datwr, including comparisons to our BAD-FS imple-
mentation, in the Appendix.

4.2 Defining Scheduling Allocations

We now focus on the scheduler’s ability to formulate an @t and job placement plan. Due to the large
number of variables involved in this problem, we focus onlibse case of executing a single workload on a single
compute cluster and make three additional simplifying agsions. First, we assume that the scheduler has access
to detailed and accurate information both about the joblsimihe workload and about the compute infrastructure.
Second, we assume that the workloads are mostly unifornructste; we refer to such uniform batch-pipeline
workloads asanonical Finally, we assume that the compute clusters consist oblgemeous machines. While
we believe that these assumptions are reasonable, we sdligh relaxing them in Chapter 6.

4.2.1 Necessary Scheduling Information

Within the context of the simulation framework, we providéetailed workload information to the scheduler
within the workload description file. As discussed in Chaewe believe it is reasonable to expect the user to
provide this information, although we will discuss relaxithis assumption later in this dissertation in Chapter 6.

The environmental information is also provided to the skt as a seperate environmental description file.
The information contained within this file is in regards taaities, latencies, bandwidths, and failure rates.
We believe it is reasonable to assume that compute nodesccarately report their capacities and that accurate
estimates for latencies, bandwidths, and failure ratesbeaobtained using a tool such as the Network Weather
Service [115].
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4.2.2 Canonical Workloads

To reduce the number of variables involved in developing @a-daven batch scheduler, we introduce the
concept of canonical batch-pipeline workloads. Genersigaking, a canonical workload is a batch-pipeline
workload in which all jobs have similar runtimes, all bataiumes are of the same size, all endpoint and pipelines
volumes are of the same size, each pipeline is a single Istitig (.e. no multiple job dependencies), jobs read
from a single batch volume which is read by all jobs at the sdemth and each job reads from exactly one endpoint
or pipeline volume and writes to one volume that is also ei@melpoint or pipeline.

For the sake of exposition, we introduce a new tepmyate volumes Previously, when discussing batch-
pipeline workloads, we referred to three different volumpes, batch, endpoint and pipeline. Notice that both
endpoint and pipeline volumes are accessed by only a simgédinee and that batch volumes are shared across
many. We therefore combine endpoint and pipeline volumiesarsingle abstraction which we refer to as private.
The value of combining these data types is to reduce the nuaibariables needed to describe the workloads.
One trade-off is that it becomes harder to differentiatevbet endpoint-intensive workloads and pipeline-intemsiv
workloads.

Specifically, a canonical workload is defined such that:

All piBeIines are of the same depth

All jobs at a particular depth read from the same batch volume

No batch volume is read by jobs at different depths

Each job has either zero or one parents and either zero orhadesn
Each job reads from exactly one private volume

Each |ob writes to exactly one private volume

Each job accesses the entire amount of data within eachsscteslume
The compute times for the jobs vary within a normal distridnut

We show a canonical workload in Figure 4.1. Canonical wa&simplify data-driven scheduling because
they can be represented using only six variables as shovne &syt set of entries in Table 4. Wy 4, andWpepn
define the width and the depth of the worklod#iz,;., is the size of each batch volume aidp, ;.. iS the size
of each private volume. Finally} z,., andW,,, define the runtimes of the jobs within the workloddy,,,, is the
mean runtime of each job anidly . is the expected variance such that the runtimes fit a norraalhition.

4.2.3 Compute Environment

Because we make the further simplifying assumption thattimepute machines are homogeneous and we do
not use information about disks and memory buffer cachesftom the scheduling decision, we can represent
the compute cluster using only five variables as shown asettensl set of entries in Table 4.1. Additionally, we
present an illustration of our target compute environmabeled with these five variables in Figure 4.2.

Specifically, this environmental information can be redlt®five variables as listed in the first five rows of
Table 4.1. The number of compute nodes in the compute clisstér. 7, the total amount of storage within
the cluster ice. the sum of the storage from each nodeligoq4., the rate of failure i<0ryyre, the bandwidth
between the cluster and the home storage sit&zis,..:., and finally the bandwidth within the clusterad§, ..;.

Although the base compute platform of the simulator doesahtite disks and the memory buffer caches
of the compute nodes (as well as the home storage servemgsvadr their capacities, latencies and bandwidths
are not used by the scheduler and are therefore not inclueled By not considering these values, the predic-
tive scheduling model that we describe later in this chaisteyreatly simplified without adversely affecting its
predictive accuracy.
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Figure 4.1: A Canonical Batch-Pipeline Workload. We classify a batch-pipeline workload to be canonical whes i
mostly uniform and show an example of one such canonicalleamtihere. Circles represent jobs in the workload, double-
edged rectangles represent batch data volumes, and sauged rectangles are private data volumes. An advantage of
canonical workloads is that they can be completely desdrisng only six variableddVyy iq:, andWp.p:, define the width
and the depth of the workload¥ ..., is the size of each batch volume ai@,;,.;. is the size of each private volume.
Finally, Wg.,, and Wy, define the runtimes of the jobs within the workloddg,,,, is the mean runtime of each job and
Wy o is the expected variance such that the runtimes fit a nornsadfildution. Extractions of endpoint outputs are not shown
for the sake of exposition.
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4.2.4 Derived Values

Thus all information used by the scheduler to inform its@kion plan is encapsulated within a total of eleven
variables: six to describe the canonical batch-pipelirg:fave for the compute environment. From these variables
we derive additional values for use in our scheduling denisi

Several of these are constant and are shown in the third eatrids in Table 4.1D n,m.7065 IS the total number
of jobs in a workload and is equal to the product of the depththe width of the workloadi. Wpeyin - Wiwian)-
DroiBaten 1S the total amount of batch data in a workload; as each degslalistinct batch volume of si¥€gch,
this value is equal to the product of the depth and this $i2eW pepin - Waaten)- Finally, Dot private is the total
amount of private data in a workload and is computed mathealigtas(W pepint1) - Werivate - Wwiarn, Which
is the product of the amount of private data in a single pi@e(Wpepint+1) - Werivate) times the number of
pipelines Wiy iq:5). One thing that may be surprising about this equation ig#ig.,;,+1). This is because each
pipeline of depthiW pe,iy, has(Wpepn+1) private volumes; this is obvious when considering that @lpie of
depth one actually has two private volumes.

Other derived values are variable dependending on thelaxthadule produced and are shown as the fourth
(and final) set of entries in Table 4.1, these are the numbleatoh volumes which can be allocated concurrently,
VBateh, the expected number of pipelines which can execute coswilyy V..., and the number of phases in the
workflow in which the batch data has been already cacligd,.,,,. As these values are dependent upon the actual
schedule produced, we will postpone their further explanaintil each is encountered in the descriptions of the



49

Wwidth Workload width (.e. number of pipelines)

Wepth Workload depthi(e. number of jobs within each pipeline)
WBateh Size of each batch volume within a workload

W private Size of each private volume within a workload

W run Compute time of each job within a workload

Wv ar Compute time variability within a workload

Ceopu Number of compute nodes in the compute cluster
Cstorage Amount of storage available in the compute cluster
Crailure Rate of failure in the compute cluster

CRemote Remote bandwidth to the storage server

Crocal Local bandwidth within the compute cluster

Dnumobs Derived total number of jobs Woepth - Wwidin]
Dot Bateh Derived total amount of batch data  Wipepir, - Waaicn]
DTotPriuate Derived total amount of private data (WDepth"’l) ) WPriuate ) WWidth]
VBateh Number of concurrently allocable batch volumes

VEzec Number of executable pipelines in the steady state

Vw arm Number of phases in which batch data is already cached

Table 4.1:Glossary of Canonical Batch-Pipeline Scheduling Terminalgy. This table lists the variables used to schedule
canonical batch-pipeline workloads$y values denote constant characteristics of the worklo@dvalues denote constant
characteristics of the compute environmehbtvalues denote constants derived from the other valuedawndlues are also
derived but are variable depending on the actual schedwdyxced.

different possible scheduling allocations.

4.2.5 Scheduling Objective

Using these six variables describing the workload and tleeviariables describing the environment, the batch
scheduler can choose between different possible dataattios, each of which may lead to a different traversal
order through the workload with various throughput impiieas. With an objective of maximizing the throughput
of the workload i.e. minimizing the total time to completion), the scheduleegrto avoid two potential pitfalls
which may be possible in the different allocations and caluce throughput. The first potential pitfall we have
identified is an underutilization of the available CPUs. Beeond is sending redundant data over the wide-area
network.

An underutilization of the available CPUs can happen in tiffeigint situations. The first occurs when the
data required to run a single pipeline is greater than thegoavailable on a single compute node, such that it is
necessary to imposencurrency limitson the workload thereby resulting in an underutilizatiortlad available
CPUs. In such a case, each pipeline, which computes on & sindk, will use storage from multiple nodes. CPU
underutilization can also be caused by the impositiohasfiers within the workload. In a situation in which the
maximum number of batch volumes which can be concurrentbcated is fewer than the total number of batch
volumes, the scheduler can use barriers to ensure that eanlyszt of the batche volumes are accessed at any time.
If the individual pipelines exhibit asynchrony in their times, these barriers will result in an underutilization of
the CPUs.

The second pitfall that is possible is the need to remove e subsequentlgefetchbatch volumes during
the execution of a workload such that the wide-area netwsor&dundantly utilized.
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Figure 4.2:The Target Compute Environment. This figure shows the target compute environment for runcémgnical
batch-pipeline workloads in a distributed batch system. sivew here the variables defining the various aspects of the
environment that the scheduler uses to inform its schegydian. The number of compute nodes in the compute cluster is
Ccpu, the total amount of storage within the cluster (i.e. the afrthe storage from each node)@&;,,q4¢, the rate of
failure is Cpqi1ure» the bandwidth between the cluster and the home storages §itg......., and finally the bandwidth within

the cluster i, cq1-

Minimal

All AllPrivate AllBatch

Figure 4.3: Minimum Allocated Volumes for each Allocation Strategy These graphs show the minimum number of
volumes which must be simultaneously allocated in order akareach allocation strategy possible. The double edged
rectangles are batch volumes; the single are private. Jobsepresented as circles and the extractions are not showthé
sake of exposition. Whether a volume is allocated is inditaty shading it. For example, all volumes must be allocaied f
the All allocation as shown on the far left and only a singléchasolume and two private volumes must be allocated to allow
the Minimal allocation as shown on the far right.

4.2.6 Defining Possible Scheduling Allocations

As shown Figure 4.3, we have identified five possible dataations which influence the execution path and
the performance of the workloads. Each of these allocatioang suffer one or more possible throughput pitfalls.
We now consider each of these five allocations in more detail.

The All allocation

In the unconstrained casall, shown as the far right graph in Figure 4.3, every volume enwvlorkload {.e.
all private and batch) fits within the total available st@a¢n such a scenario, the planning is straightforward as
no possible schedule can result in adverse effects. Formdilis possible in a canonical batch-pipeline workload
whenever the total of all batch datB{,;g.:cn) plus the total of all private datdXr,:private) fits within the total
amount of cluster storag€'§;orqqe), Which translates mathematically to

DTotBatch + DTotPrivate < CStm"age- (41)

A workflow traversal is shown in Figure 4.4 using the All alidion for a workload of width and depth three.
Jobs are in one of three states: one, pending in which cageatikeshown as unfilled circles, two, executing
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Figure 4.4:Workflow Traversal for All. These graphs illustrate the workflow traversal for the Albahtion which allows

all batch and private volumes to be simultaneously allodafEhese graphs, and subsequents one like them, are intémded
be read in the standard English fashion from left to righp to bottom (i.e. follow the arrows). Pending jobs and pegdin
volumes are unfilled, executing jobs are shown with a crogbsattern, allocated volumes are shaded, and finished jobs
and finished volumes are filled in black. In this case in whitlv@lumes can be simultaneously allocated, the schedule is
completely without data constraint and each job can begateting as soon as its parent finishes.
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represented with a cross-grid pattern, and three, contpleltiéich are shaded black. Volumes are similar and have
pending and completed states which are shown respectisaipfdled and black in the same manner as for jobs.
However, volumes do not have an executing state as do jobsathgr are allocated between their pending and
completed states; allocated volumes are indicated herbdwireg them.

This traversal assumes that jobs are synchronized suclptigatvhich begin executing at approximately the
same time complete at approximately the same time. Furfisenaed is that there are at least three compute nodes
so that each pipeline is able to execute concurrently. Givege two assumptions, the traversal will proceed such
that the executing pipelines remain approximately, butpeotectly, in synchrony.

The traversal begins with the initial state in which no jolesexecuting and no volumes are allocated as shown
in the upper right graph. In the next graph, the scheduleralasated all volumes and has begun executing the
first job in each of the three pipelines. As the first job finslve the top right graph, its child can immediately
begin executing because all volumes needed for that jobdoute have already been allocated. This continues
until the bottom right graph in which the final job finishes dhd volumes can be de-allocated.

Notice that because all volumes can be concurrently akoc#iat there are no limits on concurrende.(
there are always three jobs executing until the pipelinggnifiinishing at the end), there are no barriers imposed,
and that there is no refetching of batch volumes. This is toueonly the All allocation; as we examine more
constrained allocations, we will begin to see barrierscaomncy limitations, and refetching of batch data.

The AllPrivate allocation

A second allocationAllPrivate, is possible when all the private volumes and at least onehbailume fit
within available storage,

WBatch, + DTotPrivate < CStora_qe- (42)

This is the same as Equation 4.1 for the All allocation extegitonly one batch voluméi(z,,.,) need be allocated
instead of all of themDr,:Baicn)-

This minimum allocation for AllPrivate is shown in the gragpbicond from the left in Figure 4.3 in which all
private volumes and a single batch volume are allocatech@srsby being shaded). Notice again the similarty to
the All allocation with the sole difference that only a siadgatch volume is allocated at any one time.

We know examine a workflow traversal for AllPrivate for the>imaally constrained case in which only a
single batch volume can be allocated at any one time. The auofibatch volumes which can be concurrently
allocated is one of our derived variablég;,;.,. Therefore, this maximally constrained case occurs whemev
VBaten = 1.

This constraint will exist whenever the sum of all privatdad@ ;o private) PIUS the sum of the data iavo
batch volumes exceeds the total available storage but theoall private data plus only the data éme batch
volume does fit within total available storage. For examfiie, maximum value o¥'g,;.;, for any workload in
which each batch volume requires more than 50% of the aVaikibrage is 1. If the sum of the private volumes
requires less than the remaining space after allocatingbtiese large volumes, then the AllPrivate allocation is
possible with this constraint dfg,;.;, = 1.

Such a constrained traversal is shown in Figure 4.5; thigtsal is similar to that in Figure 4.4 for All except
that barriers are needed to ensure that only one batch vakiateessed at any one time. This difference is seen
in the top right graph which shows the state of the workloaerahe first job completes. In this case, because the
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Figure 4.5: Workflow Traversal for AllPrivate with Vg, = 1. These graphs show the workflow traversal for the
AllPrivate allocation in the maximally constrained casewhich only one batch volume can be concurrently allocates (i
Veaten = 1). In such a case, as is shown in the top right graph, barrietssttbe imposed such that jobs whose job
dependencies are satisfied (in this case, the second jole ileftimost pipeline), must wait for their sibling jobs taplete.
Upon the completion of all jobs at a particular depth as iswhan the transistion between the fourth and fifth graphs here
the batch volume at that depth can be removed, thereby frestorage to allow the next batch volume to be allocated and
then the jobs that need that batch volume can begin execuhmgyduration of time that the CPUs here will be underutdize
due to this barrier depends on the synchrony of the execjdab®(i.e.workload variability}i’y ).
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second batch volume cannot be simultaneously allocatedyaldth the first, the second job in the first pipeline
cannot begin executing. Even though its job dependencesaisfiedi(e. its parent has completed), it cannot
begin executing because its required data cannot be dyriaicated. In contrast, in a All allocation as was
shown in Figure 4.4, all jobs can begin executing as soon s jtth dependencies are satisfied. In this case,
however, a complete barrier is necessary such that no jobegin executing untiall jobs at the previous depth
have completed. Once all jobs at the previous depth have letedp the batch volume at that depth can be de-
allocated, thereby freeing room for the next batch volum @lowing jobs at that next level to begin executing.
The duration of these barriers depends on the degree of ®mchbf the executing pipelines and will cause some
underutilization of computation whenever the runtimesraxreperfectly synchronized.

Notice that, although there may be CPU underutilization wubkarriers, that there is no possibility of CPU
underutilization due to concurrency limits since all of grazate volumes can be simultaneously allocated. For this
same reason, no batch volumes will need to be refetched $eedljobs that use a batch volume can be executed
before the traversal need remove their batch volume.

The AllBatch allocation

Conversely, if all the batch volumes fit without sufficienbraining space for all of the private volumes, an
AllBatchallocation is possible so long as at least one pipeline caa aecess to both of its private volumes and
thereby can execute as shown in the third graph from thenléfigure 4.3. A single executing pipeline will require
two private volumes (both input and output), so AllBatchastially possible whenever the sum of all batch data
plus the data needed for two private volumes fits within awdé storage which translates mathematically to

DTotBatch, + 2VVPrivate < CStora_qe- (43)

As all batch volumes can be simultaneously allocated, naodsameed be imposed, nor will any batch volumes
need be refetched in an AllBatch allocation. However, areamilization of the compute capacity of the storage
nodes may be incurred if fewer pipelines can simultaneoaszBcute than the number of compute nodes. To
explain this we use another derived variablg,..., which refers to the number of pipelines which can conculyen
execute.

For both of the previously described allocations, All antPAivate, this value was never constrained as all pri-
vate volumes could be concurrently allocated and thus pdllipies could concurrently execute. With an AllBatch
allocation however, only a subset of the total private vasman be allocated and therefore only a subset of the
total number of pipelines can concurrently execute.

We will give the exact derivation of this value when we pragba predictive runtime model for the AllBatch
allocation; suffice it here to say that this value will be nmaaily constrained at when only a single pipeline can
allocate two private volumes from the total available gjereemaining after allocating the total amount of batch
data.

A workflow traversal for AllBatch is shown in Figure 4.6 forishmaximally constrained case in which only
a single pipeline can concurrently execute.(Ve... = 1). This traversal shows the loss in utilization as only a
single job can execute at any given time. Each pipeline muestide in its entirety before another can begin as is
shown here in the transistion between the fourth and fiftplggaNotice the depth-first traversal that results from
this constrained schedule.
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Figure 4.6:Workflow Traversal for AllBatch with Vg,.. = 1. These graphs show the workflow traversal for the AllBatch
allocation in the maximally constrained case in which a@i#ocating all batch volumes, there exists additional atge for
only two private volumes. In such a case, the steady stateucancy of the workload is limited to just a single pipeline
executing at atime (i.6/g,... = 1). Thisis shown in these graphs as only a single job can egexwgny time and that once
a pipeline begins, only jobs in that pipeline can executdil itrtompletes. Once a pipeline is completed, another cagir

as is shown in the transistion between the fourth and fiftiplgsa
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Figure 4.7:Workflow Traversal for Slice with Vg,.. = 1. These graphs show a workflow traversl for the Slice allocatio

in the maximally constrained case in which only a single ligecan concurrently execute (i.€z... = 1) except during

the very beginning and end of the workflow. As each job finigahdsts input private volume can be released, an additional
sibling can then execute. Only after all jobs at a depth havistied, can the batch volume at that depth be removed and the
workflow can descend. This descent is shown here in the staorsbetween the fourth and fifth graphs when the final job at
depth 1 finishes. Notice how this allocation results in a dtbéirst traversal.

Although CPU underutilization may occur due to an inabitidyallocate sufficient private volumes to run at
maximum utilization, that CPU underutilization due to li@ns is not possible in an AllBatch allocation as all of
the batches are concurrently allocated. For this samemeasdatch volumes will need be refetched.

The Slice allocation

The fourth graph from the left in Figure 4.3 shows the minimaltocated volumes for the Slice allocation
strategy which is possible whenever an entire horizositeg of the workload executes to completion before any
jobs at the next horizontal slice begin executing. A horiabslice of the workload has a storage requirement of
one batch volume and one private volume for each pipgilasat least one more private volume so that at least
one pipeline can have access to both of its private volumeéshemnefore be able to execute and ensure progress of
the workload. More formally, Slice is possible whenever

WBatch + WPrivate ' WWidth + WPrivate < CStora_qe- (44)

Because the entire horizontal slice will execute beforeimpthe workload deeper, no batch refetch is neces-
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sary in a Slice allocation. However, barriers are possiblthay were in an AllPrivate allocation.

Also, as was the case for AllBatch but was not the case forr&ii®e, an underutilization of computation may
occur when the remaining storage after allocating an ehtirzontal slice allows only a subset of the pipelines to
allocate a second private volume and therefore be able tutxe

We will provide the exact derivation of the maximum concoog V..., when we present the predictive
runtime model for the Slice allocation; suffice it here to gt this value will be maximally constrained ht
when only a single pipeline can allocate its second privaterae from the total available storage remaining after
allocating the total horizontal slice. A workflow travergat the Slice allocation is shown in Figure 4.7 for this
maximally constrained case.

Notice that in the steady state once all pipelines have begecuting that the maximum number of executing
jobs is the expected value af This is not true for the entire duration of the workflow howevas two jobs
are able to execute concurrently at the very beginning addéthe workload. As the workload “ramps up” an
increasing number of private volumes are allocated. Indhise, the maximum number of private volumes that
can be allocated is four. In the steady state, after eachedhtiee pipeline has begun, one private volume for each
pipeline is allocated leaving space for only one additigomalate volume thereby allowing only a single job access
to both its input and output private volumes and limiting camency to one.

However, during the ramp up phase, not every pipeline haarbagd there is additional space. Since four
private volumes can be allocated at any time, this allowsjolie to execute at the very beginning of the traversal.
The same effect is seen at the end after the first pipelinénéajsno private volumes for it need remain allocated
thereby freeing storage, allowing an additional privatkuree to be allocated and therefore an additional job to
execute.

Because of this difference in concurrency between the ehtite avorkflow and the middle, the average con-
currency,VezecAve, fOr the Slice allocation is not the same as the steady statgucrencyVg ... This discrepancy
exists only in the Slice allocation, the value 16£ ... 40 aNdVEeca0e IN the other allocations are the same as the
concurrency for the other allocations is more consisterutjhout the entire workflow. The exact derivation for
both theVg e ave aNd Ve Values for the Slice allocation will be shown when we disdtsgredictive runtime
model.

Notice finally that although there may be CPU underutilmatdue to barriers (not shown in the traversal in
Figure 4.7) and CPU underutilization due to concurrencytéirfas shown), notice that the Slice allocation avoids
refetching any batch data. As every private volume from &iqadar slice is able to be concurrently allocated, the
workflow is able to completely exhaust all jobs at a particdiapth before descending. This exhaustion of a depth
allows the Slice allocation to avoid any batch volume rdfeteen when it is maximally constrained as shown here.
Notice the breadth-first traversal that appears here asili ofshis allocation.

The Minimal allocation

The most constrained possible allocation, as shown on thégfet of Figure 4.3, idMinimal, in which only a
partial horizontal slice of the workload can execute before stoimg&hausted and the workload is forced to move
deeper. A Minimal allocation is possible so long as at least pipeline can have access to its batch volume and
both of its private; more formally whenever

WBatch + 2WPri1)ate < OStorage- (45)
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Figure 4.8:Workflow Traversal for Minimal with V... = 1. These graphs show a workflow traversal for the Minimal
allocation in the maximally constrained case in which onbkirggle pipeline can execute at any given time ((g,.. = 1).
The traversal is identical to that shown for the AllIBatchoaktion in Figure 4.6 except that each batch volume is remiove

and then refetched for each pipeline.
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Minimal can suffer from all three pitfalls; it will definitglrefetch batch volumes and might suffer from an under-
utilization of computation due to either concurrency liatibns or to barriers.

Each batch volume will be refetched at least once becaudeweiidbe fetched for every partial horizontal
slice of the workload which executes. More formally, the t@mof batch refetches is constrainted betweand
Wwiath — 1, depending on the ratio dfg,e. t0 Wyy,ain (i.€. [”"/be—zdﬂ —1).

The expected concurrencyg...., in @ Minimal allocation may also be constrained. By defamtiwhenever
the Minimal allocation is possible and the Slice allocatiomot, the maximum concurrency of the workload will
necessarily be smaller than the width of the workloeel Vizee < Wiwviain). However, whether this concurrency
limit actually results in an underutilization of CPU depsrmh the number of nodes in the compute clust&s ;).
The exact derivation of th&z,... value will be provided in the predictive runtime model; stfit here to say that
this value will be maximally constrained atwhenever no additional volumes can be allocated after atitog a
single batch volume and two private volumeése.(after allocating the minimum volumes required to execute a a
single pipeline).

Figure 4.8 shows a workflow traversal for a Minimal allocatior the maximally constrained case in which
Vezee = 1. This traversal appears similar to that in Figure 4.6 forAliBatch allocation except that each batch
volume must be removed in order for the workflow to proceedltmer depth. In such a maximally constrained
case, as illustrated in this traversal, each batch volumst imel fetched for every pipeline. Notice, as was the
case for the AllBatch allocation, that the Minimal allocatiwith concurrency constraints results in a depth-first
traversal of the workload.

The Remote allocation

Finally, there exist workloads whose combination of batat private volume sizes is sufficiently large that
none of the previous allocations are possible. We referiscettRemote Strictly speaking however some Remote
workloads could still technically execute if they did natespt to cache their batch data, but rather used remote
I/O to fetch it as necessary. Although this is feasible, wendbconsider it further in this work as we are more
interested in the challenges when allocations are podsilileonstrained.

Further we note that this ability to use remote 1/O to fetcttbalata should be used judiciously and probably
only at the discretion of the user. As was seen in ChapteriBguemote I/O for batch-pipeline workloads results
in a drastic performance “cliff.” Such extreme performadd&erences should not be made transparent to the user.
In such a case, it seems reasonable that the scheduler awidddly refuse to use remote I/O for an Remote
workload until giving the user an opportunity to reconfigtine workload or to explicitly request remote 1/O.
Finally although this technique of using remote I/O for tredh data does allow some Remote workloads to
execute, note that there is no technique which can executdamds that generate excessive private output data.

4.3 Possible Volume Sizes for the Scheduling Allocations

Using the formulae for determining when each allocatioatsgyy is possible reveals that, depending upon
the amount of storage a workload needs, multiple schedualilogations may be possible. These formulae are
summarized here in Table 4.2.

We then plot these formulae for different values of workleadth, Wy ;4:,, and workload depthy pepp, and
show these graphs in Figure 4.9. These graphs show in the @amedar the lines where each strategy is possible for



60

| Allocation | Minimum Storage Needed \
All WDepth ) WBatch + (WDepth+l) ) WPrivate ) WWidth
AllPrivate WBatch + (WDepth+1) } WPrivate ) WWidth
AllBatch WDepth i WBatch + 2VVPM'Uate
Slice WBatch + WPrivate i WWidth + WPrivate
Minimal WBatch + 2WPri1)ate
Remote @

Table 4.2: Minimum Storage Needed. This table summarizes the minimum amount of storage needeth¢h of the
scheduling allocations we have defined.

all possible values of batch volume siz€ ..., ON the x-axis, and private volume sidz&p;;yaqte, ON the y-axis.
These volume sizes are shown as a percentaggof.,.. They are presented in tabular format to show the effect
that increasing workload depthB/.,,) and widths Wyy,4,) has on each strategy. There are several points to
notice in these graphs.

The first thing to notice is that in all cases, the maximum ibatlume approaches the full 100% Gf;orage
but that the maximum private volume is only 50%@§;,,.4.. This difference is due to the fact that, in order to
execute, a job must have access to only a single batch volutre two private ones.

Further, we see that each allocation strategy is effectéeteintly by increasing values of workload depth and
width. Comparing across the top row as the workload widtlidases we observe that only the possible areas
for the AllBatch and Minimal allocations are robust to ireesang workload widths. Conversely by looking at the
column of left-most graphs, we see that only the possiblasai@r the Slice and Minimal allocations are robust to
increasing the depth of the workload.

Looking in more detail at the effect of width and depth to epahticular allocation, we observe that the All
allocation is sensitive to both width and depth; as the widtireases, the maximum size of batch volumes is
unaffected but the maximum size of private volumes that ¢amithin a fixedCs;,,.4. decreases. This is intuitive
because as the width increases, the total amount of batahietatins constant but the total amount of private data
increases. Conversely, increasing the depth decreaseshgomaximum size of private volumes as well as the
maximum size of batch volumes because an increase in deqthsré a larger amount of both batch and private
data.

The behavior for the AllPrivate allocation is similar to tlad All with the exception that the maximum size
of the batch volumes is constant in AllPrivate since it neely allocate a single volume at a time. The AllBatch
allocation shows effectively the converse behavior to Mie; it is sensitive to depth but not width and the
maximum private volume size remains constant. Again thiatisitive because the AllBatch allocation requires
simultaneously allocating all batch volumes but only twivate volumes.

As expected, the Slice allocation which need allocate osiygle horizontal slice of the workload is sensitive
to width but robust to depth. Finally, the Minimal allocati;meeding only a single batch and two private volumes,
is constant in both directions. Results for these relatigpssbetween workload depth and width and the maximum
volume sizes are summarized in Table 4.3.

These graphs allow comparison of the different possiblasafer each of the five allocations which can aid in
the decision making process by which the scheduler sela@Baration. Notice initially that only in the base case
whereWyy g, andWpe,, are bothl are the possible areas the same for each allocation. Foo#fa@hpossible
combination ofWyy;q:, and W, the areas are different. For very large data sets in whielbétch volume
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Figure 4.9:Possible Volume Sizes for the Different AllocationsThese graphs show as the area under the lines when each
scheduling allocation is possible for varying batch andvpte volume sizes for canonical batch-pipeline workloatise
names of the allocation strategies have been abbreviatesd ¢ is All, AB is AllBatch, AP is AllPrivate, Sl is Sliceai

is Minimal. On the x-axis is the size of the batch volumes had/itaxis shows the size for private. Notice that for all sase
the maximum batch volume size can approach 100% of totaledolaistorage but that the maximum private volume size can
only approach 50%. This is because an executing job needsado only a single batch volume but to two private volumes.

size exceeds the total cluster storage or where two priv@tenes do, there will be no allocations possible. For
smaller volume sizes, in some cases there may only be onibleoakbocation. For example, for a width and depth
both of 3, only the Minimal and AllBatch allocations are pibss for private volume sizes approaching 50% of the
total cluster storage. Conversely, at the same width anthaé3 but with a batch volume size approaching 100%,
only the AllPrivate, the Slice, and the Minimal allocatioai® possible. For both a large private size and a large
batch size, only the Minimal allocation is possible (for exde, whenWpepin = 3, Wwian = 3, Waaten =
49, Wprivate = 24). Finally, for small values foi¥ p,;yqte andWg,.n, all allocations are possible.

The key observation here is that when multiple allocatiaespmssible, the scheduler needs some additional
criteria by which to choose a scheduling allocation.

4.4 Predictive Analytical Modelling

To determine which allocations apeeferablewhen multiple allocations are possible, we develop an dicaly
model for predicting the runtimes for each of the schedudithgcations. This predictive model is relatively simple
and was added to our simulated scheduler using fewer thatirs30of code. The algorithms extend logically and
build upon the equations previously defined in Table 4.2 aadanly the base eleven variables from Table 4.1: the
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Wwiatn 0 Whpepth
All WPrivate U’ WBatch U'- WPrivate ‘U
AllPrivate WPMvate U WPrivate U
AllBatch (4] W Bateh U’
Slice WPrivate U 9
Minimal 0 O

Table 4.3:Effect of Wwa:n and Wp.p:, On Maximum Volume Sizes. This table shows the effect that increasing width,
Wwiatn, and increasing depthy pe,:, has on the maximum size of private and batch volumes witkamanical batch-
pipeline workload for each of our five studied allocationenSider, for example, the All allocation. An increase inwidth

of the workload reduces the maximum size of private voluores All allocation but has no effect of the maximum size of
batch volumes; increasing the depth however decreasesakiemam size of both private and batch volumes. Effects on the
other allocations can be interpreted similarly.

five environmental variableg;c pi/, the number of compute nodeSg; .44, the total amount of available storage
in the compute clustel ry;jure, the failure rate C'remote the remote network bandwidth between the compute
cluster and the home storage server, é@hg..;, the local network bandwidth within the compute clusted #re

six workload variablesiWyy g, andW pe,ep,, the width and depth of the workloal/ .., aNdW pyjyate, the size

of each batch and private volume, and findfi,,,, and Wy, the compute times and their variability.

Notice that many of the low level characteristics, such asdisks and buffer caches, of the cluster environ-
ment arenot considered in these predictive models. As we will see, tingpkfication may cause some absolute
inaccuracies in the model’s ability to predict absolutetimes but does not adversely affect the model’s ability
to predict the relative performance of the different sclieduallocations. As this relative performance is what is
used for predictive scheduling, this simplification andresponding loss of absolute accuracy is justified.

To predict the total time to completion for these workloads, compute how many phases will be required
to run these workloads. The number of these phases is ggrimltotal width of the workload divided by our
anticipated degree of concurrency. Each phase then caws$iskecuting some number of pipelines.

The runtime for each phase is computed to be the total amdweongpute time within that phase plus the time
needed to access the total amount of private and batch dadgfpeline within that phase. Notice that our model
assumes that the runtimes for all pipelines within a phasebeacomputed as a single number. Also our model
does not consider any costs due to contention that may ber@tcdepending on the degree of concurrency. As
we will see in our evaluation, these simplifications causenttodel to tend to underpredict the absolute runtimes
but does not effect its relative predictions comparing s€srheduling allocations.

4.4.1 Predicting Runtime for All

Specifically, for the All allocation, the total time to coregibn for a workload includes a “cold” phase
(Tecoiapnase) during which the batch data is fetched from the remote haorage server followed by some num-
ber, Viy orm, Of “warm” phases each of which takes tiMig- ... prase during which the cached batch data is fetched
locally within the compute cluster. This is formalized as

TTotal = TColdPhase + VWarm . TWarmPhase (46)

which also appears in Figure 4.10 which shows the complet@igiive algorithm for the All the AllPrivate, and
the AllBatch allocations.
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TTotal = TColdPhase + VWarm ' TWarmPhase
TColdPhase = TColdBatch + TPrivateRead + TPriuateWrite + TCompute
TColdBatch = BW(CRemotea CLocal) : DTotBatch

1

1 1
CRemote + CLocal

DTotBatch = WDepth'WBatch

BW (Cremotes Crocal) =

TPrivateRead = BW(CRemotea CLocal) ' WPrivate + C’Local . WPriuate . (WDepth - 1)
TPrivateWrite = CLocal . WPrivate . (WDepth - 1) + BW(CRemotea CLocal) : WPrivate

TCompute = WRun ' WDepth

Wwidtn
Vwarm = - -1
min(Vegee, Copu)
Viezee = Wwidth

TWarmPhase = TWarmBatch + TPrivateRead + TPrivateWrite + TCompute
TwarmBateh = Clrocal - DrotBateh

Figure 4.10:The Predictive Model for the All Allocation. These equations form the predictive model which the sckedul
uses to predict the total time to completion for workloadsestuled using the All allocation.

Cold phase

The runtime for the cold phase consists of the sum of the tofetth the batch data from the remote node
(TcoraBaten), the time to read the private datBr.;yqte Read), the time to write the private datd'f,iatew rite), @Nd
the compute timeXcopute):

TColdPhase = TColdBatch + TPriuateRead + TPrivateWrite + TCompute- (47)

Each of these times are estimated using some set of our edewmstants describing the workload and the compute
environment.

The time to read the batch data remotély:{,g.:cn) IS the product of the serial bandwidth of sending data
through the remote and local bandwidths and the total anmfurdtch data D7 Baicn):

TColdBatch = BW(CRemotea Cﬁocal) . DTotBatch (48)

The serial bandwidthBW, for a set of components is the inverted sum of the invertediWwalths for each
component or mathematically,

1
—_ 4.9
S -
bw=1 bw
In this case, the serial bandwidth to read data remotely is
1
BW(CRemotea C'Local) = 1 1 (410)

CRemote CLocal
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The derived value for the total amount of batch data is thdyrbof the workload depth and the batch volume
size:
DTotBatch = WDepth ’ WBatch (411)

The private input data is read either from the home node ferfitist job in each pipeline or from the local
cluster for subsequent jobs. The final private output istemifirst to the local cluster and then later extracted to
the home storage server.

The time to read the private datBp,;,qic rRead, IS COMputed to be the time to read one private volume from the
remote storage server at the serial bandwidtty@f,,.;. andC1,..; plus the time to read the remainifigpp:, — 1
private volumes from the local compute clustetat,..;:

TPrivateRead = BW(CRemot67 CLocal) ) WPrivate + CLocal ' WPrivate ' (WDepth - 1) (412)

The time to write the private data is the same except thatheisast private volume, not the first, that is written
to the home storage server. In actuality, this last volunseigally written first to the local network and then later
extracted to the home storage server; however the modehatssthis and ignores the initial write to the local
network. Formally, we define this as

Tprivatewrite = CLocal ’ WPrivate : (WDepth - 1) + BW(CRemotea OLocal) : WPrivate (413)

Note that there are actually'p.,;, + 1 private volumes but of these only the filstp.,,, are read and only
the lastWp.,:, are written. The first private volume is read and not writted ¢he last is written but not read,
only private volumes between a parent and child job are bedld and then later written during the execution of
the workload. Notice also that the equations for the esgohéime for bothT'p,;yaie Read ANATPrivatew rite Are
identical except for the ordering of the addends.

To predict the total compute tim&c,,,u¢., for the All allocation we multiply the average compute tibig,,,
by the number of jobs in each pipeling,p.,:,, or mathematically

TCompute = WRun ' WDepth (414)

Because the All allocation does not require any barriefgohb can run as soon as their job dependencies are
satisfied. Because no jobs must wait to execute, even thtwegl may exist a large degree of runtime variability,
Wy ar, this runtime variability isnot considered within the predictive model.

Warm phase

The number of warm phase¥,y ..., iS relative to the total number of expected concurrentlgcexing
pipelines Vr.cc), the total number of compute nodés(py;), and the total number of pipelineBAy ;4:,). Math-
ematically, we define the number of warm phases to be

Wwidtn w
Vwarm = - -1 4.15
W mzn(VF}zecv C’CPU) ( )

which subtracts the initial warm phase from the total nuniddgrhases that are required to run a totalidf,; 4.,
pipelines at a concurrency of eithgf,.. when sufficient compute nodes are available arap;; when they are
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not.
Remember that for the All allocation the expected numbeixeteting pipelines in the steady state is always
the full width of the workload because there exist no datastramts, therefore, for the All allocation:

VEzee = Wwidh (4.16)

Each warm phase consists of the time to fetch the batch deddMdTyy 4.1 Bazen) PIUS the same times we
previously defined to read the private inpUtpl;yaiereaq), 10 Write the private outputT(p,ivatew rite), and to
ComPUte TCOmpute):

TWarmPhase = TWarmBatch + TPrivateRead + TPrivateWTite + TCompute (417)

Therefore the last estimate needed to predict the runtimanfé\ll allocation STy o Baten, the time to fetch
the batch data in the warm phase after it has already beewrdacthe local cluster. This is computed as the
product of the local bandwidthi(Y;,,..;) and the total amount of batch da4,;guicr):

TWarmBatch = CLocal ' DTotBatch (418)

This reveals another simplification within the model in thatoes not consider that the batch data is actually
striped across the local cluster such that for jatnmputing on noden reading the batch data, one stripe will not
actually be fetched from the local network because thgiesis already hosted on the compute machinerThis
same simplification is true for the reading and writing oivate data.

4.4.2 Predicting Runtime for AllPrivate

The algorithm for predicting the runtime for workloads sdhied using an AllPrivate allocation is shown in
Figure 4.11. There is onlgnedifference between the predictive model for the AllPrivaliecation and the All
allocation.

This sole difference results from the use of barriers in dPrMate allocation which changes the predicted
value we set fofl oompute. Because each job may need to wait for its siblings jobs topbet®, the mean job time,
Wrun, IS Not Of interest here; rather we use an incremental vadteden the mean time and a crude estimate of
the longested predicted job timB/ Gy, + Wrun - Wyar).

We weight this by approximating the likelihood of barrietsdugh determining the maximum number of
batches volumes which can be concurrently allocakgg,.,. In other words, th€compuie Values increases for
decreasing values 0fg.,. Mathematically, we S€fcompuie aS:

Wrun - Wy
TCompute = (WRun + W) ’ WDepth (419)
ate
andVpggen IS determined mathematically as:
VBatch _ OStoragew; DTotPrivate (420)
Batch

Note that the model does not assume anything about the actifhe distribution of the workload. Even
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T(fuldPhase
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BW(CI{('m,o/,(t-, Cﬂuml )

DT‘U[ Batch
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Tprmamt'mm

TCompute

VBatch
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Y
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Figure 4.11:The Predictive Model for the AllPrivate Allocation. These equations form the predictive model which the
scheduler uses to predict the total time to completion forkleads scheduled using the AllPrivate allocation. Onle th
darkened equations differ from those already defined inigigul0 for the All allocation. Here the only difference istlre
prediction for the compute time which considers runtimeatamn which is ignored in the All allocation.
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Figure 4.12:The Predictive Model for the AllBatch Allocation. These equations form the predictive model which the
scheduler uses to predict the total time to completion forkleads scheduled using the AllBatch allocation. Only the
darkened equations differ from those already defined in feig10 for the All allocation. The sole difference is in the

prediction for the expected degree of concurreigy,....

though the runtimes within our synthetic workloads fit a narmiistribution, the model is concerned only with
estimating the cost of barriers and does so with this crutimate of the runtime of the longest running job
in the set. Again, our models are concerned only with redatand not absolute accuracy, and so we feel this
simplification is reasonable in that it achieves the desireldavior by penalizing allocations that allow barriers
relative to their likelihood of encountering them.

4.4.3 Predicting Runtime for AllBatch

The algorithm for predicting the total runtime for workl@sicheduled using an AllBatch allocation is similar
to that of All, and is shown in Figure 4.12 with the sole diffiece found between the formulae for computing the
estimated number of concurrently executabling pipelings.{.).

Although the predictive algorithms are mostly identichlstdoesnot mean that there is no difference between
the allocations. Remember, as was shown in Figure 4.9, dcht@f these allocations is possible for different sizes
of batch and private volumes relative to the total availatteage. As was seen previously, the area in which the
All allocation is possible is a strict subset of the area inallihe AllBatch allocation is possible.

When both All and AllBatch allocations are possible, the hanof executable pipelines will be the full width
of the workload (.e. Vi.ec. = Wwiain) and the predicted runtimes will be identical. The diffexemowever is that
the AllBatch allocation is possible for larger values ofdbaand private volume sizes when the All allocation is
not possible. At this point, the maximum utilization for tA#Batch allocation will drop to the lower value which
is equal to the number of jobs which can have access to bdttinpat and output private volumes after allocating
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all batch data:

C orae_D otBate
St g TotBatch (421)

VF‘azec =
2WPrivate

One interesting thing to note here is that although the ptigdi algorithms are very similar, the anticipated
workload traversal for an AllBatch allocation as opposeeitber an All or AllPrivate allocation may be almost
completely opposite. Remember when we looked at their otispavorkflow traversals in Figures 4.6, 4.4, and 4.5,
that the AllBatch allocation follows a depth-first travdrshe AllPrivate allocation proceeds in a breadth-first man
ner, and being unconstrained, the All traversal is free teitter. How then with such different traversals can these
disparate scheduling allocations have such similar ptigdialgorithms?

The answer is that, although each allocation may result iifferehtly ordered traversal, the total set of the
components of each of these traversals is the same: theyeaedyrordered differently. For example, the AllPrivate
traversal first does the cold phase for the job$Vaj.,,, = 1, then does the warm phases, if necessary, for the
remainder of the jobs at that depth. Only then does it refsfar each subsequent level of depth. Conversely,
the AllBatch allocation doeall of the cold phases first for each depth, and only then doe$ tleavarm phases.

To risk belaboring the point, imagine a workload of depth twaich requires one warm phase for both an
AllPrivate and an AllBatch allocation. The total predictenhtime for the AllPrivate allocation is

TColdPhase(WDepth = 1) + TWarmPhase(WDepth = 1)

+TColdPhase(WDepth = 2) + TWarmPhase(WDepth = 2)

whereas for the AllIBatch allocation it is

TcotaPhase(Wpepth = 1) + TcotapPhase(WDepth, = 2)

+TWarmPhase(WDepth = 1) + TWarmPhase(WDepth = 2)

Notice that the AllPrivate allocation alternates betweeld and warm phases whereas the AllBatch allocation
does all cold phases and then does all the warm phases. Wersethérefore that the individual components are
the same and only the ordering is different. For an All altmathe components are also the same but the ordering
of the actual traversal is arbitrary as it can execute witloy data constraint.

4.4.4 Predicting Runtime for Slice

The predictive algorithm to determine the anticipated imatof a workload using a Slice allocation is very
similar to that used for the AllPrivate allocation and iswhan Figure 4.13. Although their predictive models are
similar, the AllPrivate and Slice allocations are certpinbt identical. There are two main differences.

First, Slice does also use runtime variability to computeeitpected compute tim&c,,,u... However, this
value is weighted by the maximum number of batch volumes kwhan be concurrently allocate¥g,;.;, and
this value is derived differently for Slice than it is for Ritivate. For the Slice allocatioz,:., is computed as
the number of batches that fit in remaining storage aftecallng a single volume for each pipeline and a second
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Figure 4.13:The Predictive Model for the Slice Allocation. These equations form the predictive model which the schedul
uses to predict the total time to completion for workloadsestuled using the Slice allocation. Only the darkened equosat
differ from those already defined in Figure 4.11 for the AiNRte allocation. The difference between the two predictiv
algorithms is due to the phase behavior in the Slice allarain which a greater number of jobs can execute concurrextly
the beginning and the end of the workflow than during the reidd|
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volume for as many additional pipelines as can execute. &dhadttically, we determine this as so:

CStora_qe - WPrivate . WW?Zdth, - VEa:ecWPrivate (4 22)

VBatch =
WBafrh

Note that because the Slice allocation aggressively ezse@d many pipelines as possible after allocating a single
batch,Vg...n in a Slice allocation will usually be only except for very small batch volume sizes or when storage
is not scarce.

Second, Slice uses a more complex set of equations for estgrthe average concurrency of the workflow
than does AllPrivate. As was shown in Figure 4.9, the totaaan which the AllPrivate allocation is possible is a
subset of the possible area for the Slice allocation. Becdumly allocates storage for a single horizontal slice
of the workload, the Slice allocation is possible for wodds of greater depths than is the AllPrivate allocation.
When both are possible however the predicted runtimes amnkflow traversals are indeed identical.

However, at the point at which the AllPrivate allocation @longer possible due to the size of the volumes
relative to the total amount of available storage, the roatprediction for the Slice allocation becomes more
complex. While the AllPrivate allocation is possible, alivate volumes can be concurrently allocated and there
are no concurrency constraints.

As the total amount of private volume increases and the &g allocation becomes no longer possible, the
Slice allocation remains possible but full concurrencyl wil longer be possible and concurrency limits may be
imposed depending on the number of available compute nolgs;y .

The expected number of executable pipelirigs,.. for the Slice allocation is as the number of pipelines that
can executei(e. have access to a second volume) after allocating all thendatssary to hold a single horizontal
slice of the workload or mathematically as

C?fora 4 — Wpy -Wwi
Storage Batch Private Width
VEzeec = (423)

WPrivate

This equation is correct but in order to predict the runtimethe Slice allocation, we need to take into con-
sideration that there are periods during the executioneotibrkflow for a Slice allocation in which the number of
executing pipelines can exceed the expected steady state va

This effect was seen during our earlier examination in oftbekflow traversal for Slice as shown in Figure 4.7.
As was observed then, the maximum number of concurrentlgutxey pipelines may be greater at both the very
beginning of the workflow as well as the end. During the miguigtion of the workflow, while every pipeline has
at least one private volume allocated, then the workflow etescat the steady state concurrency. This difference is
due to the fact that the storage needed to allocate a hoaizlitte of the workload is smaller at the very beginning
and end of the workflow than it is in the middle.

Therefore, to estimate the runtime, we then need to compaseerageconcurrency between these maximum
and steady state values. This complexity was ignored foother allocations because for them the number of
executing pipelines is more consistent throughout theetsal of the workload.

Because of this effect, and as will be seen more clearly inevatuation, the width and the depth of the
workload influence the average concurrency of the workl&aad.small widths and depths, this additional concur-
rency at the beginning and end of the workflow is a larger imibge as width or depth increase, this influence is
amortized.
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Voyeles
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. ) VF]zem 1< VCycles
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Figure 4.14:The Predictive Model for the Minimal Allocation. These equations form the predictive model which the
scheduler uses to predict the total time to completion fakkleads scheduled using the Minimal allocation. This potisie
algorithm splits the workload into multiple sub-workloaasd predicts the runtime for each sub-workload using thélistese
model for the Slice allocation as shown in Figure 4.13.

The exact effect seen is that the first and lagbbs can all execute concurrently whetas strictly greater
than the number of jobs expected to concurrently executedrsteady staté/z.... This value ofn is found by
determining how many pipelines can have both their input@tgut private volumes allocated after allocating a
single batch volume (as we will see, this is the same formséluo determine the expected concurrency for the
Minimal allocation):

(4.24)

o CStora_qe — Whatch
2Wprivate

The reason for this, and we will see this again in Sectiorbdvhen we discuss the predictive runtime algorithm
for the Minimal allocation, is that the Minimal allocatiorcta similarly to the Slice allocation with the difference
being that it is willing to refetch batch data in order to nmadde concurrency as opposed to the Slice allocation
which accepts reduced concurrency in order to avoid refejcdbatch data. Indeed at the very beginning and end
of its workflow traversal, when not all of the private volunasg allocated, the Slice allocation acts exactly as the
Minimal allocation does during its entire traversal.

Therefore, we estimate the average expected concurrentlieSlice allocation to be the averagerotind
Vizee Weighted by the number of jobs to be executed at each of thesedncurrencies. The number of jobs
to be executed at a concurrencyrofs n at the beginning plus anotherat the end. The remainder of the jobs
(WwiathWeptn — 2n) Will be executed at the expected steady state for Sligg... Actually, some number of
jobs will execute at a concurrentgetweerthese two values as the workload transitions between thessep but
this effect is ignored in the model.

Mathematically, we reduce all of the above into the follogvequation to compute the expected average con-
currency,Vezecave, fOr the Slice allocation:
n-n+ (DNumJobs - 2”) “VEgece + 11

VEzecAve = DNumtob (425)
um.Jobs
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4.4.5 Predicting Runtime for Minimal

Predicting the runtime for a workload scheduled using a Maliallocation is almost identical to the prediction
using a Slice allocation with one major difference. Effeely, the Minimal allocation does a series of Slice allo-
cations for vertical subsets of the workloag (some number of pipelineg, less than the width of the workload,
Wwiatn); €ach of these vertical subsets can then be executed tiirgjice allocation at full CPU utilization. €.
whenVg... >= Ccpy). Notice that in the base case in which the Slice allocatamitself execute at full CPU
utilization, the number of vertical subsets for the Mininallbcation will be one, and the behavior (and runtimes)
of the two allocations will be the same.

Because the Minimal allocation aggressively frees batté alfocations to maximize CPU utilization, it effec-
tively maximizes CPU utilization at the possible expenseefétching batch data over the WAN. Conversely, the
Slice allocation minimizes WAN traffic by executing all jotisat read from a batch volume before removing that
volume and in so doing may reduce CPU utilization.

Notice that our model assumes that batch volumes (and inafaeblumes) cannot be partially removed.
Although our synthetic workloads do read batch data onlyepngany real applications reread (and rewrite) data
at various phases of their execution as discussed in Chapfar this reason, it is difficult for a batch scheduler to
anticipate when a particular volume can be removed duriagkecution of the job. Only when a job completes,
can a volume be safely removed.

Each vertical subset of the workload executed using a Mihathacation will therefore refetch the batch data
in its entirety and as such the predicted runtime for eacticadrsubset will be the predicted runtime for a slice
allocation for that subset. We then multiply by the prediateimber of subsets to find the total estimated runtime
for the Minimal allocation.

The number of subsets and therefore the number of cycles @ltbe allocation)/cy ., is found by dividing
the total number of pipeline$Vy ;4. by the expected concurrendyy ..., or mathematically as:

(4.26)

W .
VCycles = " Wldth-‘

VF]zec

The expected concurrency for the Minimal allocation is fdny determining how many pipelines can have
concurrent access to both their input and output privataruek after allocating a single batch volume, which is
expressed mathematically as:

(4.27)

o CStm"age B WBatch
VE‘azec -

2WPr7lvate

We then creaté/,.., Smaller sub-workloads, each identical to the complete lwack but with the smaller
width Vg.... Notice that the width of the final sub-workload may be smakeit is the remainder of the pipelines
after executing the firstc, .5 — 1 sub-workloads,

WWz‘dth(SUb’UJm”klO(ldV(;ydes) = WWidth mod VEmec (428)

The predicted runtime for the Minimal allocation is then then of the predicted runtime for each of these
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total runtine = 0

numpi pes = wor kl oadwi dth
war m =0
WH LE ( numpi pes )
runtime = predi ct Runti me( numpi pes, warm)
total runtine += runtime
numpi pes =runtime * failurerate
IF ( allocation EQ AIl OR allocation EQ All Batch )
warm= 1
FI
END

Figure 4.15:Modelling the Effect of Failure. This figure contains the pseudo-code for our failure modedtidé that
failure is modelled almost identically across the diffdrecheduling allocations. The difference is that for thokecations
which continue to cache batch data after it is used (All an@atch) the failure model assumes that the batch data needed
for rescheduled failed pipelines is already cached.

smaller sub-workloads using a Slice allocation, or maticaty:

VCycles

Trowr = Y Trowa(Slice, SubW orkload;) (4.29)
i=1

The complete predictive algorithm for the Minimal allocatiis summarized in Figure 4.14.

4.4.6 Predicting the Effect of Failure

The observant reader may have noticed that our predictjaitims use only ten of the eleven workload and
environment characteristics. The algorithms accounthHerrtumber of compute node§S'{ /), for the amount
of storage ('siorage), for the remote and local bandwidth§'Ae,,, 0. aNdC4cq1), for the width and depth of the
workload Wy qin, andW e, ), for the size of the batch and private volum&8g,;., andWp;yqie), and finally
for the compute time and its variability(z,,, andWy;.).

The failure rateC'rgiure, Of the compute environment it considered within any of the individual predictive
algorithms. Rather, it is considered as an external effiedtia modelledalmostidentically across each of the
algorithms.

Specifically, to estimate the effect of failure, we take thedicted runtime of the workload and multiple it
by the failure rate to determine the number of failed pipdinWe then estimate the runtime of a new workload
whose width is the number of failed pipelines from the prasioWe repeat until no pipelines are expected to fail.
The estimated runtime is therefore the sum of the runtimesaoh workload run with a diminishing number of
pipelines.

The way in which the failure model is applied differently @ss the different allocations is in regards to batch
data. When we reschedule the failed pipelines for thoseatitans which do not proactively remove batch volumes
(i.e. All and AllBatch), we adjust the model such that it does not amy “cold” cycles but rather assumes that all
batch data is already cached. Conversely, for the otheraditms, AllPrivate, Slice, and Minimal, which remove
the batch data as they descend through the workflow, thedaiwdel correctly accounts that all batch data must
be refetched from the home node for the rescheduled faileelipes. The pseudo-code for our failure model is
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Wwidth Wpepn Total Batch YBach  Total Private 2frivate  Wp. Wy,

Cstorage Cstorage
batch 350 5 883 GB 70.6% 420 GB 0.1%| 5000s| 500s
private 350 5 150 GB 12.0% 5250 GB 1.0%| 5000s| 500s
mixed 350 5 225 GB 18.0% 1050 GB 0.2%| 5000s| 500s

Table 4.4:Baseline Characteristics of the Synthetic WorkloadsThis table provides the baseline values describing each
of our three canonical batch-pipeline workloads.

shown in Figure 4.15.

4.4.7 Winnowing the Allocations

To evaluate the accuracy of our predictive model we exanfieeperformance of each allocation across the
range of workload and environmental characteristics whiethave identified as having an affect on performance
(the top two groups of rows in Table 4.1). To simplify this lexion we remove the All and AllPrivate allocations
from consideration.

The All allocation is not interesting here because of the glete lack of constraint. Because the entire set
of volumes is allocable whenever All is possible, the schexdin such a case need make no allocation decisions.
This problem then reverts to the already addressed probidratch computing of making job placement decisions
in regards to available computational resources [69, 109].1As the problem we are examining is the more
difficult challenge of coordinating both the CPU and the ddkacations, we are not interested in cases in which
the data allocation is trivially solvable. Further, All isabset of AllBatch; indeed in every instance in which All
is possible, the behavior of AllBatch and All are the same.

The AllPrivate allocation is similarly uninteresting. litively, and also as evidenced in Figure 4.9, AllPrivate
is a strict subset of Slice. There exists no situation is WwiittPrivate is possible but Slice is not; further in every
situation in which AllPrivate is possible, Slice is a prefiele allocation strategy because AllPrivate wastes storag
space holding already consumed private volumes whereas &ieases these volumes thereby allowing other
volumes to be allocated. In many cases, there is no differbetween these allocations but in some, this extra
space allows Slice to hold more data and may allow it to desoeore quickly through the workload and avoid
barriers imposed in AllPrivate.

In regards to failure, AllPrivate might seem preferablesuese it could allow pipelines which experience failed
jobs to rollback partially instead of entirely. Howeverr Bocanonical workload in which all private volumes are
the same size, any storage space being used for a shallowateprolume would be strictly better utilized to
hold a deeper volume instead. For example, imagine a pgebecuting in a high-failure environment. Storing
a backup copy of a private volume from some depftor this pipeline allows it to resume from that point should
it fail. When the pipeline progresses deeper to a depih-6fl, any storage holding the backup volume fram
would be strictly better utilized to hold a copy of the volufnem d + 1; in other words, resuming a pipeline at
depthd + 1 is strictly better than resuming at depth

4.4.8 Synthetic Workloads

Having eliminated All and AllPrivate as uninteresting alidion strategies, our selection decision now must
consider only the three remaining, AllBatch, Slice and Mial. To examine the differing performance profiles of
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Figure 4.16:Possible Allocations for the Synthetic Workloads. This graph displays the position of each of our three
synthetic workloads within the possible areas for our d#ifé scheduling allocations. Notice that all three allocais are
possible for only the mixed workload, for the batch-inteasivorkload, only the Slice and Minimal allocations are pholes
and for the pipe-intensive workload, only the AllIBatch andilal allocations are possible.

these allocation strategies and to evaluate the accurasyrgiredictive model, we exercise these allocations for
each of three representative workloads across the ranger&foad and environmental characteristics as defined
in the top two groups of Table 4.1.

The three synthetic workloads that we use are based on ofilifgabservations from Chapter 2 and are
constructed such that onebsitch-intensiveone isprivate-intensiveand the third iamixed being neither batch-
nor private-dominant but having middling values for eache Pprecise values used in each of these workloads are
shown in Table 4.4. For these workloads, we normalize theuainaf compute time across each of them and select
a value such that when running a single instance of eachimpéplkelcally at the home storage server, the pipeline
would be performing I/O for approximately 50% of its totalkeeution time.

As shown in Figure 4.16, we choose these workloads suchahtid batch-intensive workload, only the Slice
and Minimal allocations are possible, for the private+isige workload only the AlIBatch and Minimal allocations
are possible and finally for the mixed workload, the AllBat&tice, and Minimal allocations are possible but an
All allocation and an AllPrivate allocation are not.

Finally shown in Table 4.5 are the values used to describedh&putational environment. Remember as
stated earlier in this chapter that these six constantgidesg the workload and these five constants describing
the environment comprise the entirety of the informatioadeal by the scheduler to make predictive estimates so
long as the workload is canonical and the compute infragtrads homogeneous.

4.4.9 Allocation Behavior

To illustrate the different behaviors exhibited by the ehedlocation strategies of AllBatch, Slice, and Mini-
mal, we show in Figures 4.17, 4.18 and 4.19 the storage and dllBthtion profiles for each of the scheduling
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Number of compute nodes Ceopry 50
Total available storage Csioraqe | 250 GB
Failure rate Cruiiure 0.0

Remote bandwidth Cremote | 12 MB/s
Local bandwidth  Cprye | 1 MB/s

Table 4.5:Baseline Characteristics of the Compute Environment.This table lists the five constants used as the base-
line characteristics of our compute environment. Our ea#ibin section includes experiments in which we vary differe
combinations of these values.

allocations for the three synthetic workloads. We focusdscussion here on the mixed workload in Figure 4.19
because it is the only one of the three workloads for whiclofaihe three allocation strategies are possible. For
these graphs, the x-axis shows the elapsed execution tintleefavorkload. For the graphs on the left, the y-axis
is the percent of the cluster CPUs allocated and for the graphthe right it is the percent of allocated cluster
storage.

Notice initially that none of the three allocation stragsgjis able to completely utilize the available computa-
tion. There are two reason why this is so. For the AllBatchaation, the complete allocation of the batch data
leaves only enough available storage to execute on appabedynhalf of the compute nodes (specifically for this
case there are fifty compute nodes and the maximum numbenofioent pipelines for the AllBatch allocation is
twenty-five).

For the other two allocations, Slice and Minimal the maximummber of concurrent pipelines reaches 100%
but as seen here, this full utilization cannot be maintaitmedughout the entire execution of the workload. The
vertical white stripes which indicate this lack of complatéization are due to barriers imposed within the work-
load. These barriers are necessary because not all of tble \a@ltimes can be simultaneously allocated. When
some pipelines progress to a depth at which the necessaty \@time is not allocated and there is not available
storage to do so, those pipelines must wait for other jobstigpdete. The width of these barriers is directly related
to the variability between compute timég’(;,..).

Comparing vertically across the different allocation t&tgées, we see that the Slice allocation as shown in the
middle realizes the highest throughput for the mixed watldinishing approximately 15% more quickly than
the AllBatch allocation on top and 25% more quickly than Mial on the bottom. Note also the different phase
behaviors exhibited in the Slice and Minimal allocationsddosent in AllBatch. Due to its simultaneous allocation
of all batch volumes, the AllBatch allocation need imposébaaiers during the execution of the workload. This
results in a smoother allocation of both storage and CPUnhfAtIBatch allocation. Notice also that the maximum
value for the CPU allocation in AllBatch is only half that it other two but that it remains steady throughout its
execution.

Notice also the difference in the phase behavior betweeislice and the Minimal allocations. Remember
that the Minimal allocation effectively splits the worklbanto sub-workloads and schedules each using a Slice
allocation. In this case, with/yy;4;, = 350, the Minimal allocation will result in two separate phasesgxecute
across the entire width of the workload). Each of these twasph will then itself consist of five internal phases,
one for each depth in the workload.

This also explains why the two phases for Minimal are skewidtk first phase execut@85 pipelines while
the second executes only the remainidg. The scheduler could choose to balance these phases heitlsare
is no compelling reason to do so, it does not. In fact, as weneie later when we examine the effect of failure,
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Figure 4.17:The CPU and Storage Allocations for the batch-intensive Wdkload. These figures show the percent
of CPUs allocated on the left and the percent of storage alied on the right for each of our three different scheduling
allocations when executing the synthetic batch-intensiwéload. The top most graphs show the allocations for ttiBaith
allocation, the middle for Slice, and the bottom for the Miai allocation. In all graphs, the y-axis shows the percent
allocated as a function of the elasped time. The graphs AllBatch allocation are blank and labeled as "Not applidab
here because the AllBatch allocation is not possible forthteh-intensive workload as the total amount of batch datis
workload exceeds the total amount of available storage.
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it proves advantageous tmt balance such that failures within the initial “large” phas®n be absorbed into the
subsequent “smaller” ones without requiring entire addai phases.

One question that can arise while looking at the graphs femtixed workload is why consider a Minimal
allocation at all? For this experiment, it is clear that thaikhal allocation offers no advantages over Slice; it
finishes more slowly, and it transfers twice as much batca datr the WAN i.e. once for each phase). However,
there are several advantages to Minimal. First, Minimalissible in some situations as we will see below where
Slice is not. Second, even in some situations where bothaasilge, as in the batch-intensive workload shown in
Figure 4.17, Minimal can outperform Slice.

When Minimal is able to outperform Slice it is because it itea achieve a higher degree of concurrency,
Vezee- The Slice allocation allocates an entire horizontal stioeh that all jobs within that slice can execute
before descending within the workload. It does this to av@idding to refetch any batch data; all access to a batch
volume is completed through the breadth-first traversal $8iiee allocation. Conversely, the Minimal allocation
does not allocate the entire horizontal stripe but onlycaltes a subset such that each pipeline in the subset can
immediately executd.g. it has both its input and output private volumes allocated).

For both the batch-intensive and the mixed workloads, theirivkl allocation has a higher expected concur-
rency. Specifically, for the mixed workload, the expectedatwrency for the Slice allocation is only 60, whereas it
is 205 for the Minimal. However, since the number of computdas Cpy) is set a0, the benefit that Minimal
receives from its ability to simultaneously execute a greatimber of pipelines is not realized. However, in the
batch-intensive workload, the expected concurrency ferShice allocation is only 10 whereas it is over 100 for
the Minimal allocation. As the number of available compubees is sufficient to allow each allocation to run at its
fully expected concurrency, the increased utilizatiorhef Minimal allocation allows it to complete approximately
20% more quickly than the Slice allocation as is seen in [eigut7.

Notice another interesting effect in the Slice allocationthe batch workload is that the concurrency is greater
at the ends than in the middle. This is because the stea@yutiiitation in Slice is constrained because storage is
allocated for every executing pipeline. However, at thedr@gg of a workload as pipelines begin executing and
again at the end of a workload as pipelines begin to finishiaiia¢ amount of storage required to hold all executing
pipelines is smaller thereby allowing a larger number o&pies concurrent access to the second private volume
that they need in order to execute. Notice this is the vigatiin of the effect that was described earlier in our
discussion of the predictive model for the Slice allocation

Finally, we see for the private workload in Figure 4.18 tln&t AllBatch allocation executes the workload most
quickly. Although the Minimal allocation is also possiblerh, it underperforms relative to AllBatch due to its
barriers and to its refetch penalty.

45 Evaluation

Having crafted a set of representative workloads and a ctemgwironment in which their execution is inter-
esting due to having data constraints, we now examine thgveperformance of the different allocation strategies
as we vary each of the eleven variables defining the worklaadshe environment.

We do not however individually examine each of these vagsibbome are evaluated as their ratio to another,
such that we now examine eight experiments derived from tawer variables. The width of the workload,
Wwiawn, 1S evaluated as a ratio to the number of compute no@es;;. The depth of the workloadyV pepip,
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Figure 4.18:The CPU and Storage Allocations for the private-intensive Wrkload. These figures show the percent of
CPUs allocated on the left and the percent of storage alledain the right for each of our three different scheduling-all
cations when executing the synthetic private-intensivéiaad. The top most graphs show the allocations for the &8
allocation, the middle for Slice, and the bottom for the Miali allocation. In all graphs, the y-axis shows the percdl-a
cated as a function of the elasped time. The graphs for tloe &llocation are blank and labeled as "Not applicable” here
because the Slice allocation is not possible for the pritatensive workload as the total amount of data needed tcate

a horizontal slice of this workload exceeds the total amatiatvailable storage.
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Figure 4.19: The CPU and Storage Allocations for the mixed Workload. These figures show the percent of CPUs
allocated on the left and the percent of storage allocatedhenright for each of our three different scheduling alldoas
when executing the synthetic mixed workload. The top megthgrshow the allocations for the AllBatch allocation, the
middle for Slice, and the bottom for the Minimal allocation all graphs, the y-axis shows the percent allocated as a
function of the elasped time.
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is evaluated in isolation. The size of batch volumB4;,;.,, IS evaluated in relation to the amount of available
storagesiorage, s is also the case for the size of private volumgés,.;,.... Compute timesi¥'z,,, are evaluated

in isolation and compute time variability¥y.., is evaluated in relation to compute timiéz,,,. The network
bandwidths,Cremote aNdC1reqr, are evaluated in relation to each other, and finally theifairate,C'rgiure, 1S
evaluated in isolation.

4.5.1 Sensitivity to Workload Width

Shown in Figure 4.20 is the effect that increasing the widtkhe workload has on the performance of the
three studied allocation strategies. The left most graphdhee effect on the batch workload, the middle on the
private and the right most on the mixed workload. Within eaehof graphs, the top row shows the total CPU
utilization during the execution of the workload. This nueniis computed by taking the total amount of compute
time consumed within the workload and dividing it by the prodof the total number of CPUs and the total
runtime of the workload. For example, for a workload thatsusely a single CPU at a time and runs on a cluster
of ten compute nodes, the total CPU utilization achievedldvtve 10%. The next row shows the total amount
of data transferred between the home storage server anamigute cluster. The third row shows the achieved
throughput for each allocation. These first three rows fer@®PU utilization, the wide-area network traffic, and
the throughput are all measurements of the simulated wadklo

Conversely, in the fourth row, we show the throughput numerestimated by our predictive model. Finally,
in the fifth and bottom row, we quantify the predictive acayraf our model. This bottom row shows the runtime
of the predicted high throughput allocation normalizediagfahe runtime of the actual observed high throughput
allocation drawn with a thick dashed line. In cases in whiod tnodel correctly identifies the high throughput
(i.e. low runtime) allocation, this value is zero. Also shown fangparison is the normalized value of therst
possible allocation to the “best.”

Note that we ar@otcomparing the predicted throughput of the model to the &thwaughput of the simulator;
rather we use the relative values from the model to selectiwhllocation is expected to achieve the highest
throughput. We then compare that expected allocationigahsimulated runtime to the runtime of the simulated
allocation empirically observed to achieve the highegiufghput.

For all these graphs, the x-axis is not the absolute valu&ef,;;, but is expressed rather as the ratio to the
number of cluster compute nodese(Wy ;4 - Copu)- There are several things to notice in these graphs. First,
we'll discuss why each of the allocations behaves as it doesdch of these workloads and then we'll discuss the
ability of our model to correctly predict these behaviors.

Looking at Figure 4.20 we see throughput crossover poimtedith the batch and the mixed workloads. These
crossovers occur because for “thin” workloads, the Slitecation is able to concurrently execute on all of the
compute nodes.€. V... > Ccpy). For the batch-intensive workload, the AllBatch allooatis not possible and
the Minimal allocation underperforms Slice due to the retham use of the WAN as shown in the right most graph.
However, as the width of the workload increases, there ima i which the Slice allocation remains possible but
only at a drastically reduced value ®f;,... At this point, the throughput of the Minimal allocation passes
that of Slice. A similar effect is shown for the mixed workibget in this case the AllBatch allocation is possible
albeit at a lower value oVg.... Notice further that as expected from Table 4.3 both AllBaad Minimal are
relatively robust to increasing workload widths while 8lis significantly more sensitive. For the private-inteasiv
workload, no crossover effect is revealed because the 8llmeation is not possible for this workload and as noted
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previously, the other allocations are relatively constambss increasing workload widths.

Notice also in these graphs that the measurements somedionestly end; this can be see clearly for the
throughput of the Slice allocation for the mixed worklodae(middle graph on the right). Notice that the through-
put here drops between values five and ten on the x-axis ancktiigely disappears. The reason for this is that at
a certain width, the Slice allocation is entirely no longesgible.

The sawtooth pattern exhibited by the Minimal allocatiodug to the “tail” effect. For workloads in which the
expected number of concurrent pipeling%; {..) is not an even factor of the total workload width, the lagiugr
of jobs to execute will be fewer than the previous groups. Kirog at the batch workload for exampl€g.. is
approximately three times that 6f-p;; such that it achieves peaks in throughput and CPU utilimatanultiples
of three along the x-axis.

As regards to the predictive accuracy, note that the modebtibsolutely accurate especially in regards to
its predicted throughput values. Although close for thebatorkload, it is off by a factor of five for the private
and a factor of two for the mixed. However, it is not our intentthat the model be perfectly accurate. Indeed in
the interests of simplification, we have ignored many sysdspects in the model such as network contention, the
memory subsystems of the compute nodes and the home sterage as well as the latencies for the disks and
networks. These simplifications cause the model to ovenesti the throughput of the workload.

However, our focus is not on making absolute predictiondsdther on selecting from the possible allocation
strategies. Therefore, our interest is in the relativeughputs between the different allocations. In this regard,
our model mirrors closely the simulated results. In paliicuo evaluate the predictive ability of the model to
identify the “best” allocation, we examine the crossovenimin these graphs. Notice that there is a perfect one-
to-one correlation in the crossover points between thelsitea and the modeled results. Further that each pair of
correlated crossover points occur at relatively the sansé@ipo on the x-axis; in other words, our model correctly
predicts both that a crossover will occur as well as wherdlito@cur.

This predictive accuracy is seen qualitatively in the geplong the bottom row of Figure 4.20. Points at
which the model mispredicts the highest throughput allooaappear as a positive value in these graphs. The
height of these points is the percent of additional (unresog$ runtime that would be incurred by a scheduler using
this misprediction as compared to a “magic” scheduler whilktays correctly identifies the highest throughput
allocation.

In other words, the model does nalivaysselect the “best” allocation. However, as long as it only ezak
mistakes when the relative throughput of its expected blegtadion is close to the actual best allocation, then the
effect of this inaccuracy is minimized. Notice further tiathough the model does not make perfect estimates as
to the predicted throughput of the allocations, it does gi®perfect information as to which allocations are and
are not possible. Thus, for every case in which only one allon is possible, the model will correctly identify
it. Only when multiple allocations are possible does thetisteany possibility of misprediction. Notice further
that the model consistently avoids making “bad” mispredict. Although for this experiment the worst possible
prediction sometimes is eighty percent worse than the tiestodel never makes mispredictions greater than ten
percent.

For a dynamically changing environment as is typical in batwmputing, these predictive models do not need
to be optimal. In fact searching for optimal information irbatch system is often quixotic as the information
can become stale and therefore sub-optimal very quickly.this reason, it becomes much more important not
necessarily to select the “best” strategy but to avoid vay enesln all cases, our model does so.
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4.5.2 Sensitivity to Workload Depth

Similar to varying théVyy ;4. is varying theW ., as is shown in Figure 4.21. As expected from Table 4.3,
the performance of the AllBatch allocation is highly semsito the depth. As the depth increases, the total amount
of batch data also increases thereby allowing less stooaidevier pipelines to executed. the increase itV pe,p
results in a decrease Ity for the AllBatch allocation).

Some less obvious results are also seen in these experinNaitse in the batch workload that there exists a
crossover point between the Slice and Minimal allocatiams that these throughput results relate closely to the
utilization. For small depths, the Slice allocation canieeh higher levels of concurrency than at greater depths.
The reason for this discrepancy is that he,.. for Slice is different at the beginning and end of the workilsa
execution than it is in the middle. Remember that this sanem@mmenon was also seen earlier in Figure 4.17 and
was discussed in our predictive model for the Slice allotatn Section 4.4.4.

In the middle of the execution, the Slice allocation musthetlleast one private volume for every pipeline in
the workload. However, at the beginning it need only hold prieate volume for each pipeline that has already
begun executing thereby allowing more pipelines to comauly execute until they have all begun to execute.
Similarly at the end of the execution as pipelines finish ardramoved, more space becomes available and a
greater number of pipelines can execute concurrently. ri@l#fzen this effect is dependent on the depth and the
relative benefit diminishes as the depth increases.

Notice again our predictive accuracy is very high; in thisecaever exceeding five percent of the normal-
ized highest possible throughput. Although our absoluegligtions are inaccurate, we correctly identify every
crossover point and do so at almost their precise locaticih®x-axis.

There is one inaccuracy in the model that is worth mentiotiage even though it does not result in a large
amount of predictive inaccuracy. Notice that for both thichdntensive and the private-intensive workloads, the
model predicts increasing throughputs for the Minimal adkion as the depth of the workload increases. The
reason for this prediction is that as the depth of a pipelimtegiases, the relative amount of private data that need
traverse the wide-area network decreases as only the fit$astprivate volumes need do so; the rest are localized
and consumed in their entirety within the local network of dtompute cluster. Therefore, as depth increases,
we expect to achieve higher throughputs as a larger pegeeatathe private data is accessed at the higher local
bandwidth,Cr,,..;, than at the remote bandwidth to the home storage s&rtyefore-

For the private workload we get this correct. For the batctkiead, however, this predicted effect is not seen;
in fact, we predict a rising and then leveling throughpupsldéor the Minimal allocation when the actual slope as
observed in our simulation drops and then levels. The refsdhis is seen in the CPU utilization graph (the top
left most graph). Notice that as the depth increases, tBateslight drop in the CPU utilization for the Minimal
allocation. The model does not correctly anticipate thagpdiThe more radical drop in the Slice allocation, which
is due to the effect that Slice achieves higher utilizatibtiha very beginning and end of its scheduled, is correctly
anticipated however.

This unpredicted drop in utilization for the Minimal alld@n is due to compute time variabilityi(y ,,-) and
its effect on the duration of barriers. For these experisiehe model assumes that the variability is constant and
itis indeed set as a constant value (10%) in these expersmEoivever, as the number of jobs increases due to the
increasing depth, the actual measured variability in@®a¥Vith a normal distribution as are our compute times
for our synthetic workloads, an increasing number of sampl#l continue to increase the measured minimum
and maximum values. We see this effect here; with a small earabjobs, the actual variability is less and the
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lost utilization to barriers is small; as jobs increase, sesdvariability leading to longer barriers, and we see the
effect on throughput here. Notice however that althoughribdel does not account for this effect, it still manages
to never exceed five percent inaccuracy.

4.5.3 Sensitivity to Batch Volume Size

We also examine the effect of the batch volume si#g;(;.,) on the achieved performance for the different
allocation strategies. These results are shown in Fig2; fotice that the x-axis for these graphs is not the
absolute value foi¥ g, but rather the ratio oW gyicn : Csiorage- BecCause we vary here one of the aspects
that distinguishes the three workloads, we effectively bgemize them such that the results as compared across
workloads are more similar.

As expected, increasing the size of the batch volumes hasuthest effect on the AllBatch allocation. The
other allocations are effected but to a lesser degree asntéey allocate only a single batch volume at a time.
Notice however that after the AllBatch allocation is no lengossible for large values & g1, there still exist
interesting relative performances between the Slice aminil allocations. For the batch workload, the Slice
allocation is possible long after the AllBatch allocatianriot and while it remains possible it outperforms the
Minimal allocation due to the heavy cost in the batch-inkensvorkload of transferring redundant data over the
WAN. Yet ultimately, Minimal is able to continue after Slieenot. The effect is similar in the mixed workload
but Slice becomes impossible more quickly here due to tlyeitagizes of private volumes in this workload as
compared to the batch workload.

Here the behavioral predictions of the model are partigukstriking in their accuracy. Notice the predicted
slopes and crossover points are visually very similar. atalely observing the measured values in the bottom
graphs, we see again that the model never predicts worsddhasercent and successfully avoids making “bad”
predictions.

4.5.4 Sensitivity to Private Volume Size

The experiment shown in Figure 4.23 is similar to those shioviigure 4.22 because they also vary a param-
eter which tends to homogenize the three workloads althbegh it is the size of the private volumé® {,.;,atc)
rather than that of the batchi{z,;.,). However, due to the distinction between batch and privabemes that a
batch volume is shared across multiple pipelines while gguélines accesses it own unique private volumes, this
experiment is not able to extend as far on the x-axis relativ€s;,,.q. as does the experiment in which we vary
Wgaten-

The observation to take away from these graphs is the ovémimg influence of the private volume size
for all of the possible allocations studied (and for thoseé stadied as well). Clearly and intuitively, the Slice
allocation will be sensitive to increasing sizes of priveddumes as it allocates each private volume accessed at a
particular depth in the workload. Less obvious is the sigaift influence that private volume size has on the other
allocations as well. For the AllBatch allocation, the irasig size of private volumes quickly reduces the number
of pipelines that can concurrently execuié:(..). This effect is seen as well even in the Minimal allocation
although it is slightly more robust.

Notice in this experiment, that not only does the model mtedisually similarly sloping lines, but that it
achieves here perfect accuracy, never making a single edigpions.
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4.5.5 Sensitivity to Computation Time

The amount of time spent within each job doing computatiod ot 1/0 is another workload characteristic
that affects the relative performance of the differentadtmn strategies as shown in Figure 4.24. Notice that as
opposed to some of the other characteristics, the changégi, produces smoother lines. This is because the
other characteristics vary integral values such as thedizelumes which are then divided into some integral
number of data blocks within the system. Thé&,, value however can more easily approximate non-integral
numbers.

Note here that the relative performance of the Slice and futihiallocations are mostly constant. However,
there do appear crossover points between the AllBatch aied 8Sllocations. As we consider the constraints
faced by each, the reason for these crossover points isstaddr The AllBatch allocation is constrained in this
experiment by havind’z ... less thanC¢p such that it makes progress but underutilizes the CPUs. étsely,
the Minimal allocation for these workloads has a higher,.. but must refetch the batch daiee(it has a higher
Vrefetcn)- AS the compute time increases relative to the time it tadesfetch the batch data, the relative refetch
penalty incurred by the Minimal allocation is reduced whie underutilization penalty incurred by AllBatch
remains constant. Thus, for increasing valued/%f,,,, we observe that the performance of the Minimal allocation
improves relative to that of the AllBatch.

For this experiment, the predictive accuracy of our modedasiewhat diminished, in one case, making a
misprediction approaching twenty percent. Although theled@orrectly identifies both crossover points observed
here (between AllBatch and Minimal for the private-inteesivorkload and between AllBatch and Minimal for
the mixed), it does not as precisely identify their locatwnthe x-axis.

4.5.6 Sensitivity to Runtime Variability

Similar to the effect of changing the job compute time is giag the variability across job compute times.
The job compute times are taken from a normal distributiavuad a mean compute time with some variance
that in the base case is set at ten percent. For the experBhewn in Figure 4.25, we increase this variance
along the x-axis. One interesting effect seen (and not densil in the model) is that in some cases the increased
variance can actually improve the throughput of the wortlgghis is because the increased variance creates “fast”
jobs which descend quickly through the pipeline therebgatifely pre-fetching deeper batch volumes. Without
variance, the initial placement of pipelines will executesynchrony and all will effectively access their batch data
at wide-area network bandwidths. However, if the batch databeen pre-fetched by a faster sibling, then the
subsequent pipelines can then access that data at localetveark bandwidths.

In regards to our predictive accuracy, notice that althaihghmodel does not account for this prefetch effect,
it nevertheless makes entirely correct predictions inndsyto the relative throughputs of the allocations.

4.5.7 Sensitivity to Runtime Variability for CPU-intensive Workloads

Beyond that however these results are somewhat uninsgitegto the small influence th@y,,, has on
the overall runtime of each pipeline. Therefore, we repbist éxperiment with modified workloads such that
Wrun is @ much larger relative value. As mentioned earlier ang ahown in Table 4.4} ..., is set such that it
comprises approximately half of the total execution timed@ipeline run locally at the home storage server. For
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these modified experiment, we incredsgp; such that its relative proportion increases to approxima®e%.
Specifically, in regards to Table 4.4, we g&tpyy to be five million seconds (a full 57 days).

With such a large value faf'p;; we can more readily see its influence on the different allonagtrategies.
As expected, a large variance should disproportionatehalpee allocations which impose barriers. This is seen
as the relative performance of the AllBatch allocation vahicposes no barriers is mostly constant while the
performance of the Minimal and Slice allocations which dpase barriers degrades much more rapidly. Notice
further that the prefetch benefit as exhibited in the previexperiment is no longer seen here. With such large
compute times relative to the time required to access ttehlutta, this prefetch benefit is negligible.

Here again, the accuracy of our model is somewhat diminisAé#tiough it correctly identifies the crossover
point, it misses the precise location on the x-axis. AltHotlgs miss results in approximately 30% difference in
throughput, notice the model does successfully avoid ngakirspredictions with inaccuracy exceeding 50% in
both the batch-intensive and private-intensive workloads

4.5.8 Sensitivity to Network Bandwidths

The relative performance of the WAN and the LAN network alaa tmfluence the achievable throughputs of
the various allocation strategies. Figure 4.27 shows fifesteacross the three different workloads. Intuitively as
we consider each allocation’s constraints, it is clear thatrefetch penalty incurred by the Minimal allocation is
most sensitive to this. This intuition is clearly substat#d in these results as the performance of Minimal relative
to the other allocations improves more dramatically as #redividth to the remote storage server grows relative
to the local bandwidth.

This intuition is modelled correctly as well. For this exipeent, although possible mispredictions could result
in throughput differences as high as 60%, our model comgigteemains within three percent for the entirety of
this experiment.

4.5.9 Sensitivity to Failure

Finally, the effect of failure ('r,i..) is €xamined in Figure 4.28 in which we increase the rateibfriaalong
the x-axis. Notice that due to the randomness by which wecedigsimulated failure events, that these experiments
are not deterministic as have been the previous. For thabmeave ran each point for thirty iterations and show
here the means and the standard deviations. Another difereetween these graphs and those shown previously
is that here we include graphs for the numbers of recorddardéai as well, and remove graphs for the wide-area
network traffic; for the previous experiments, the baseliakeie for the failure rate was zero and thus there were
no failures to be measured.

Each failure event “resets” a compute node in the system gwthany running job on that compute node
is evicted and all data contained on that node’s disk and meimcsimilarly lost. Due to the implementation
of the batch-aware distributed file system, these failuen&s/wipe out a striped portion of the batch data as
well as the entirety of the pipeline data held for the job ingnon that node. Therefore, we expect the failure
penalty to disproportionately affect the Slice and the Mfiai allocations because in addition to the progress lost
in the executing pipeline, failures in these allocatiorguiee another refetch of the entire set of batch volumes.
Conversely in the AllBatch allocation, failure results idoas of progress in the executing pipeline but only a
stripe of batch data and not the entire set. This behavior is seehateasly in the mixed workload in which the
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Slice allocation achieves the highest throughput for lowgaf failure but then quickly drops below the AllBatch
allocation as the rate of failure increases.

Although the predictive model does suffer some small inemuin the batch-intensive workload, it does so
only within the bounded variability. The predicted slopes accurate and the major crossover point in the mixed
workload is predicted accurately.

4.6 Discussion

In this chapter, we have identified and formalized five dittalata allocations which can be used to coordinate
data and CPU allocations within a batch scheduling systeeh&Ve studied the influence that a range of workload
and environmental characteristics can exert on theseeliff@llocations across a range of I/O intensive workloads.

Extending our formalization of the allocations, we havealeped predictive models and demonstrated their
accuracy in terms of selecting reasonable allocationegjied across a range of workloads and environments. We
have also presented our development of a simulation framkefoo studying the scheduling of batch-pipeline
workloads and noted the importance of visualization todedé the correctness of this simulation framework.

Several questions remain however. One of these is whether #xist additional allocation strategies beyond
the five we present here. One such additional allocation avbelsimilar to AllPrivate, but would only allocate all
of the private volumes at the current depth of each pipelimtecauld discard earlier, no longer needed, volumes, as
well as not proactively allocating volumes any earlier tiabsolutely necessary. This allocation, like AllPrivate
is a strict subset of Slice, and as such, is not interestiog fa scheduling perspective as whenever it is possible,
then Slice will be also possible and can run at a full CPUzatlon.

Although it is difficult to be certain, we are confident thati¢ have not identified all possible allocations, we
have not missed any that are likely to outperform those tleahave identified. The AllBatch, Slice, and Minimal
allocations offer a balance between striving to minimizeN\4tilization (as in AllBatch and Slice), and striving to
minimize CPU underutilization due to barriers (as in All8aY, and striving to maximize the CPU utilization (as
in Minimal). Therefore, we believe that across the rangeasfsible workloads, one of these allocations is likely
to outperform any other.

Additional questions remain as to the validity of our asstioms concerning the scheduler’s ability to garner
perfect information, the homogeneity of the compute infrteture and the canonical nature of the workloads.
These questions will be addressed in more detail later $nwibirk in Chapter 6 but it is worth a brief mention here
that an understanding of canonical workload schedulingeigeficial for scheduling non-canonical workloads as
well.

For example, imagine a workload with “small” batch voluméshe end and a “large” batch volume in the
middle. By definition, this is not a canonical workload butdpplying our scheduling knowledge we can avoid
lost work that might arise otherwise. An oblivious scheduwldich did not use our planning techniques but did
observe capacity constraints might allow more pipelinesit@lly execute while the batch data is small. When
the traversal would reach the large volume however, notfalhe allocated pipelines would be able to remain
allocated and their forward progress would be lost. This fpoegress could be avoided however by making the
workload appear canonical by increasing the size of alltbattd private volumes to their maximum respective
sizes and then using our predictive models to correctlytifjetne allocation limits for the workload.

In summary, this study of canonical workloads is valuabllas it provides a lexicon for discussing I/O inten-
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sive workload scheduling, provides accurate predictivel@sfor canonical batch-pipeline workload scheduling,
and identifies allocation limits for non-canonical worldisa Anecdotal evidence as well as observations made in
Chapter 2 suggest that many batch workloads do strictlyazonto the canonical structure and only small vari-
ations in volume sizes prevent them from meeting the commlefinition. All of these workloads can therefore
benefit from the allocation planning provided by this stuflganonical workloads.
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Chapter 5

Related Work

In this chapter, we examine relevant literature and pradtieit bear similarity to the work we have described
in this dissertation. We focus our discussion around theettmajor parts of the dissertation. First, we examine
other work done in profiling and analyzing workloads. Secamel describe related work in storage systems and
distributed file systems. Finally, we look at other schettylivork from databases, parallel computing, and batch
computing.

5.1 Profiling

The CPU, memory, communication, and I/O characteristicapplications have been studied for many years
by the research community. These can be roughly categdrizéte type of workloads that they consider: general-
purpose workloads containing many applications, seqaleapiplications examined in isolation, or parallel appli-
cations in isolation. We summarize the work in each of thesegories, focusing on those that have examined file
system activity.

File system activity has been examined for a range of gemperalose workloads. Many of the studies that
have greatly influenced file system design over the last 25\feaused on academic and research workloads [13,
78, 89, 96]. These studies have found that most files havesteny lifetimes, access patterns exhibit a high degree
of locality, and read-write sharing is rare. However, nrigsirom these broad studies of traffic is any linkage to
the applications that generate the traffic.

More similar to our work are those studies that have focuseith® behavior of individual applications in com-
mercial workloads [14, 66]. However, in this domain, themattion or pipeline behavior of sequential applications
has not been examined. While we believe it may also be iritege® study the detailed memory-system behavior
of our batch-pipeline workloads, we do not believe the opputies for sharing are fundamentally different than
in other studies.

Parallel applications are in many ways the most similar pelred batch applications. The CPU, memory,
communication, and 1/O behavior of parallel and vector @pibns have been quantified in a number of studies
[31, 116, 117]; a few of which consider the impact of explié@ [2, 30, 90]. Our study complements these works
by studying the sharing behavior of an important new classarkload.

Many of these studies demonstrate the drastic differemcE®ibehavior for parallel applications compared to
general-purpose workloads. For example, parallel s¢ientorkloads often have high, bursty I/O rates [74] and
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relatively constant behavior across different runs andtiparameters [80]; further, parallel workloads tend to be
dominated by the storage and retrieval costs of large fibsicplarly check-point files [74]; finally, quick deletion
is uncommon [62].

5.2 Distributed File-Systems

In designing our batch-aware distributed file-system, vesvdsn related work from a number of distinct areas.

The manner in which the scheduler constructs private naacespfor running workloads is reminiscent of
database views [55]. However, a private hamespace is sirtipleonstruct and maintain; views, in contrast,
present systems with many implementation challengescpkatly when handling updates to base tables and their
propagation into extant materialized views.

There has been much recent work in peer-to-peer storagensyg8, 8, 32, 61, 76, 91, 93]. Although each
of these systems provides interesting solutions to thelgmoldomain for which they are intended, each falls
short when applied to the context of batch workloads, forstime reasons that distributed file systems are not a
good match. However, many of the overlays developed foretleasironments may be useful for communication
between clusters, something we plan to investigate indutwork. In fact, the data distribution techniques within
the BAD-FS cooperative cache are quite similar to the disteid hash tables described by Litvénal. [68], and
Gribbleet al.[54].

Similar to p2p is work within grid computing [43], which usesany of the same techniques but is designed,
as is BAD-FS, for c2c environments. One such example is &sit-Demand [25] which offers sophisticated
resource clustering techniques that could be used by BABzF&m cooperative cache groupings.

Also relevant within grid computing is the FreeLoader distted storage framework [113] which builds a
distributed storage system from a collection of distridut®@mputational nodes in a manner very similar to that
in our BAD-FS distributed file system. However, our focus haen on building a storage system from dedicated
compute clusters while FreeLoader examines the relatethbrg challenging question of using scavenged desktop
storage resources. Previous work [20] has measured theuttiffin building storage services from a dynamically
changing set of resources as would be expected in a systéinfroon scavenged resources. However, the authors
here avoid this difficulty by assuming that users of theitetyswill continue to donate resources even when not ac-
tively using the system themselves. Given their targetrenment within scientific organizations, this assumption
seems reasonable. A further interesting aspect of theik isdheir use of asymmetric striping to improve perfor-
mance across the storage layer. We considered this approgaly within BAD-FS, but abandoned it for other
pursuits due to the high complexity of implementation. i§thpproach continues to perform as expected within the
FreeLoader system, we will happily re-add it to the BAD-FSidge. However, although similar, the FreeLoader
system cannot by itself be considered a replacement for BA&s it does not provide any mechanisms, such as
our lots, for exporting storage control to a higher level atware.

Extensible systems however do share our approach of alipthimapplication more control [19, 37, 98]. The
Exokernel focus is on protection rather than policy but igivaded by the same observation that the internal system
is unable to derive the necessary information itself. Alidio recent work has recently revisited this approach [10],
extensible systems have not been commercially successfalise the need for specialized policies is not so great.
We believe this need is even greater for batch workloadsimgron systems designed for interactive use.

Some research in mobile computing bears similarity as wdihn et al. discuss the process of data staging
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on untrusted surrogates [40]. In many ways, such a surraegjaimilar to the BAD-FS storage server; the major

difference is that the surrogate is primarily concernedhwiist, whereas our servers are primarily concerned with
exposing control. Both Zap [77] and VMWare [95] allow for thieeckpointing and migration of either processes
or operating systems. We create a remote virtual enviropnter at the much higher level of a batch system.

Systems with secure interposition such as Janus [51] conguieBAD-FS as they should make resource owners
more willing to donate their resources into shared pools.

Finally, BAD-FS is similar to other distributed file systenihe Google File System [50] was also motivated
by workloads that deviate from earlier file system assumptiéd\n additional similarity is a simplified consistency
implementation; however, GFS must relax consistency sgosato enable this, while BAD-FS does so through
explicit control. Earlier work on Coda, and AFS before italso applicable [59]. These systems use caching for
availability, so as to allow disconnected operation. In BAB, storage servers enact a similar role.

5.3 Scheduling

Of course, scheduling is an old problem with relevance inynaeas outside of computer science. However,
we focus our attention on the related literature strictlyhimi computer science paying particular attention to the
scheduling of parallel programs, the scheduling done witlsitabase query planning, and data-driven scheduling
in batch computing.

5.3.1 Parallel Scheduling

Scheduling for parallel programs in which multiple jobs eomnicate with each other and form a logical unit of
work is very similar to our study here of batch-pipeline wiodds. The difference is that the jobs within a parallel
program typically communicate explicitly and during exgéon with each other using a networking protocol such
as MPI or PVM; in contrast, jobs with a batch-pipeline woddocommunicate indirectly through the file system.

Backfilling techniques in parallel scheduling which use &iinprograms to fill “holes” left when a program
does not use all available resources [67] should be reldvaiiatch schedulers as well. One difference however
is what constitutes a “small” program may be different; fargilel scheduling, a small program is one which uses
a small number of processors whereas for data-driven babedsling, a small program is one which use a small
amount of storage. Of course, the question of accuratennendistimates is important for backfilling to ensure the
the backfilled programs do not exceed the reservation ofrigeally scheduled program [39].

Perhaps the work that bears the closest similarity to davesdbatch scheduling is work in gang scheduling
with memory considerations [15]. Here the authors implen@epolicy for capacity-aware scheduling of paral-
lel programs where memory is the scarce resource. This i$asito our capacity-aware scheduling where our
scarce resource is disk storage. One difference howeueatisttey are studying the problem of scheduling across
multiple parallel programs while we are looking at the pevblof scheduling multiple jobs with a single batch-
pipeline workload. Additionally, we have the luxury of refhing batch data when remote storage is scarce; they
consider no such secondary backing store for memory (usingal’memory and transparently swapping to disk is
a particularly severe penalty in parallel program as itrfietes with the synchronization among the job’s threads).

Another approach to a similar problem of coordinating atans of storage and CPUs is shown in [100].
Here the authors propose a system in which multiple resenstire attempted and then used only if all required
reservations are successful. In fact, this is the apprad@ntby our modified batch scheduler which only executes
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jobs after both claiming CPUs from a match-making systemsarmtessfully allocating storage from the batch-
aware distributed file system.

5.3.2 Database Query Planning

In a manner similar to that of a batch-pipeline scheduleergwptimizers in many relational database man-
agement system®BMS create execution plans [84]. Like a batch-pipeline schadqueury optimizers attempt
to reduce total completion time for their workloads. Thesekloads are described by the user in a query language
such as SQL. Even more so than batch-pipeline workload igéiscrs, these query languages are relational and
describe to the DBM®/hatwork needs to be done and do not contain directionfidevthe work should be done.

Query optimizers rely on detailed cost estimates in ordesetect the “best” query execution plaQEP) for
any given query. These cost estimates are dependent ufimatest values for the number of rows that will appear
in temporary tables amaterialization pointsvithin the many stages of complex queries.

Like a batch-pipeline scheduler, query optimizers alsohatt environmental and workload information in
order to determine the best QEP. However query optimizers oansider a third type of information which does
not exist in a batch-pipeline scheduling system: infororathbout the database itself. One reason for this third
information source is that the database in a DBMS is straijuidentical to the batch data in a batch-pipeline
workload. A batch-pipeline scheduler must create exenuilans for workloads over disjoint batch data sets and
thus each data set must be described in the particular veatkkmnversely a query optimizer is uniquely bound
to one database and therefore queries need not specifyimnyghout it. This information about the database
however is used by query optimizers in much the same way thatch-pipeline scheduler uses information about
batch data.

In fact, the execution of many queries can even more closslgmble a batch-pipeline pipeline in that it each
is uniquely defined by endpoint inputs (the original quernd andpoint outputs (the results) and may produce and
consume temporary data (intermediate results such as tarnggables or materialization points). As such, query
optimizers must use predictions about the size of the dataHeir cardinality) in order to make estimates about
the cost of a query plan. These estimates are then combirtkdheienvironmental information to inform the cost
estimates. This environmental information is the same asubked by a batch-pipeline scheduler consisting of
various estimates for the physical capacities and bantwiolt the computational resources.

One key difference however is that query optimizers havdléxibility to devise multiple orderings for their
query by, for example, rearranging the orders of selectga@nd. Although a batch-pipeline scheduler does not
have quite this flexibility in terms or rearranging ordesng can select different traversal patterns such as those
dictated by the AllBatch, Slice, and Minimal data allocato

Inaccurate information

Query optimizers are similarly dependent on accurate im&tion in order to make informed plans. However,
inaccurate information and predictions as to the likelestlity of a particular table for example does not create
the possibility ofcorrectnesgproblems as inaccurate information can do in a batch-pipedicheduler but only
affects the ability of the query optimizer to improve thetiome performance of the query execution plan.

To mitigate the effects of inaccurate and imprecise infdioma IBM has developed LEO [73], a learning
optimizer. This learning optimizer bears great similatityny dissertation as it monitors predictions and consgantl
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refines them as they prove to be inaccurate. Subsequenesg|tieen use the more accurate estimates. Proactive
reoptimization [12] extends this idea by dynamically usiefyjeshed information to change the current QEP. These
systems show the potential to reduce or even eliminate the foe costly off-line statistic gathering sessions and
offer promise that similar information-gathering techueg within a batch-pipeline scheduler could reduce the
need for the user to provide accurate and detailed worklstichates.

5.3.3 Data-Driven Batch Scheduling

Workflow management has historically been the concern dfi-ldgel business management problems in-
volving multiple authorities and computer systems in laogganizations, such as approval of loans by a bank
or customer service actions by a phone company [49]. Ourdstéieworks at a lower semantic level than such
systems; however, it does borrow several lessons from teaof as the integration of procedural and data ele-
ments [92]. The automatic management of dependencies thrgasformance and fault tolerance is found in a
variety of tools [21].

Many other systems have also managed dependencies amaengdjdiasic example is found with theNux
tool make. More elaborate dependency tracking has been exploredhda¥and Anderson’s work on transpar-
ent result caching [110]; in that work, the authors build al tihat tracks process lineage and file dependency
automatically. Our workflow description is a static encgdai such knowledge.

BAD-FS could be further improved through the prefetchindafch datasets. Other work [24] has noted the
difficulty in correctly predicting future access patteriis BAD-FS, however, these are explicitly supplied by the
user via the declarative workflow description.

Within the grid community, there is an increasing awarersdsthe growth of datasets [8, 43, 53, 56, 113]
and, not surprisingly, a corresponding increasing intdrethe coordinated scheduling of data and computation.
Stork [60] creates mechanisms for the controlled transfetabasets across wide-area networks and, like our
system, is explicitly designed for moving an awareness tffbaputs and endpoint outputs into the scheduling
framework. However, Stork is a procedural approach whezeuier adds explicit data-movement jobs into their
workloads whereas we have opted for a declarative approachich the user provides the necessary information
to the scheduler which then proceeds as it deems best. Qentimplementation fetches batch data on demand
whereas Stork necessarily pre-fetches the data beforetix@the jobs. We note however that pre-fetching in this
manner is allowed within our framework and Stork would bealdeol to accomplish this. Further, Stork provides
no mechanism for localizing temporary pipeline.

Many approaches have been proposed for caching and lodadiat) datasets [16, 17, 26, 63, 79, 86, 88].
These approaches complement our work here as they perttie taore persistent question of what happens to
batch datdollowingthe completion of the workload, whereas here we have adehtébe question of how to access
the batch datauring the workload’s execution.



103

Chapter 6

Conclusions

Large-scale modern batch scheduling systems must be wata-aSo long as batch jobs are compute-bound
then existing batch scheduling systems are sufficient. Mewvas we have seen here, there exists a large class of
important scientific and industrial batch workloads thatfqren large amounts of data access and are I/O bound
rather than compute bound. Recent trends show that theaselia application data size is increasing faster than
the increase in computational power [5B3¢. applications are becoming increasingly data-intensive.

We profile several of these workloads and create a taxonomyhigh we can describe them. Further, we
demonstrate the need for distributed file system suppowrffamient scheduling of these workloads and show the
value of this in one such implementation.

We define several scheduling allocations for data-intenlsatch workloads and evaluate these across a range
of workload and environmental characteristics. Finallg pvovide an analytical predictive model with which a
data-aware batch scheduler can choose the appropriatalttatation with a goal towards minimizing the total
time to completion.

In this chapter, we'll first summarize our major contribmgoand then speculate on new areas of research that
are now possible due to this work as well as areas that weviopsdy possible but may now be more interesting
in light of our work here and therefore may warrant re-exaatiom. We then conclude the dissertation.

6.1 Summary

6.1.1 Profiling

The analysis in Chapter 2 of data-intensive scientific batotkloads provides the working foundation for this
entire dissertation. The motivation for building data-ssvhatch schedulers is derived from this data analysis as
we quantified the exact degree of data-intensity in eachagtigihs which had previously been characterized as
data-intensive in anecdote only.

The first contribution of the workload profiling is to providleis three way differentiation of I/O types be-
tween batch data, pipeline data, and endpoint data. THeslitiation is the enabling factor that allows informed
coordinated coallocation of data and CPUs by data-awaph lsahedulers.

With these measurements of 1/O intensity, we define scalmgdtions for our studied workloads. Given
reasonably sized datasets and compute environments, welgwo failing to differentiate between batch data,
pipeline data, and endpoint data can quickly overwhelmeturstorage systems.
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6.1.2 File System Support

The prototype data-aware batch system in Chapter 3 males itnportant contributions to batch scheduling.
First, we have shown how batch schedulers can use informabkiout 1/O types and quantities to plan a workflow
traversal that avoids storage overallocations and makesmed and dynamic data replication decisions. Sec-
ond, we have discussed the feasibility of current distatutile systems and found them wanting. Finally, we
have designed a new batch-aware file system and used a p®ioiplementation along with our modified batch
scheduler to show runtime improvements of several ordensagfitude.

Data-aware schedulers

By assuming that users can provide accurate and basic iafmmabout the 1/0 behavior in their workloads,
we have designed, and implemented, a modified batch schesygkem based on the current Condor system. This
new data-aware Condor scheduler carefully plans dataagitocusing a technique of scoping the workload 1/0.

By caching batch data and localizing pipeline data, the dudiee minimizes the amount of data crossing the
wide-area bottleneck connection between home storagerseaxid compute clusters. The scheduler also uses this
information to make careful job placement decisions engutiat the output of running jobs will not overallocate
available storage. Finally, using dynamically observellies for the cost of initial data replication, the cost
of subsequent data replication, and failure rates, we haseged and implemented a scheduler which makes
individualizeddata replication decisions. These scheduling enhancemaeatmade possible by our taxonomy of
data types, our assumption that users can provide infoomadind through the exposure of explicit storage control
in our new batch-aware distributed file system.

Batch-aware distributed file systems

As we demonstrated in Chapter 3, current existing distithdile systems such as AFS and NFS are not well
suited for remote execution of batch workloads. Althoughytlare explicity designed for remote (as well as
concurrent) data access, they are designed for the gareelaccess patterns of interactive workloads. With the
workload specific information available within a batch wlodd, a data-aware batch scheduler can make much
more informed decisions individualized to the specific batorkload.

As an example, consider the write behavior of both AFS and.N#8es in AFS are cached locally and flushed
to the home storage server when the file is closed; in NFSesvate flushed at some periodic interval (generally
set at thirty seconds). Although both of these behaviorsensgkise in some situations, neither is “always” best.
Conversely, with information about data types, the dataravbatch scheduler can carefully control these writes.
For example, the scheduler ensures that these remote floskies occur for temporary pipeline data and can
further ensure that endpoint output data is written onlyeonc

The main contribution of our distributed file system workie tecognition that control of storage decisions be
moved from the storage elements themselves to an extemm@abler, in this case a data-aware batch scheduler. We
enable this external explicit controller through a storafgstraction called lots. Lots provide guaranteed storage
allocations that allow the scheduler to make job placemeiitts confidence that the necessary job data will be
accessible.
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6.1.3 Data-Driven Scheduling
A simulation and workload framework

In Chapter 4, we use simulation in order to examine fundaat@tgorithmic details in a highly controlled and
simplified environment. We further control the problem spag simplifying our workload model, reducing the
number of variables needed to define workloads, and conththigse simplifications into an abstraction we term
canonical workloads.

Data-driven scheduling policies

With this controlled simulation testbed and this contrdli®orkload abstraction, we examine the allocation
choices available to the batch scheduler for schedulingklwads with both job and data constraints. We run
experiments across a wide range of workload and enviroraheharacteristics to explore this scheduling space.

The main contribution of our scheduling work is the creatidriive distinct data-driven scheduling policies
and the identification of the performance problems eachsstekvoid. We identify that there are three possible
performance problems when scheduling batch-pipeline ads in environments in which storage is constrained.
One, batch data might need to be refetched when it couldwibeibe cached thereby incurring an redundate use
of a potential bottleneck resource in the wide-area networinection between the storage server and the compute
cluster. Two, the CPUs on the compute cluster might be utiiezed due to concurrency limits imposed by
the data dependencies of the workloads. Three, the CPU4 algghbe underutilized due to barriers within the
workloads.

Each of our five scheduling policies seeks to avoid a pagicperformance problem possibly at the expense
of the other two. The relative costs of these performancblenos varies depending on specific characteristics of
the workload and the compute environment. For example gilaéive penalty to refetch batch data increases as the
bandwidth to the storage server decreases.

Predictive modelling

Using different possible data scheduling allocations, ansthere exists a wide range of possible performance
and that the scheduler decision is fraught with difficultyoaal decision can lead to a throughput loss approaching
one-hundred percent. Therefore the final contribution ofsmineduling work is to define an simple analytical
predictive model that predicts the runtimes for schedwirmgkloads using each of our five scheduling policies.
We demonstrate that a scheduler using our predictive modslect a scheduling policy in most cases performs
within 5% of an ideal scheduler that uses a theoretical pegecdictive model and in no cases exceeds 30%
percent.

6.2 Reflections

We now offer some reflections about the research processfimddyvice to others pursuing similar studies.
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6.2.1 Methodology

At the methodological level, we have observed the value wdyghg both simulations and a prototype im-
plementation, which was also cited as valuable in both [@] [dd]. Having a highly controlled and simplified
simulation allowed us to focus on fundamental algorithnetails which are sometimes obscured in the complex-
ities and distractions of a full prototype implementation.

Additionally, the simulation environment drastically ghfied our data collection as scaling to large num-
bers of machines was as easy as changing a parameter in thlatg&imand as difficult as contending for scarce
resources in the implementation. The runtime performariaoimg experiments was also drastically reduced;
experiments which took days on the full implementation ddeg simulated in hours. Of course, we would not
have been able to have confidence in our simulated resuli®utithe deep understanding of the full system that
came from designing and managing the full implementatioalidgting results that show similar measurements
from each added to this confidence.

Also of value was the predictive analytical model. In aduditto being an important contribution to batch
scheduling as it allows the scheduler to quickly make infedrallocation decisions, the model adds further confi-
dence in both the simulation and the prototype implememiati

6.2.2 Research Cycle

In this work, we have followed what we consider to be an ideatieh for systems research: measure, build,
evaluate, and refine. It is difficult, if not impossible, tapose a new system without first measuring some key
aspect of the previous. We have done that here by buildingiadiation for our work from our initial measure-
ment study of data-intensive batch workloads. Having tloidybof empirical measurement gave us insight into
the problem area and helped us quantitatively define theesabiihe problem so that we could then design a so-
lution. A less technical additional advantage of proposing new approach onlgfter collecting our empirical
measurements is that this empirical workload profiling gtgdve us credibility within the community that was
instrumental in selling our new file system design.

Finally, it was only through building and then evaluating file system design, that we made the realization
that scheduling 1/0O intensive batch workloads was more dexnihan merely choosing between breadth-first and
depth-first allocations. This realization then led to ourkwan scheduling allocations and our predictive analytical
models.

6.3 Future Work

Though we have made significant inroads both in designingygtem support for data-intensive batch work-
loads and in designing data-aware batch schedulers, mudhremains to be done. We now briefly address some
key areas that are not addressed elsewhere in this digsertdfe note further that much of this additional work
was not strictly possible before; these new areas of exjpborare now possible because of the progress we have
described here.
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6.3.1 More measurement

The main limitation of our workload analysis in Chapter 2he breadth of the study. While instrumental in
defining the different types of I/O in batch workloads andeading that several important scientific applications
are heavily 1/0 bound, this analysis would benefit from adddl study.

Several interesting questions specifically related tolptpeline workload scheduling remain. One thing
unmeasured in our initial study is variability across npléiinstances of the same workload. We studied the
effect of runtime variability in Chapter 4, but did so witliany empirical measurements to guide us. It would be
interesting to determine just how variable are batch sufions. This variability will directly effect scheduling
decisions; the less variable, the easier the planning.

Additional questions that would be interesting to studyahether non-scientific workloads display similar
patterns of 1/0O behavioi.€. are they batch-pipeline in structure). Although there iseason to suspect otherwise,
validating this would be useful.

Further, it would be interesting to know what percentagdldfaich jobs are data-intensive. Of course, defining
exactly what data-intensive means would be necessary Besela For this thesis, we defined data-intensive to
mean two things: one, that the workload has data constrairttgat the total amount of data does not fit within
available storage and two, that the workload spends at fé#gspercent of its runtime performing I/O when
executing in a remote environment using remote /0.

Finally, information that is vital towards knowing whetlarr analytical predictive model is immediately useful
in batch scheduling or must be further refined is to quantif\aiypercent of current batch workloads are canonical
and to measure to what degree do non-canonical workloatieithe canonical definition. These measurements
may suggest that additional work is required to study thedaling of non-canonical workloads.

6.3.2 Non-canonical Workloads

Should non-canonical workloads prove prevalent, addilistudy of scheduling these workloads should prove
fruitful. There are several ways in which workloads can be-nanonical and each of these should provide different
scheduling challenges. Workloads which do not fit the stahtatch-pipeline structuree(g.a parent job having
multiple children) do not fit within our predictive analysicmodel nor do they easily fit within our different
scheduling allocations. These workloads, which have beammmed in the simpler case in which data is not
constrained as in the DAGMan scheduler [29], should progeifitantly more challenging when they impose
additional data constraints.

Workloads which are not strictly canonical due to volumesighould fit much more easily within our schedul-
ing framework. Indeed, our scheduling framework is stiliremely useful for these types of workloads because
it can be used to provide limits on execution. For exampleggime a workload in which a batch volume at a
depthd is sufficiently large that while it is allocated, ontypipelines can execute concurrently. If batch volumes at
shallower depths are smaller than this batch volume at dé@h uninformed scheduler might mistakenly begin
executing more thap pipelines. Only after advancing the workflow to depttwill the scheduler realize the error
of its way and be forced to abandon (and lose the progres#)data pipelines. Using our scheduling framework
however, the scheduler will plan for this bottleneck at Hepand ensure that no more tharpipelines execute
concurrently.

However, this slack at depths less tharis itself interesting and worthy of investigation. It may thet



108

other areas of the same workload might fit within this slackddiionally, in multi-user and multi-workload
environments, this slack may prove useful.

6.3.3 Multi-* Effects

In this thesis, we have studied extensively the base cassingke user running a single workload on a single
compute cluster. Extending our scheduling framework tatiplel users, multiple workloads, and multiple clusters
is a challenge for future study.

Multi-user and multi-workload

The challenges for multiple users and multiple workloadsrsessentially identical. Each distinct user pro-
vides distinct workloads and therefore the multi-user faobessentially becomes the multi-workload problem.

However, there does exist at least one distinction. Usebgich systems control the relative priority of their
own workloads. The relative priority of workloads owned liffedent users is subject to a fairness policy defined by
the batch scheduler. Although much work has been done iri-maét computing both in time-sharing interactive
and batch systems, the additional complexities of the direduling concerns of CPU and data allocation make a
re-examination of multi-user scheduling necessary faa-itatensive batch workloads.

For example, existing sharing policies that split resosiinespacei(e. they give a fraction of a compute cluster
to each user) need to be aware of the data constraints of thdéoad. If some workloadv needs sixty percent
of the available storage in order to allow a efficient datacation schedule, then an uninformed scheduler which
splits CPU'’s evenly across users will not provide workleadn effective compute platform. Related scheduling
work in parallel program scheduling should provide ingpira here.

However, we note that a defining aspect of the success of thdaCdatch scheduler has been the mantra of its
founder Miron Livny who scorns optimization and prefersteyss which “just work.” Embracing this philosophy
with regards to the scheduling of multiple batch-pipelinerkloads is perhaps the best initial approach here. A
simple solution which gave entire compute clusters to a l@axkuntil the completion of that workload might prove
just as worthwhile in terms of long term throughput measumaisias a more complex solution which attempts to
find optimal best fits. We note that scheduling multiple wodds each of which require some percentage of
resource is effectively a bin-packing problem which is knaewbe NP-complete. Further any computational slack
within these workloads due to data constraint can be eabdy fivith CPU-intensive jobs.

Multi-cluster

Additional complexity occurs when considering how to plagwkloads with data constraints across multiple
clusters. This problem seems strikingly similar to memdigcation in operating system kernels. Any placement
is likely to lead to fragmentation of these compute clustéise various memory allocation policies such as best-
fit, worst-fit, and first-fit are a likely good initial startingpint for an examination of scheduling data constrained
workloads across multiple clusters of compute resources.

One additional aspect that might prove challenging is whearcular workload has a possible data allocation
that exceeds the available storage of any one compute cllisteuch a case, combining multiple clusters might
prove worthwhile although we note that to do so efficientlyl véiquire additional changes in both the design and
the implementation of our prototype batch-aware distétutle system.
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Here again the problem quickly becomes NP-complete as tiedlater attempts to evaluate across an infinite
number of possible allocations and combinations and fragatiens. Perhaps an initial approach to this problem
should strive to merely design a system that “just works” toeth seek to improve upon that.

6.3.4 Inaccurate Information

A main limitation of our scheduling work in both Chapters 3lahis our assumption that perfect and complete
information about the environment and the workload can lowiged to the scheduler. While we believe that
the information provided about the environment by toolshsas the Network Weather Service [115] should be
sufficiently accurate to not adversely effect our schedutiecisions, we have no such confidence in the users’
ability to provide accurate workload information. As usées/e been historically observed to have difficulty
providing accurate runtime estimates [27, 65, 75], it iSkaty that they can provide accurate I/O estimates.

How batch schedulers can maintain levels of throughputentasing their allocation decisions on inaccurate
workload information is a challenging problem we leave faufe researchers. We are gratified to see that others
are examining the challenge of scheduling with inaccusa@itbeit in more standard batch workloads without data
constraints [82].

Additional recent work in databases also examines the yhguestion of scheduling without accurate infor-
mation. Query optimizers are similarly dependent on a¢eurdgormation in order to make informed plans. To
mitigate the effects of inaccurate and imprecise inforomgtiBM has developed LEO [73], a learning optimizer.
Subsequent queries then use the more accurate estimatéact,IhEO shows the potential to reduce or even
eliminate the need for costly off-line statistic gathergegsions. This suggests that similar information-gatheri
techniques within a batch-pipeline scheduler could reducgliminate the need for the user to provide accurate
workload estimates.

Another possible source for inspiration in this area of deftiag with inaccurate information might be gleaned
from similar problems in computer architecture. For examplanch prediction in a processor core is an attempt
to make a schedule with imperfect information.

Information gathering

Another approach to this same challenge would be attemptifigd alternative sources beyond the user for
workload information. Should workloads prove to be highhifarm, using historical information may be useful
here. The challenge here then becomes one of informatioaget@nd retrieval as well as defining exactly what
information should be stored.

Finally, batch schedulers could attempt to gather infoimmatlynamically from running workloads. Again,
decisions made using this dynamically gathered informatieed to be influenced by the degree of variability
within the workload. Gathering the variability informatialynamically should also be possible but a larger sample
size may be needed.

We note here that the question of inaccurate informatioigisificantly more complex in the context of non-
canonical workloads than it is for canonical workloads.H@&hg accurate information about a canonical workload
is significantly easier that gathering information abouba-ganonical one as each pipeline in a canonical work-
load is essestially identical (with the exception of rurdirariability). To schedule canonical workloads without
accurate information is a straightforward challenge;tal$cheduler must do is execute some number of pipelines
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initially and then use measured observations about thagel ipipelines to select an allocation plan for the re-
maining.

In spirit, this seems similar to a technique used by Googlaléaling with the possibility of queries which
cause their compute machines to crash [7]; such queriestead to as “queries of death.” These queries of
death refer to queries executed in parallel across a closteiachines which cause all these machines to crash;
to prevent this large failure across the cluster, an indi@idprobe” query is run; if successful, the entire parallel
query is performed; otherwise, it is not. The total expediewdown is less than one hundred percent because a
single query is expected to run at the average speed whikertive parallel query runs at the speed of the slowest
node.

Similar probing could be done by batch schedulers, not t@awassive correlated cluster failure, but to collect
the information needed for planned data allocation. In suchse, the slowdown could be even less than that in
the Google case due to the relative widths of the workloadt@dluster. For Google, a parallel query is run only
once across the full cluster whereas batch workloads widar the number of available compute nodes will run
for multiple iterations thereby amortizing the slowdowfeef imposed by the probe pipeline.

6.3.5 Dynamic Reallocation

In Chapter 4 we show how our predictive analytical model canded to select between different data schedul-
ing allocations. The relative performance of the differatibcations depends on various characteristics of the
workload and the environment.

We note here that some of these characteristics changeydbegrcourse of the execution of the workload. For
example, for each completed pipeline, the width of the waatlis reduced by one. It should therefore be possible
to dynamically re-evaluate the remaining workload and cwib a different allocation if the model predicts that
doing so will reduce the remaining total time to completi@allenges here include defining the frequency of the
re-evaluation and actually switching between differeldcations.

In some instances it should be trivial to switch allocatjolos example there are no limitations involved in
switching from a Slice allocation to a Minimal one. Howewather transistions are more involved. For example,
switching from an AllBatch allocation to a Slice allocatiwill require removing some of the batch volumes. If
currently executing pipelines are accessing those voluthecost of removing them needs to be weighed against
the benefit of switching allocaitons.

This periodic dynamic evaluation of the data allocatiomnpbears similarity to recent work in proactive re-
optimization in database queries [12]. As in database gsieeistimates about the workload (or query) information
can be continuously updated during the traversal of the fimvi({execution of the query). Due to this similarity,
many of the techniques developed there may be applicabke her particular, the use dfounding boxedo
represent uncertainty in statistics should be useful hemeal. A batch scheduler could use bounding boxes to
represent the complete set of allocations that are possitiién some degree of error in the workload information
and can continuously evaluate only these allocations assggpto the complete set. However, we note that this
may be somewhat less useful here as the set of possible daesyip potentially infinite whereas the complete set
of possible scheduling allocations is only three.
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6.3.6 Checkpointing

In Chapter 3 we examine a cost-benefit model that can makeidodiized replication decisions for each
output pipeline volume in a workload. Replicating theseuvos effectively checkpoints the pipeline at the depth
at which it wrote that volume. One limitation here is that vieg bt consider the storage implications of replicating
these volumes.

Our cost-benefit replication model assumes that storagetisamstrained and thus the sole cost it considers
for replicating data is the cost to replicate. For data canstd workloads, there is an additional cost to replicate
data: doing so further constrains the workload and may mekeesallocation schedules no longer possible or
could reduce the maximum concurrency of the workload.

We note further that some systems, such as the Condor bdttetildng system, checkpoint the process image
to an external checkpoint server. Clearly checkpointinty time process for a job in a batch-pipeline workload is
insufficient as these jobs have additional data requiresneftherefore, additional work remains to combine the
checkpointing of processes with the replication of theluwtes.

6.3.7 Partial Results

One simplifying assumption that we make in our work is tharasare satisfied with receiving the results of
their workloads all at once; in other words that users ardmtetested in partial results. However, there do exist
many situations in which this is not the case.

There has been recent work in this area [70, 97] to help usetstel the order in which their pipelines are
executed and to provide these users with partial resultadigidual pipelines are executed. Additionally, these
systems then allow users to steer the workloads towards imeresting areas within the parameter space.

For example, imagine a user who wants to run a parameter sa@eps some variable for each possible
value ofv betweer) and1000. The user suspects that there is an interesting area witisiparameter sweep but
does not know where it occurs. In such a case the scheduldirgtamn pipelines at a coarse granularityweffor
example for0, 100, 200, etc. Seeing partial results, the user may notice an untegbeliscrepancy between the
values at sap00 and400 and can then direct the scheduler to focus on this area.

These partial results systems assume the absence of dateagus. Adding this additional constraint to the
scheduling decisions is a challenging problem we leaveuturé study.

6.4 Postscript

Given the continued emergence of increased wide-areaboofiions (as attested by the media attention [28,
71, 72, 105] surrounding grid computing [45]) and the camith predictions of increasingly large data-sets such as
those made about the ATLAS and CMS physics projects [43] atdhysics data [53], batch scheduling needs
new models for scheduling data constrained workloads irotemnvironments.

Existing batch schedulers plan for CPU allocation onlyadabvement happens as a side-effect of job place-
ment. For CPU intensive jobs in a local environment, thispedectly reasonable trade-off. Any penalty incurred
for not planning the data movement is negligible and welltivdine simplicity of the remote I/O model of direct
access to remote data. However, this penalty grows quicktii@the data sets grow in both size and in distance.
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These data constrained workloads do have well defined patté#rl/O behavior. By leveraging information
about these workloads, batch schedulers can plan for ecwdedi data and CPU allocations. However, in order to
do so, they need complicity from the distributed file systérhis concept of external explicit storage control is
one of the core contributions of this dissertation.

We have found that two mechanisms provide what is needed Riest, guaranteed storage allocations within
the distributed file system allow the external scheduler skenappropriate storage decisions concerning data
caching, replication, and consistency. Second, our piredianalytical model allows the scheduler to make the
appropriate storage decisions.

Allocating CPUs is easy — but may cause an overallocatiorionhge; allocating data is also easy — but may
cause an underutilization of CPU; allocating both so théheeis adversely affected is the challenge for modern
batch scheduling systems.
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APPENDIX

A.1 Validating the Simulator

We found external visualization to be extremely useful $nability to validate the internal correctness of the
simulator whose results we present in Chapter 4. To conwnicselves of this correctness we required evidence
of both functional correctness of the simulator as well asliility to produce gnd reproduceyeasonable per-
formance estimates. Specifically, we wanted validatingleasvte about four features of the simulator: one, the
functional correctness of its representation of the wa#|dwo, the functional correctness of the compute system,
three, the functional correctness of the scheduler, anthfieédence of the accuracy of its simulated results.

A.1.1 Validating Functional Correctness of the Workload

To validate the functional correctness of the simulatob#ity to interpret a workload, we create a synthetic
workload with a known set of data and job dependencies amdube thdDOT graph layout software to verify that
the scheduler has interpreted the workload correctly.

Shown in Figure A.1 is a recreation of a workload which we &tecverify that the simulated scheduler has
properly interpreted inter-job dependencies as well agtbent points between volumes and jobs. The circles are
jobs and the double-edged quadrangles are volumes; thréedieapezoids are volumes accessed by only a single
pipeline {.e. endpoint and pipeline) and the double-edged rectanglebadoh volumes shared across pipelines.
The arrows show the dependencies between jobs and the maint linking jobs and volumes. The percentage
numbers in the volumes are the amount of the total storagacitgmf the system needed for that data. In this
example are shown two pipelines consisting of three jobk.eBach pipeline has an input endpoint volureey(
iAl ) mounted by the first job and pipeline volumes shared betwjobs in the pipelinee(g.pA2). The first job
in each pipeline also reads from batch volume B1. Also shosvsirgle-edged rectangles are the extracted data
which is moved from each pipeline to the home node followingcessful completiore(g.bar.A).

Although it is not shown here, it is additionally possibleview a sequence of these workload visualizations
which use color to indicate the state of the jobs and volureas 4 job can be colored green for ready, blue for
running and black when finished). Examining such a sequehitege workload “snapshots” shows the changing
state of the workload as its individual jobs are executed.

A.1.2 Validating Functional Correctness of the Compute Sytem

In addition to verifying the more coarse-grained correstnef the simulator’s interpretation of the workload,
we used visualization to confirm the correctness of the muaterfinely-grained data flow across the diverse com-
ponents of the modeled system. This visualization was thfighore complex to develop as we were unable to
leverage pre-existing tools. Using Perl and the tk imagiioigaties, we wrote a viewer to display each of the ma-
chines in the system, and the state of each of their modelg@oentsi(e. network, memory, and disk). A screen
capture of this tool is shown in the left side of Figure A.2.ckaiectangle represents a different machine in the
environment; one for the home storage server and one foraawhute node. Within each machine representation
are drawn the queues for each of the components on that neaahiwell as summary information for the memory
and disk contents.
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1 datafiles/jobA 1
2 datafiles/jobA 2
.3 datafiles/jobA 3
.1 datafiles/jobB. 1
2
3

pAl AL B1
10.00% 20.00% 20.00%

datafil es/jobB. 2
datafiles/jobB. 3

iB1
20.00%

parent A1 child A2

parent A 2 child A3

parent B.1 child B.2

parent B.2 child B.3

volume i.A 1 /hone/in/ 10MB
volume i.B.1 /hone/in/ 10MB
volume B.1 /hone/data/ 10MB
volune p.A 1 scratch 5MB
vol une p. A 2 scratch 5MB
vol une p. A 3 scratch 5MB
vol une p.B.1 scratch 5MB
vol une p.B.2 scratch 5MB
vol une p.B.3 scratch 5MB
nmount i.A 1 A1 /input/

nount i.B.1 B.1 /input/

nount p.A 1 A1 /out/

nount B. 1 A 1 /data/

mount p. A1 A2 /in/

mount p.A.2 A 2 /out/

mount p.A.2 A3 /in/

mount p.A. 3 A 3 /out/

mount B. 1 B.1 /data/

nmount p.B.1 B.1 /out/

mount p.B.1 B.2 /in/

nount p.B.2 B.2 /out/

nount p.B.2 B.3 /in/

nount p.B.3 B.3 /out/

extract p.A 3 bar.A 3 bar. A
extract p.B.3 bar.B.3 bar.B

Figure A.1: Validating Functional Correctness of the Workload Represatation. This illustration shows that the sim-
ulator creates an accurate internal representation of tharkload as shown on the right from the description shown @n th
left.

This system viewer reads an event trace log of the simulaidésplays the state of the system as each event
is executed. This tool proved particularly useful as a dgmggtool that could be used to trace the activity within
the system that resulted from various events. For exampleerify that data was moved correctly to satisfy a
particular job read event, the viewer could be used to ensatethis job read would result in a network request
which moved from network buffer to network buffer and waddaled by a disk read, a network transfer, and a
memory write before the job could progress further.

A.1.3 Validating Functional Correctness of the Scheduler

On the right side of Figure A.2 is shown the validation of thbhexluler’s ability to correctly observe inter-job
dependencies. To acquire this visualization, we wrote dl st to convert our log files to match the formatting
of user log files created by the Condor batch scheduling systé/e were then able to leverage pre-existing
software for visualizing these user job logs. As shown indbeeen capture, this visualization tool represents
each job in the workload as a horizontal line. For this speedilidating experiment, we ran a workload with 30
pipelines of depth two. As seen here, the scheduler coyrdethys the execution of half of the jobs until their
dependent parent has finished executing.

A.1.4 Validating Performance Accuracy

Having validated the functional validity of the simulatare examine its ability to produce realistic and mean-
ingful performance estimates. First we discuss two diffeexperiments that show reasonable and intuitive perfor-
mance profiles for different /O techniques and across pialtache hierarchies. We then conclude our validation
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Figure A.2:Validating Functional Correctness of the Compute System ath the Scheduler. The illustration on the left
shows a representation of the compute system includingishke,duffer caches, and network queues for each machine. On
the right is a visualization of the execution schedule foraakload with inter-job dependencies.
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Figure A.3: Validating the Performance Correctness of the Simulator. These two graphs show validating experiments
for the performance of the simulator. On the left are the cletigm times for three different 1/0 techniques of bindingg to

the home storage server. On the right is a comparison of MRIULARI replacement policies across a hierarchy of caches in
the compute cluster.

with a direct comparison of the simulator against previpasiquired results using the full BAD-FS implementa-
tion.

Figure A.3 shows two experiments run to check this. The firgply on the left shows synthetic BLAST jobs
being executed on a cluster of 32 compute nodes using thifeeedit methods of linking the jobs to their batch
data. Using remote I/O, all jobs went directly (and simudtausly) to the home node to read the batch data. In
stand-alone mode, the first job run on a compute node fetchteh bata from the home node and then caches it;
subsequent jobs then read from the cache. Note that stand-alode approximates the behavior of AFS. Finally,
in cooperative caching mode as is done in BAD-FS, the compades cooperatively fetch the batch data from the
home nodes for the first 32 jobisq. the number of compute nodes) and then subsequent jobs ceadhe cached
data. Because of the large disparity in performance betnerante 1/0 and the other two 1/0O modes, the y-axis is
shown in log-scale.

As expected, the performance using remote I/O is by far thestnaind there is no difference in run-times
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for any of the different sets of 32 jobs. Comparing standgv@loaching and cooperative caching yields slightly
different conclusions. The first set of jobs that run whendhehe is cold show a difference in run-time as the
stand-alone mode results in contention for the network Wwadtt of the home node. Conversely, in cooperative
caching, the compute nodes effectively share this bantiiagtmulti-casting the batch data from the home node.
Once the data is cached however, the performance is the same.

The right-most graph in Figure A.3 provides additional @ation by showing the bandwidth achieved by
batch-intensive jobs run on a “warm” system consisting af t@mpute nodes. The jobs scan their batch data in a
linear manner and the two different lines show the diffeeebetween using MRU and LRU replacement policies.
The y-axis shows the bandwidth for each job and the x-axisdésatnount of batch-data read by each job. Along
the top of the x-axis are labels for the various cache capaailf system component®4 marks the size of the
buffer cache for each of two compute nodes in the systeimthe size of the disk on each of the compute nodes;
CDis the size of the cooperative disk composed of the two diskseocompute nodes and finaliMis the size of
the buffer cache on the home node. The lower-case tics omrfihg-&xis represent the various bandwidths of the
different components. Tic marks which show the sums of thegeus bandwidths represent the serial bandwidths
for data which must pass serially through all of those comeptsy For example, when the batch data read by jobs
is less tharnvi then the warm jobs realize a bandwidthnolbecause all of their data fits within the buffer cache of
each compute node and warm jobs can be satisfied entirelyrabrgdrandwidth.

As the amount of batch-data read by the jobs increases bewotte buffer caches can no longer hold all
batch data and more of this data must be read from the diskidrcase however, the bandwidth achieved by a
job is not merely the bandwidth of disk but rather the seraidwidth of moving data off disk, into memory and
then copying it into the address space of the job. (husd+mand notd). As expected for jobs which linearly
scan their data, MRU performance more gracefully degradesemas LRU performance drops more drastically.
Similar effects are noticed as the data read by each job ssepdhe size of each disk cache and then the size of the
cooperative disk cache and finally the size of the buffer eamhthe home node. Note tHats the local network
bandwidth and that is the remote bandwidth between the compute nodes and the hode.

One interesting effect is seen for the LRU replacement pdbic jobs which read an amount of batch data
betweenv, the amount of buffer cache on the compute nodes Datiae size of disk cache of the compute nodes.
In this region, performance actualiyprovesas the amount of data approactmed his effect is due to the nature
of the buffer cache replacement policy. As blocks are netdefrom disk, they must necessarily replace blocks
currently in the cache. If the victim block is dirty, it muststi be written to disk before the new block can be read
into memory. In this scenario, the bandwidth is expectedetd+#u+m two disk 1/O’s followed by one memory
read, instead of the more intuitice-m When the amount of batch data only slightly exceeiddhen as the warm
jobs first run, the majority of blocks in the buffer cache airtyd Thus for each missing block (which is all of
them when LRU is used), a dirty block must first be flushed teetbe new block can be read. Conversely, as the
amount of batch data approachzsnore of the dirty blocks will have already been flushed duthre execution of
the cold jobs. Thus as new blocks are requested, a smallegrgage of the victim blocks will need to be flushed
and achieved bandwidth approacliesn

What is important to take away from these results is not amyadrservation about the relative performance of
LRU and MRU cache replacement policies but rather the weiiisiide of the simulation framework. These results
in particular show that the caching hierarchy of the compluster performs as expected in regards to when and
how data is evicted and the measured bandwidths match tligaation as well.
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Figure A.4: Checking Simulator Performance against the BAD-FS Implematation. The graphs on the left are the
same as were discussed previously in Figure 3.4 of Chapted3how the runtime and normalized traffic to the home node
incurred when running a synthetic batch-intensive workloaing three different workload traversals. On the righg éne
results obtained for a recreation of this experiment withinm simulation framework.

A.1.5 \Verifying Against the BAD-FS Implementation

Finally, in Figure A.4, we simulate an experiment run prergly using the BAD-FS implementation as shown
and explained in more detail in Figure 3.4 of Chapter 3. Onléfteside, are the runtimes and the normalized
amounts of wide-area traffic between the home storage sancethe compute cluster as seen when using the
BAD-FS implementation across a compute cluster of sixtamtes at the University of Wisconsin. On the x-axis,
we vary the size of batch data accessed by each job in a sigriblagth-intensive workload of 32 pipelines of depth
four.

Compared within each graph are the results obtained udingrei strict breadth-first traversal of the workload,
a depth-first traversal or a capacity-aware traversal agris 8y the BAD-FS scheduler. When the total amount of
batch data fits within the storage available on the clustmfhen each of the four batch volumes is less than 25%),
each of the three traversals achieves the same results.vidgweace the size of the batch volumes exceeds 25%,
then the depth-first traversal will overallocate the ald@astorage thereby causing the batch data to be evicted and
then refetched for the execution of subsequent pipelindss i$ seen in both the runtime and normalized traffic
graphs as the depth-first schedule deviates from the otleatt@pproximately 25%. The maximum value for the
normalized amount of traffic is four because with 64 pipalia@d 16 compute nodes, each server executes four
pipelines. Thus without careful capacity planning, the st@ase utilization of the wide-area network will result
in the batch data being redundantly fetched for each exagpipeline.

For this synthetic batch-intensive workload, the capaaitsare planning of the BAD-FS scheduler results in a
breadth-first traversal and thus the values for both brefadthand BAD-FS remain the same and outperform the
depth-first traversal while the size of the batch data is betw25% and 100% of the total cluster storage. Notice
however that once the batch data exceeds the availablgsttrat caching the data is no longer possible and all
three traversals are forced to redundantly refetch thénltkeita and suffer the corresponding reduction in runtimes.

On the right side, we compare the results achieved by récgetitis experiment within our simulation frame-
work. We recreate the synthetic workloads and configure gpotenenvironment using the same capacities used
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in the implementation experiment and the same bandwidtheas measured then. Although the results for both
runtime and normalized traffic appear extremely similagreéhare two slight differences. The first is the slope of
the “knees” of the curves are smoother in the simulated graphis is due to their being more measured values in
the simulated graphs which attests to the relative easeij tise simulator as opposed to actually running these
experiments on actual machines using the BAD-FS implertientarl his relative ease is due to both needing fewer
machines as well as running more quickly. Each simulatedtdidata required less than an hour of computation
on a single machine whereas each point of data collected tisnfull implementation required up to fifty hours
of computation across sixteen compute nodes, a seventeattine for the home storage node and an eighteenth
for the scheduler.

The second difference between the simulator and the impl&ten is hard to see in the runtime graphs but is
obvious when looking at the actual data. This differencéas the runtimes reported by the simulator are slightly
faster than those achieved by the implementation. Thigrdiffce is likely due to not modelling the scheduling
latency within the simulator. When a job finishes executimghie actual implementation, the notification of its
completion must travel across the network from the compatiero the scheduler which then must decide which
job to schedule next and then send that job back to the nowcatigpute node. However, for such long running
jobs like those modelled here, this scheduling latency Ishioet almost entirely amoritized by the runtimes of the
jobs. As expected this is the case, resulting in the veryectgmproximation of the simulated performance to the
real.



