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Abstract

We consider the task of evaluating a policy for a Markov decision process (MDP). The1

standard unbiased technique for evaluating a policy is to deploy the policy and observe its2

performance. We show that the data collected from deploying a different policy, commonly3

called the behavior policy, can be used to produce unbiased estimates with lower mean4

squared error than this standard technique. We derive an analytic expression for a minimal5

variance behavior policy – a behavior policy that minimizes the mean squared error of the6

resulting estimates. Because this expression depends on terms that are unknown in practice,7

we propose a novel policy evaluation sub-problem, behavior policy search: searching for a8

behavior policy that reduces mean squared error. We present two behavior policy search9

algorithms and empirically demonstrate their effectiveness in lowering the mean squared10

error of policy performance estimates.111
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1. Introduction13

Many sequential decision problems, including diabetes treatment (Bastani, 2014), digital14

marketing (Theocharous et al., 2015), and robot control (Lillicrap et al., 2015), are modeled15

as Markov decision processes and solved using reinforcement learning (RL) algorithms. One16

important problem when applying RL to real problems is policy evaluation. The goal in17

policy evaluation is to estimate the expected return (sum of rewards) produced by a policy.18

We refer to this policy as the evaluation policy, πe. The standard policy evaluation approach19

is to repeatedly deploy πe and average the resulting returns. While this näıve Monte Carlo20

estimator is unbiased (Hammersley and Handscomb, 1964), it may have high variance.21

Methods that evaluate πe while selecting actions according to πe are termed on-policy.22

Previous work has addressed variance reduction for methods that collect data on-policy23

(e.g., Zinkevich et al. (2006); White and Bowling (2009); Veness et al. (2011); Hanna et al.24

(2021)). An alternative approach is to estimate the performance of πe while following a25

different, behavior policy, πb. Methods that evaluate πe with data generated from πb are26

termed off-policy. Importance sampling (IS) is one standard approach for using off-policy27

data in RL. IS re-weights returns observed while executing πb such that they are unbiased28

estimates of the performance of πe (Thomas, 2015).29

Presently, IS is usually used when off-policy data is already available or when executing πe30

is impractical. In such circumstances, IS often has high variance (Thomas et al., 2015a; Jiang31

and Li, 2016; Guo et al., 2017). For this reason, an implicit assumption in the RL community32

has generally been that on-policy evaluation is more accurate when it is feasible. However, IS33

can also be used for variance reduction when done with an appropriately selected distribution34

of returns (Hammersley and Handscomb, 1964). While IS-based variance reduction has35

been explored in RL, this prior work has required knowledge of the environment’s transition36

probabilities and remains on-policy (Desai and Glynn, 2001; Frank et al., 2008; Ciosek and37

Whiteson, 2017). In contrast to this earlier work, we show how careful selection of the38

behavior policy can lead to lower variance batch policy evaluation than using the evaluation39

policy without requiring knowledge of the environment’s transition probabilities.40

In this work, we formalize the selection of πb as the behavior policy search problem.41

After formalizing this problem, we introduce two algorithms for this problem that adapt the42

policy parameters of πb to find a behavior policy that provides lower variance importance43

sampling estimates. The first method directly minimizes the variance of the importance44

sampling estimator using gradient descent on the parameters of πb. The second method45

uses gradient descent to minimize the KL-divergence between the behavior policy and a46

derived minimal-variance behavior policy. Empirically we demonstrate that behavior policy47

search with both of our methods lowers the mean squared error of estimates compared to48

on-policy estimates. To the best of our knowledge, this work is the first to propose adapting49

the behavior policy to obtain lower mean squared error policy evaluation in RL. Furthermore50

we present the first methods to address this problem.51

This article builds upon and includes work first presented at the 34th International52

Conference on Machine Learning (ICML) (Hanna et al., 2017). Going beyond this earlier53

work, we formally derive a condition that a minimal-variance behavior policy must satisfy,54

we introduce a second behavior policy search algorithm, derive formal convergence and55

convexity results, prove statistical properties of our algorithms, and we extend the empirical56
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study contained in the original work. Taken together, these contributions and the earlier57

work comprise a complete study of behavior policy search for data-efficient policy evaluation.58

2. Background59

We first present the notation used throughout this work. We then formalize the batch policy60

evaluation problem for Markov decision processes and discuss two common approaches to61

this problem. Finally we survey literature related to batch policy evaluation and the use of62

adaptive importance sampling in reinforcement learning.63

2.1 Notation64

We assume the environment is a finite-horizon, episodic Markov decision process (MDP)65

with state set S, action set A, transition function, P : S ×A× S → [0, 1], bounded reward66

function r : S × A → [rmin, rmax], horizon l, discount factor γ ∈ [0, 1], and initial state67

distribution d0 : S → [0, 1] (Puterman, 2014). We use P (s′|s, a) = P (s, a, s′) to denote68

the conditional probability of transitioning to state s′ after taking action a in state s. We69

assume that S and A are finite though our empirical analysis is conducted in both finite and70

infinite S and A MDPs. We assume that the transition and reward functions are unknown71

and that the maximum episode length, l, is a finite constant.72

A policy, π : S → ∆(A), is a function mapping states to probability distributions over73

A. Let Π be the set of all such policies. We use π(a|s) = π(s, a) to denote the conditional74

probability of action a given state s In this work, we consider parameterized policies, πθ,75

where the distribution over actions given a state is determined by a vector θ ∈ Θ, where76

Θ ⊆ Rd for some dimension d. Furthermore, we require πθ(a|s) to be twice-differentiable77

with respect to θ at every state-action pair and for ∂
∂θπθ(a|s) and ∂2

∂2θ
πθ(a|s) to be bounded78

by a finite constant for all states, actions, and values of θ.79

The agent interacts with the environment MDP as follows: The agent begins in initial80

state S0 ∼ d0. At discrete time-step t the agents takes action At ∼ π(A|St). The environment81

responds with Rt := r(St, At) and St+1 ∼ P (·|St, At) according to the reward function and82

transition function. The agent’s interaction with the environment terminates after l steps83

regardless of the agent’s current state or action. We allow the possibility of termination84

before l steps by including a special terminal state, s∞. If the agent enters the terminal85

state, s∞, it remains there and receives zero reward until step l is reached. Note that the86

finite-horizon assumption implies that the current time-step of interaction must be included87

as part of the current state.88

Let h := (s0, a0, r0, s1, . . . , sl−1, al−1, rl−1) be a trajectory and g(h) :=
∑l−1

t=0 γ
trt be the89

discounted return of h. Note that g(h) is bounded since the per-time-step reward is bounded.90

Any policy defines a distribution over trajectories, Pr(H = h|π), where H is a random91

variable denoting a trajectory. We will write H ∼ π to denote sampling a trajectory by92

following π as described in the preceding paragraph and H := S l×Al×Rl to denote the set93

of all possible trajectories. Finally, we define the value of a policy, v(π) := E[g(H)|H ∼ π],94

as the expected discounted return when sampling a trajectory with policy π.95
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2.2 Batch Policy Evaluation96

In the batch policy evaluation problem, we are given an evaluation policy, πe, for which we97

would like to estimate v(πe). We assume there exists a policy parameter vector θe such98

that πe = πθe and that this vector is known. We consider an incremental setting where,99

at iteration i, we sample a single trajectory Hi with a policy πθi and add (Hi,θi) to a set100

D. We use Di to denote the set at iteration i (including (Hi,θi)) where D0 = ∅. We use101

superscripts on states, actions, and rewards to denote the trajectory in which they occur:102

Hi := (Si0, A
i
0, R

i
0, ..., S

i
l−1, A

i
l−1, R

i
l−1).103

A batch policy evaluation method, PE, uses all trajectories in Di to estimate v(πe).104

Methods that always (i.e., ∀i) choose θi = θe are on-policy; otherwise, the method is105

off-policy. Our goal is to design a batch policy evaluation algorithm that produces estimates106

of v(πe) that have low mean squared error (MSE). Formally, we express this goal as selecting107

PE to minimize:108

MSE

[
PE

]
:= E

[(
PE(Di)− v(πe)

)2]
,

where Di is a random variable representing the data set at iteration i. While other measures109

of policy evaluation accuracy could be considered, we follow earlier work in using MSE (e.g.,110

Thomas and Brunskill (2016); Precup et al. (2000)).111

In this work, we focus on unbiased estimators. An unbiased estimator is an estimator112

whose estimates have expected value equal to v(πe). For unbiased estimators, minimizing113

variance is equivalent to minimizing MSE. While biased estimators (like bootstrapping114

methods (Sutton and Barto, 2018, Chapter 6) and approximate models (Kearns and Singh,115

2002)) can sometimes produce lower MSE estimates, some applications may call for unbiased116

estimators.117

The algorithms we introduce only consider the problem of selecting θi and estimating118

v(πe) to minimize the MSE at iteration i. That is, they do not consider how the selection of119

θi will impact our future ability to select an appropriate θj for j > i and thus to produce120

more accurate estimates in the future.121

2.3 Monte Carlo Batch Policy Evaluation122

Perhaps the simplest batch policy evaluation method is the on-policy Monte-Carlo (MC)123

estimator. As an on-policy method, the Monte Carlo estimator requires θi = θe for all124

iterations i. The estimate of v(πe) at iteration i is the mean return:125

MC(πe, Di) :=
1

i

i∑
j=1

l−1∑
t=0

γtRjt =
1

i

i∑
j=1

g(Hj).

This estimator is unbiased and strongly consistent given mild assumptions.2 However, this126

method can have high variance (Sutton and Barto, 2018, Chapter 5).127

2. Being a strongly consistent estimator of v(πe) means that Pr
(

lim
i→∞

MC(πe, Di) = v(πe)
)

= 1. If v(πe)

exists, the Monte Carlo estimator is strongly consistent (Sen and Singer, 1993).
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2.4 Importance Sampling Policy Evaluation128

The Monte Carlo estimator requires that all trajectories are collected on-policy by running129

πe. It can be generalized to the off-policy setting by re-weighting returns from any behavior130

policy, πb, such that they are unbiased estimates of the expected return of the evaluation131

policy (Sutton and Barto, 2018, Chapter 5). The off-policy Monte Carlo estimator is known132

in the RL literature as the importance sampling (IS) estimator. Notice that if trajectories133

under the behavior policy πb are not informative for evaluating πe, then this re-weighting134

procedure may not be feasible. Therefore, to avoid such problems we make a standard135

assumption that is needed for importance sampling.136

Assumption 1. The quotient πe(a|s)
πθ(a|s) exists and is bounded above by (an unknown) c <∞,137

∀s ∈ S,∀a ∈ A,∀θ ∈ Θ.138

Intuitively, Assumption 1 says that any outcome that is possible under the evaluation139

policy πe is also possible under any of the behavior policies. Assumption 1 can be trivially140

satisfied by ensuring πθ is bounded away from zero. Under this assumption, the re-weighted141

IS return of a trajectory, H, sampled from behavior policy πb is:142

IS(πe, H, πb) := g(H)
l−1∏
t=0

πe(At|St)
πb(At|St)

. (1)

Intuitively, the IS return up-weights returns that were more likely under πe than πb and143

down-weights returns that were less likely under πe compared to πb. The IS estimator at144

iteration i is then:145

IS(πe, Di) :=
1

i

i∑
j=1

IS(πe, Hj , πθi).

Note that when πθi and πe are the same for all i, the IS estimator is identical to the Monte146

Carlo estimator.147

In RL, importance sampling allows off-policy data to be used as if it were on-policy.148

Importance sampling is both unbiased and consistent, however, like the Monte Carlo149

estimator, it may suffer from high variance (Thomas, 2015). The variance of IS may in fact150

be worse than that of on-policy Monte Carlo because the importance weights themselves151

can contribute to the variance (Sutton and Barto, 2018, Chapter 5). In many uses of IS in152

reinforcement learning, the variance of the IS estimate is often much worse than the variance153

of on-policy MC estimates because the behavior policy is not chosen to minimize variance,154

but is a policy that is dictated by circumstance.155

3. Related Work156

The methods we will introduce can be classified as adaptive importance sampling methods.157

This section surveys the related literature of adaptive importance sampling for reinforcement158

learning. We also discuss additional literature on lowering variance for policy evaluation.159

3.1 Adaptive Importance Sampling160

In this work we introduce algorithms that lower the variance of batch policy evaluation by161

adapting the behavior policy and then importance sampling to correct for the distribution162
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shift. Such algorithms are closely related to existing work on adaptive importance-sampling.163

While adaptive IS has been studied in the Monte Carlo simulation literature, we focus here164

on adaptive IS for MDPs and Markov reward processes (MRPs), i.e., Markov chains with165

rewards at each state. Existing work on adaptive IS in RL has considered changing the166

transition probabilities of the MDP to lower the variance of policy evaluation. Since the167

transition probabilities are typically uncontrollable in RL, adapting the behavior policy is a168

more general approach to adaptive IS in RL.169

Desai and Glynn (2001) and Ahamed et al. (2006) consider adaptive importance sampling170

for estimating the expected cost until termination in an MRP. They introduce algorithms171

that perform adaptive importance sampling by modifying the state transition matrix of the172

Markov chain. In contrast to these works, we focus on policy evaluation in MDPs.173

Frank et al. (2008) consider adaptive importance sampling for TD-learning (Sutton,174

1988) in MDPs. They assume a known probability of a rare event taking place and assume175

learning occurs in a simulator where this probability can be changed. They propose two176

algorithms that adapt the probability of a rare event and use importance sampling to remove177

bias from the distribution shift. These algorithms lead to faster convergence of TD-learning178

algorithms. In contrast to this work, we only assume that we know the evaluation policy179

and adapt the behavior policy for low variance importance sampling estimates. We also180

only consider estimating v(πe) instead of the expected return from all states, i.e., the state181

value-function.182

Ciosek and Whiteson (2017) adapt the environment transition probabilities to minimize183

the variance of each component of an on-policy policy gradient estimate. This work assumes184

a known environment transition function and that learning is done in a simulator where the185

transition function can be modified. In contrast, we focus on the problem of batch policy186

evaluation in an unknown environment and lower variance through off-policy data collection.187

The one work we know of that adapts the behavior policy is the work of Bouchard et al.188

(2016) who adapt the behavior policy to lower the variance of batch policy gradient estimates.189

Their algorithm adapts the behavior policy to lower the variance of each component of the190

vector-valued off-policy policy gradient estimate for a different, target policy. This approach191

is shown to lead to faster learning on a Grid World domain compared to on-policy batch192

policy gradient learning. In contrast to this work, we study the problem of batch policy193

evaluation of a fixed policy.194

3.2 Variance Reduction for Policy Evaluation195

Aside from adaptive importance sampling, other methods exist for lowering the variance196

of on-policy estimates. Control variates (Zinkevich et al., 2006; White and Bowling, 2009;197

Jiang and Li, 2016; Thomas and Brunskill, 2016) are a widely used technique for variance198

reduction in RL. As we show in Section 9.3, this technique can be used in conjunction with199

adaptive importance sampling.200

Veness et al. (2011) use common random numbers and antithetic variates to lower201

the variance of policy evaluation in Monte Carlo tree search (MCTS). These techniques202

require the environment to be known and appear to be inapplicable to the general RL policy203

evaluation problem. We note that the algorithms we introduce could potentially be applied,204
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in combination with the methods of Veness et al. (2011), to lower the variance of value205

estimates in MCTS.206

In this work we focus on unbiased batch policy evaluation. When the goal is to minimize207

MSE it is often permissible to use biased methods such as temporal difference learning208

(Sutton, 1988), model-based policy evaluation (Kearns and Singh, 2002; Strehl et al., 2009),209

variants of weighted importance sampling (Precup et al., 2000), stationary distribution210

corrections (Hallak and Mannor, 2017; Liu et al., 2018; Gelada and Bellemare, 2019; Yang211

et al., 2020), or tree back-ups (Precup et al., 2000; Asis et al., 2017). It may be possible to212

use adaptive importance sampling to reduce bias and variance although the methods we213

introduce are not directly extensible to accomplish bias and variance reduction. We leave214

behavior policy search with biased off-policy methods to future work.215

4. The Behavior Policy Search Problem216

The importance sampling estimator (1) is often viewed as a high variance technique for using217

off-policy data – in fact the standard RL textbook states, in reference to methods using218

importance sampling, that “off-policy learning is inherently of greater variance than on-219

policy learning” (Sutton and Barto, 2018, Chapter 5). However, outside of RL, importance220

sampling was originally intended as a variance reduction technique for Monte Carlo evaluation221

(Hammersley and Handscomb, 1964). In this section we first provide intuition for how222

importance sampling with a behavior policy different than πe can reduce the variance of223

importance sampling. This intuition motivates us to propose a policy evaluation sub-problem224

– the behavior policy search problem – solutions to which are policies that provide lower225

MSE off-policy batch policy evaluation than on-policy estimators. We then prove statistical226

properties on the off-policy estimates that are produced as we adapt the behavior policy,227

showing that such estimates are unbiased and consistent and that we can construct confidence228

intervals on the estimates. To the best of our knowledge, we are the first to propose behavior229

policy adaptation for lower variance policy evaluation.230

4.1 Motivating Off-Policy Sampling for Lower Variance Importance Sampling231

To gain intuition for how importance sampling can lower the variance of Monte Carlo returns,232

we first examine why importance sampling often increases variance in RL. First, we make233

the straightforward observation that any particular behavior policy will induce a particular234

distribution over weighted returns and the weighted returns will have some variance under235

this distribution. In the case of on-policy sampling, this distribution is just the distribution236

of unweighted returns since πe(a|s) = πb(a|s) and all importance weights are equal to one.237

Since choosing πb 6= πe means the importance weights themselves have non-zero variance, it238

is natural to assume that the variance of the weighted returns can only increase when we239

multiply non-zero variance unweighted returns with non-zero variance weights. In fact, this240

case often does arise in RL when the behavior policy is dictated by circumstance (e.g., when241

using historical logged data) (Thomas et al., 2015a).242

Looking closer at why the variance can be magnified under off-policy sampling, we can243

see that some importance weights are greater than 1 while others are less than 1. Weights244

greater than 1 will magnify the magnitude of the associated return while weights less than245

1 will lessen this magnitude. As a consequence, we can see that if we could select πb such246
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that the largest magnitude unweighted returns receive weights less than 1 and the smallest247

magnitude returns received weights greater than 1 then the overall variance of the weighted248

returns would decrease relative to the variance of the unweighted returns. In effect, the249

spread of possible return values would decrease and hence variance would decrease as well.250

In fact, there is even a special case in which a well-chosen behavior policy could decrease251

the variance of an importance sampling estimate to zero. Consider the case when d0 and P252

are deterministic, all rewards are positive and imagine we have a behavior policy πb
? such253

that for all h ∈ H:254

v(πe) = IS(πe, h, πb
?) = g(h)

Pr(H = h|πe)
Pr(H = h|πb?)

.

Rearranging the terms of this expression yields:255

Pr(H = h|πb?) = g(h)
Pr(H = h|πe)

v(πe)
. (2)

Thus, if we could select πb
? such that the probability of observing any H ∼ πb? is g(H)

v(πe)
times256

the likelihood of observing H ∼ πe, then the IS estimate has zero variance with only a single257

sampled trajectory! Regardless of the value of g(H), the importance weight under πb
? will258

scale g(H) exactly to v(πe) for all possible realizations of H and the importance-sampled259

return will equal v(πe).260

While in principle importance weights can be used to decrease the variance of the261

unweighted returns under πe, we have yet to show that one should expect there to exist a262

behavior policy that yields the necessary importance weights for any MDP and evaluation263

policy pair. We consider this question with a small scale empirical study on randomly264

generated MDP-πe pairs. Specifically, we randomly generate MDPs from the class of Garnet265

MDPs (Archibald et al., 1995; Piot et al., 2014) with 10 states, 2 actions, a branching factor266

of 2 (each state-action pair leads to at most 2 possible next states), and a maximum horizon267

of 3. The transition probabilities are given by a softmax distribution with temperature268

τP . Both rewards and πe’s action probabilities are given by a softmax distribution over269

actions in each state. These distributions use temperature parameter τR and τπ respectively.270

Logits for all softmax distributions are sampled uniformly from [0, 1]. The small size of these271

randomly generated MDPs allows us to analytically compute the variance of an importance272

sampling estimate with a particular behavior policy. Furthermore, we can analytically273

compute the gradient of the variance with respect to the softmax parameters of the policy.3274

For a randomly generated MDP-πe pair, we first compute the variance with πb ← πe. We275

then compute the gradient, g, of the variance and create a new behavior policy with a single276

step of gradient descent, θb ← θe − α g
||g||2 where α = 0.001 is a scalar step-size parameter.277

Finally, we compute the variance with πb ← πθb and measure the difference between the278

initial variance and new variance.279

The parameters τP , τR, τπ allow us to vary the transition entropy, per-state reward280

variance, and evaluation policy entropy respectively of the randomly generated MDP-πe281

pairs. Our objective is to see under what settings there exists a behavior policy that lowers282

the variance of importance sampling compared to using πb = πe. Figure 2 plots variance283

reduction as a function of the three task parameters that we vary. In all settings that we284

3. We will elaborate on the derivation of this gradient in Section 5.
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Figure 1: Variance Improvement

Figure 2: Reduction of variance on random MDPs with varying properties. The vertical axis
shows change in the variance of importance sampling after adapting the behavior policy’s
parameters with a single step of gradient descent on the variance. The horizontal axis is
the MDP parameter that is varied. Higher indicates a larger reduction in variance and the
shaded region indicates a 95% confidence interval.

consider we find that adapting the behavior policy leads to no worse variance than using285

πe though the degree of possible variance reduction varies across settings. In particular,286

the three cases where adapting the behavior policy leads to minimal variance reduction287

are 1) when the reward function has low variance across actions (high τR), 2) when πe is288

near uniform random (higher τπ), and 3) when πe is deterministic. The last case sometimes289

occurs for the smaller tested τπ and explains the wider confidence interval see in Figure 2.290

While this experiment does not establish there will always be a πb 6= πe that decreases the291

variance of importance sampling, it shows that it is in principle possible in some cases to292

lower variance by adapting the behavior policy. This finding motivates the behavior policy293

search problem which we introduce in the next subsection.294

4.2 The Behavior Policy Search Problem295

With the potential to lower the variance of importance sampling via off-policy sampling in296

mind, we now introduce the behavior policy search (BPS) problem for finding πb that lowers297
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the MSE of estimates of v(πe). While the previous subsection focused on the IS-estimator,298

this subsection considers the more general class of unbiased off-policy value estimators.299

A BPS problem is defined by the inputs:300

1. An evaluation policy πe with policy parameters θe.301

2. An initial behavior policy, πθ0 , with policy parameters θ0. We assume from here on302

that θ0 = θe.303

3. An off-policy policy evaluation estimator, OPE(πe, H, πθ), that takes a trajectory,304

H ∼ πθ and returns an estimate of v(πe).305

A BPS solution is a policy, πθb , that generates trajectories, H, such that OPE(πe, H, πθb)306

has lower MSE than OPE(πe, H, πe). Algorithms for this problem are BPS algorithms.307

Recall that we consider an incremental batch policy evaluation setting where at each308

iteration i we can select a behavior policy to collect a trajectory and add this trajectory309

to a dataset containing trajectories collected at earlier iterations. At the ith iteration, a310

BPS algorithm selects a behavior policy that will be used to generate a trajectory, Hi. We311

then add trajectory Hi to dataset Di−1 to form dataset Di. Finally, we estimate v(πe) as312

the mean value of OPE across all trajectories in D. Naturally, the selection of the behavior313

policy depends on how the estimator estimates v(πe).314

In a BPS problem, the ith iteration proceeds as follows. First, given all of the past315

behavior policies, {πθj}
i−1
j=1, and the resulting trajectories, {Hj}i−1

j=1, the BPS algorithm must316

select θi. The policy πθi is run for one episode to generate the trajectory Hi. Then the BPS317

algorithm estimates v(πe) as the mean of OPE in the available data, Di:318

OPE(πe, Di) :=
1

i

i∑
j=1

OPE(πe, Hj , πθj ).

At the final iteration, the algorithm returns the final policy parameters and the estimate319

of v(πe) using all trajectories collected while running the algorithm. If for all iterations,320

the variance of OPE with H ∼ πθi is less than that of OPE with H ∼ πe (i.e., on-policy321

policy evaluation) then a BPS algorithm will have lower variance than an on-policy policy322

evaluation. Thus adapting the behavior policy is statistically more efficient than simply323

collecting all trajectories with πe.324

It is worth noting that adapting the behavior policy increases the computational com-325

plexity of estimating v(πe). The exact increase will depend on the behavior policy search326

algorithm used and the dimension of θ, however, it seems unlikely that a behavior policy327

search algorithm will match the computational simplicity of simply running the evaluation328

policy. Thus practitioners must decide whether computational or statistical efficiency is329

more appropriate for a particular application.330

4.3 Statistical Properties of Behavior Policy Search Estimates331

To enable better statistical efficiency, so far we have focused on reducing variance while332

evaluating πe by adequately adjusting πb. Before we present concrete algorithms for behavior333

policy search, it is important to ensure that any such search procedure does not give up other334
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desired statistical properties like unbiasedness, consistency, and finite sample rates. These335

properties when using unbiased estimates are typically established under the assumption336

that the trajectories {Hj}ij=1 are independent (Thomas, 2015). However, notice that when337

using a behavior policy search algorithm the policy parameters (θj)
i
j=1 will be iteratively338

obtained and hence need not be independent of each other, and thus even the trajectories339

{Hj}ii=j in Di need not be independent of each other either. Moreover, the distribution340

of the random variable OPE(πe, Hj , πθj ) can vary when θj is different for different values341

of j ∈ {1, ..., i} as well. These two factors combined violate both the independence and342

identical distribution assumptions that are often required to establish statistical guarantees343

on estimators. Figure 3 presents a graphical depiction of the concern.

Figure 3: Graphical depiction of the dependencies between the
variables. Here, Xk is the random variable corresponding to
the estimate OPE(πe, Hk, πθk) using the trajectory Hk generated
using the behavior policy πθk . Red arrows correspond to any
learning algorithm that looks at the sampled trajectories and
updates policy πθk−1

to πθk , thereby introducing the dependency
between X’s. Further, the distribution of Xk−1 and Xk can vary
as θk−1 and θk can be different. These factors combined violate
both the independence and identical distribution assumptions.

344

This problem occurs even in settings beyond the behavior policy search problem. For345

instance, many reinforcement learning methods leverage off-policy trajectories to update346

policy parameters, which are consequently used to generate new trajectories. Therefore,347

OPE estimates using these trajectories violate the i.i.d. assumption as well. This raises the348

question:349

Can we obtain statistical properties for the OPE estimate, similar to what is possible350

under the i.i.d. setting, in the above settings where the i.i.d. assumptions are violated?351

In what follows, we answer this question positively and show that despite the violation of352

the i.i.d. assumption, strong guarantees on unbiasedness, consistency, and concentration rates353

can still be obtained. First, we present these results in a generic form that applies regardless354

of how the behavior policy is updated. As trajectories may not be i.i.d. in other applications355

of off-policy evaluation, these results are of independent interest apart from behavior policy356

search. In the context of this article, these results establish unbiasedness, consistency, and357

concentration rates for the specific behavior policy search algorithms that we introduce. For358

simplicity, we will only consider the case that any algorithm (stochastically) selects πθj+1
359

given only the previous parameter θj and the corresponding trajectory Hj .360

For our results to hold for estimates computed as the mean of a set of unbiased estimates,361

{OPE(πe, H, πθj )}ij=1, we require the following assumption.362

Assumption 2. The unbiased, off-policy policy evaluation estimator OPE(πe, H, πθ) is363

bounded in the range [min, max] for finite constants min and max for all trajectories and364

choices of πθ.365

For the IS-estimator, Assumption 1 and bounded rewards imply that Assumption 2 is366

satisfied.367
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Proposition 1. Under Assumption 2, OPE(πe, Dn) is an unbiased estimator of v(πe) for
any n ∈ N,

E
[
OPE(πe, Dn)

]
= v(πe).

368

Proof The proof is presented in Appendix A.369

An important consequence of Proposition 1 is that, despite lacking independence from each370

other, the (OPE(πe, Hj , πθj ))
i
j=1 estimates are uncorrelated. We formalize this statement371

below and then use it to establish other properties of the OPE(πe, Di) estimate.372

Lemma 1. Under Assumption 2, ∀j ∈ N, and ∀k ∈ N, where j 6= k, OPE(πe, Hj , πθj ) and
OPE(πe, Hk, πθk) are uncorrelated. That is,

∀j 6= k, Cov
(
OPE(πe, Hj , πθj ),OPE(πe, Hk, πθk)

)
= 0.

373

Proof The proof is presented in Appendix A.374

375

Remark 1. While Lemma 1 implies that the expected value (first moment) of OPE(πe, Hj , πθj )376

is independent of OPE(πe, Hk, πθk), the higher moments of OPE(πe, Hj , πθj ) may still depend377

on OPE(πe, Hk, πθk).378

A desired property for any estimator is that it provides a more accurate estimate as379

the amount of data increases. Typically, Kolmogorov’s strong law (Sen and Singer, 1993,380

Theorem 2.3.10) is used to show consistency of estimators, however, it requires random381

variables to be independent. While the independence (and identical distribution) assumption382

is violated in our setting, we show below that asymptotic consistency can still be established.383

384

Proposition 2. Under Assumption 2, OPE(πe, Di) converges to v(πe) in probability. That
is, for ε > 0,

lim
i→∞

Pr
(
|OPE(πe, Di)− v(πe)| > ε

)
= 0.

385

Proof The core idea of the proof relies upon results from Proposition 1 and Lemma 1 to386

show that mean-squared-error of OPE(πe, Di) asymtotically converges to 0. The complete387

proof is presented in Appendix A.388

While asymptotic consistency is desirable, it is often also essential to quantify finite sample389

rates to understand the dependency on the sample size, construct confidence intervals, etc.390

Because i.i.d. assumptions are violated in our setup, it is not immediately clear if existing391

methods that make the i.i.d. assumption can be leveraged as-is to provide finite sample rates.392

To resolve this difficulty, we use a common technique based on Martingales to obtain finite393

sample rates for the specific setting of our interest.394
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Proposition 3. Under Assumption 2, let c̃ be the range of OPE(πe, Hj , πθj ) for any j ∈
{1, 2, ..., i}, then ∀δ ∈ [0, 1],

Pr

(∣∣OPE(πe, Di)− v(πe)
∣∣ > c̃

√
ln(2/δ)

2|Di|

)
≤ δ,

395

Proof The core idea of the proof relies upon modeling the sequence (
(
OPE(πe, Dj , πθj )

)i
j=1

396

as Martingales and then using concentration inequalities for the Martingales. The complete397

proof is provided in Appendix A.398

399

Remark 2. Note that Proposition 3 reduces to naively applying Hoeffding’s inequality on the400

OPE estimates (OPE(πe, Hj , πθj ))
i
j=1, even though neither independence nor the identical401

distribution assumption holds.402

Remark 3. The concentration bound given in Proposition 3 depends upon the range of the403

OPE(πe, Hj , πθj ) estimates. Taking importance sampling as an example and assuming the404

returns g(h) are bounded, we can observe that for any πθj 6= πe the range of IS(πe, Hj , πθj )405

increases and so the bound becomes looser (see Thomas et al. (2015a) for additional dis-406

cussion). Thus, even if a behavior policy search algorithm lowers variance (and thus MSE)407

compared to on-policy sampling, Proposition 3 still assigns the estimate a looser finite-sample408

bound than the estimate from on-policy sampling. An alternative to Hoeffding-style bounds409

are Student’s t-Test bounds which depend on the sample variance. We would expect t-Test410

bounds to return a tighter error bound for behavior policy search algorithms that compute411

behavior policies that lower the variance of off-policy evaluation. However, t-Test bounds412

require the assumption that OPE(πe, Di) is normally distributed and this assumption is typi-413

cally false for small data sets. While this requirement invalidates the error bound, Thomas414

et al. (2015b) note that in certain cases t-Test bounds are overly conservative which makes415

them suitable for applications of high-confidence off-policy evaluation.416

Propositions 1, 2, and 3 ensure that the statistical guarantees on unbiasedness, consistency,417

and finite sample rates can still be achieved even if any behavior policy search algorithm418

results in non i.i.d. returns. In the following sections, we now introduce concrete solution419

algorithms for the behavior policy search problem. We will first introduce an algorithm that420

optimizes the behavior policy to minimize the variance of an importance sampling estimate.421

We then introduce an algorithm that optimizes the behavior policy to minimize a measure of422

divergence between a minimal-variance behavior policy and the current behavior policy. We423

will also introduce behavior policy search algorithms for extensions to the basic importance424

sampling estimator.425

5. Behavior Policy Gradient on the Variance426

Our first behavior policy search algorithm is derived from the perspective of selecting427

the behavior policy that minimizes the MSE of the importance sampling estimator. As428
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importance sampling is unbiased, minimizing the MSE is equivalent to minimizing variance.429

We introduce an analytic expression for the gradient of the MSE of the importance sampling430

estimator and a stochastic gradient descent algorithm that adapts πθ to minimize the MSE431

between the importance sampling estimate and v(πe). Our algorithm – behavior policy432

gradient on the variance (BPG-V) – begins with on-policy estimates (sets θ0 = θe) and433

adapts the behavior policy with gradient descent on the MSE with respect to θ. The gradient434

of the MSE is given by the following theorem:435

Theorem 1 (Behavior Policy Gradient of the Variance).

∂

∂θ
MSE

[
IS(πe, H, πθ)

]
= E

[
− IS(πe, H, πθ)2

l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]

Proof See Appendix B for full proof. The proof of Theorem 1 relies on the fact that the436

MSE of an estimator is the sum of its variance and the square of its bias. Since importance437

sampling is unbiased, its MSE is equal to its variance. Thus, the gradient of the MSE given438

by Theorem 1 is also the gradient of the variance which can be estimated without knowledge439

of v(πe). Importantly, this gradient can be estimated with trajectories sampled from πθ,440

even though the MSE is defined using v(πe).441

442

BPG-V uses stochastic gradient descent in place of exact gradient descent: replacing the443

expectation in Theorem 1 with an unbiased estimate. While in theory, the single trajectory444

Hi is sufficient for an unbiased estimate of this gradient, in practice, we can obtain a more445

accurate descent direction by sampling a batch, Bi, of k trajectories with πθi . In the BPS446

setting, sampling a batch of trajectories is equivalent to holding θ fixed for k iterations and447

then updating θ with the k most recent trajectories used to compute the gradient estimate.4448

Full details of BPG-V are given in Algorithm 1. At iteration i, BPG-V samples a batch,449

Bi, of k trajectories with πθi and adds {(Hi·k+j , πθi)
k
j=1} to Di−1 to yield data set Di (Lines450

4 – 5). Then BPG-V updates θi with an empirical estimate of the expectation in Theorem 1451

(Line 6). After n iterations, BPG-V returns an estimate of v(πe) (Line 8) given as:452

IS(πe, Dn) =
1

nk

n∑
i=1

k∑
j=1

IS(πe, Hi·k+j , πθi).

As a behavior policy search algorithm, these BPG-V estimates inherit all the results shown453

in Section 4.2: unbiasedness, consistency, finite-sample rates, and independence between454

IS(πe, Hi, πθi) and IS(πe, Hj , πθj ) for any two iterations i and j.455

Since BPG-V requires collecting trajectories to estimate the variance-gradient, a natural456

question is whether this gradient can be estimated more efficiently than v(πe). The key457

insight is that we do not require perfect gradient estimation; the gradient only must be458

estimated well enough to provide a reliable descent direction. Thus we can improve the459

behavior policy with lower accuracy gradient estimates to obtain a more accurate policy460

value estimate.461

4. In principle, we could also re-use trajectories from earlier iterations in our gradient estimate after applying
a second importance sampling correction. Informal experiments on a Gridworld domain showed some
benefit (i.e., faster variance reduction) from including trajectories from recent batches but an increase in
variance when including trajectories from older batches.
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Algorithm 1 Behavior Policy Gradient on the Variance
Input: Evaluation policy parameters, θe, batch size k, a step-size for each iteration, αi,
and number of iterations n.
Output: Final behavior policy parameters θn and the IS estimate of v(πe) using all sampled
trajectories.

1: θ0 ← θe
2: D0 = {}
3: for all i ∈ 0...n do
4: Bi = Sample k trajectories H ∼ πθi
5: Di+1 = Di ∪Bi

6: θi+1 = θi + αi
k

k∑
j=1

IS(πe, Hj , πθi)
2
l−1∑
t=0

∂

∂θ
log πθi(A

j
t |S

j
t )

7: end for
8: Return θn, IS(πe, Dn)

Convergence of BPG-V462

We now discuss the theoretical convergence of the BPG-V algorithm. We make the following463

assumption on the step-size parameter, αi, at each iteration:464

Assumption 3. The step-size αi is chosen such that:

∞∑
i=0

αi =∞
∞∑
i=0

α2
i <∞.

This assumption is also known as the Robbins and Monroe condition (Robbins and465

Monro, 1951) and is widely used in convergence results in stochastic approximation.466

Proposition 4. Under Assumption 1 and Assumption 3, BPG-V converges. That is,467

MSE[IS(πe, Hi, πθi)] converges to a finite value and limi→∞
∂
∂θ MSE[IS(πe, Hi, πθi)] = 0.468

Proof See Appendix C for a full proof. The result is an application of Proposition 3 in469

(Bertsekas and Tsitsiklis, 2000). In Appendix C we show that the MSE objective satisfies470

the assumptions needed to apply this result.471

472

With further assumptions on the policy class of πθ we can derive stronger convergence473

guarantees. In particular, if θ is the parameters of a linear-softmax policy than the MSE474

objective is convex with respect to θ and local minima of the MSE are also global minima.475

A linear-softmax policy is a policy over a finite set of actions where the probability of each476

action is defined as a softmax distribution with logits from a linear combination of state477

features. Formally, let φ : S → Rq for integer q be a state feature function that maps478

states to feature vectors. For each action, a ∈ A, we have a vector θa ∈ Rq and θ is the479

concatenation of all θa. A linear-softmax policy defines the probability of action a in state s480

as:481

πθ(a|s) =
eθ

T
a φ(s)∑

b∈A e
θTb φ(s)

.
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Theorem 2. Assume πθ is a linear-softmax policy. Then, MSE[IS(πe, H,θ)] is a convex482

function w.r.t. θ.483

Proof See Appendix D.484

485

Remark 4. The result that the MSE of the importance-sampled return is a convex function486

of θ is somewhat surprising given that the mean return is a non-convex function under the487

same assumption of linear-softmax policies (Agarwal et al., 2019).488

Proposition 4 and Theorem 2 imply that BPG-V converges to the globally minimal489

variance behavior policy in the family of linear-softmax policies Zinkevich (2003). Since we490

have assumed that πe belongs to the same parameterized family of policies that we optimize491

over, BPG-V converges to a behavior policy that will have no higher variance than πe. In492

addition to having lower variance, the estimate remains unbiased by Proposition 1, consistent493

by Proposition 2, and has finite-sample error given by Proposition 3.494

6. Behavior Policy Gradient on the KL-Divergence495

The preceding section derived an algorithm that searches for a lower variance behavior496

policy by incrementally decreasing the variance with stochastic gradient descent. In this497

section, we explore an alternative approach to finding a behavior policy that minimizes498

variance. Specifically, we first derive a sufficient condition for a behavior policy to minimize499

the variance of the importance sampling estimator. We then introduce an algorithm that500

searches for a behavior policy πθ that comes closest to satisfying this condition.501

We first define a minimal variance behavior policy and then provide a condition that is502

sufficient for a behavior policy to be a minimal variance behavior policy.503

Definition 1 (Minimal-Variance Behavior Policy). A minimal-variance behavior policy is a504

policy, πb
?, such that Var[IS(πe, H, πb

?)] ≤ Var[IS(πe, H, π)], ∀π ∈ Π. Since the variance is505

lower bounded by zero, such a policy trivially exists.506

Proposition 5. Let wπ(h) :=
∏l−1
t=0 π(at|st). Assume ∃h̃ ∈ H such that g(h̃) · Pr(H =507

h̃|πe) 6= 0, i.e., there is non-zero probability that πe generates a trajectory with non-zero508

return. If ∃π ∈ Π s.t.509

∀h ∈ H, wπ(h) = |g(h)| wπe(h)

E

[
|g(H)|

∣∣∣∣ H ∼ πe] .
then π is a minimal-variance behavior policy.510

Proof See Appendix E for a full proof.511

512

We now introduce a second algorithm that attempts to find πθ that comes closest to513

satisfying the condition given in Proposition 5. Note that a policy, πb
?, that satisfies this514

expression will induce the following distribution over trajectories:515

Pr(H = h|πb?) ∝ Pr(H = h|πe) · |g(h)|.
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Though a Markovian policy πb
? that induces this distribution may not necessarily exists516

within a given parameterized policy class, we can still attempt to find πθ that induces517

a similar trajectory distribution. Thus, our second algorithm attempts to minimize the518

Kullback-Leibler (KL) divergence between Pr(H = h|πb?) and Pr(H = h|πθ). To do so,519

we first introduce an analytic expression for the gradient of the KL divergence between520

these trajectory distributions and then use unbiased estimates of this gradient to perform521

stochastic gradient descent on the behavior policy parameters. We call this second algorithm522

behavior policy gradient on the KL-Divergence (BPG-KL). While BPG-V minimizes our523

ultimate objective (MSE), BPG-KL minimizes divergence from a minimal-variance solution,524

given by Proposition 5. We note that this objective has been used before for adaptive IS525

outside of RL (Rubinstein and Kroese, 2016).526

The gradient of the KL-divergence with respect to the policy parameters is proportional527

to the expression given by the following theorem:528

Theorem 3 (Behavior Policy Gradient of the KL-Divergence).

∂

∂θ
DKL(Pr(H|πb?)||Pr(H|πθ)) ∝ E

[
−
∣∣∣∣IS(πe, H, πθ)

∣∣∣∣ l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]
.

Proof See Appendix F for full proof.529

530

Theorem 3 gives a similar gradient to that in Theorem 1, except it takes the absolute531

value of IS(πe, H, πθ) instead of squaring it. Like BPG-V, BPG-KL begins with on-policy532

estimates and adapts the behavior policy with gradient descent on the KL-divergence with533

respect to θ. Pseudo-code for the BPG-KL algorithm is given in Algorithm 2. The only534

difference between BPG-V and BPG-KL is the method of adapting the behavior policy (Line535

6); both algorithms still use importance sampling as the underlying off-policy estimator536

to return estimates of v(πe). As a behavior policy search algorithm, BPG-KL inherits the537

unbiasedness, consistency, and finite-sample rates given by Proposition 1, Proposition 2, and538

Proposition 3 respectively.539

Convergence of BPG-KL540

Like BPG-V, we can show that BPG-KL converges and that, under a linear-softmax policy541

assumption, the objective optimized by BPG-KL is convex.542

Proposition 6. Under Assumption 1 and Assumption 3, BPG-KL converges. That is,543

DKL(Pr(H|πb?)||Pr(H|πθ)) converges to a finite value and limi→∞
∂
∂θDKL(Pr(H|πb?)||Pr(H|πθ)) =544

0.545

Proof See Appendix G for a full proof. The result is an application of Proposition 3 in546

(Bertsekas and Tsitsiklis, 2000). In Appendix G we show that the KL-objective satisfies the547

assumptions needed to apply this result.548

549

Additionally, we can show convexity of the KL-objective under an assumption of linear-550

softmax policies.551
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Algorithm 2 Behavior Policy Gradient on the KL-Divergence
Input: Evaluation policy parameters, θe, batch size k, a step-size for each iteration, αi,
and number of iterations n.
Output: Final behavior policy parameters θn and the IS estimate of v(πe) using all sampled
trajectories.

1: θ0 ← θe
2: D0 = {}
3: for all i ∈ 0...n do
4: Bi = Sample k trajectories H ∼ πθi
5: Di+1 = Di ∪Bi

6: θi+1 = θi + αi
k

k∑
j=1

| IS(πe, Hj , πθi)|
l−1∑
t=0

∂

∂θ
log πθi(A

j
t |S

j
t )

7: end for
8: Return θn, IS(πe, Dn)

Theorem 4. Assume πθ is a linear-softmax policy. Then, DKL(Pr(H|πb?)||Pr(H|πθ)) is a552

convex function w.r.t. θ.553

Proof See Appendix H.554

555

Proposition 6 and Theorem 4 jointly imply convergence to a global minimum (Zinkevich,556

2003). A counterintuitive observation is that global minimization of the KL-objective does557

not necessarily imply that BPG-KL converges to lower variance importance-sampled returns558

compared to on-policy sampling. First, observe that, since we minimize the KL between the559

minimal-variance behavior policy and a policy within a specific family of behavior policies,560

we may not converge to a minimal-variance behavior policy (which may be unrepresentable in561

the family of linear soft-max policies). While the policy at BPG-KL’s convergence would be562

closer in terms of KL to a minimal-variance behavior policy than any other linear soft-max563

policy, we have not ruled out the possibility that the policy would yield sub-optimal variance564

for the importance sampling returns. While this case may be theoretically possible, our565

experimental results (in Section 9) show that BPG-V and BPG-KL perform similarly in566

practice, suggesting that minimizing the KL also minimizes variance compared to on-policy567

sampling in practice.568

7. Interpreting BPG-V and BPG-KL Updates569

We can gain intuition for how BPG-V and BPG-KL update the behavior policy by comparing570

their updates to existing algorithms in policy gradient RL (cf. Sutton et al. (2000)). Here,571

we draw a connection between one such family of algorithms and our new behavior policy572

search methods to illustrate how these methods change the distribution of trajectories. The573

REINFORCE family of algorithms (Williams, 1992) attempts to maximize v(πθ) through574
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gradient ascent on v(πθ) using unbiased estimates of the gradient of v(πθ):575

∂

∂θ
v(πθ) = E

[
g(H)

l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]
.

Intuitively, REINFORCE methods increase the probability of all actions taken during H576

as a function of g(H). This update increases the probability of actions that lead to high577

return trajectories. BPG-V can be interpreted as a REINFORCE method where the return578

of a trajectory is the square of its importance-sampled return. Thus BPG-V increases the579

probability of all actions taken along H as a function of IS(πe, H,θ)2. BPG-KL can be580

interpreted as a REINFORCE method where the return of a trajectory is the absolute value581

of its importance-sampled return. Thus BPG-KL increases the probability of all actions582

taken along H as a function of |IS(πe, H,θ)|. Recall that IS(πe, H,θ) = g(H)
∏l−1
t=0

πe(At|St)
πθ(At|St) .583

Thus, the magnitude of both IS(πe, H,θ)2 and |IS(πe, H,θ)| depends on two qualities of H:584

1. The magnitude of g(H) (whether positive or negative).585

2. The relative likelihood of H under πe compared to πθ (i.e.,
∏l−1
t=0

πe(At|St)
πθ(At|St)).586

These two qualities demonstrate a balance in how BPG-V and BPG-KL change trajectory587

probabilities. Increasing the probability of a trajectory under πθ will decrease the magnitude588

of IS(πe, H,θ) and so BPG-V and BPG-KL increase the probability of a trajectory when589

the magnitude of g(H) is large enough to offset the decrease in the magnitude of IS(πe, H,θ)590

caused by decreasing the importance weight.591

The main difference between the two algorithms is that BPG-V puts more emphasis on592

increasing the probability of high magnitude return trajectories. For example if one return593

has double the return of another then it has quadruple the emphasis under BPG-V whereas594

with BPG-KL doubling the return only doubles the emphasis. BPG-V is minimizing our595

target objective (low MSE) while BPG-KL attempts to find a policy that is close (in terms596

of KL-divergence) to the optimal solution to our target objective.597

8. Behavior Policy Search for Importance Sampling Extensions598

The behavior policy search algorithms introduced in Sections 5 and 6 both use the basic599

importance sampling estimator for estimating v(πe). In this section we introduce behavior600

policy search algorithms that use other unbiased off-policy estimators: doubly robust and601

per-decision estimators. We also discuss behavior policy search for weighted importance602

sampling.603

8.1 Baselined Importance Sampling604

Instead of using importance sampling to evaluate v(πe), we can instead estimate605

E

[
g(H)− b

∣∣∣∣ H ∼ πe]+ b (3)
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for some constant b. With a constant baseline, the baselined importance sampling estimate606

of v(πe) after n iterations becomes:607

IS(πe, Di, b) := b+
1

n

n∑
j=1

l−1∏
t=0

πe(A
j
t |S

j
t )

πθi(A
j
t |S

j
t )

(g(Hj)− b).

While the on-policy Monte Carlo estimate of (3) is identical to the Monte Carlo estimate608

of v(πe), an off-policy importance sampling estimate benefits from a baseline if b is closer609

to v(πe) than v(πe) is to 0. The lower variance is due to b ·
∏l−1
t=0

πe(A
j
t |S

j
t )

πθi (A
j
t |S

j
t )

serving as a610

control variate for the importance sampled g(H) (Thomas and Brunskill, 2017). BPG-V611

and BPG-KL only require a small modification to use a constant baseline: we replace all612

occurrences of g(H) with g(H)− b in the algorithms and then add b to the final estimate613

returned.614

8.2 Doubly Robust and Per-Decision Importance Sampling615

In cases where an approximate model of the environment is available, the doubly robust616

(DR) estimator (Jiang and Li, 2016; Thomas and Brunskill, 2016) lowers the variance of617

importance sampling using the control variate technique (Lemieux, 2014). In this section,618

we introduce a behavior policy search algorithm that uses the DR estimator for estimates of619

v(πe).620

The DR estimator computes the average difference between the observed importance-621

sampled rewards and the predicted expected reward under a model of the environment’s622

transition and reward function. Provided the expected reward predictions are correlated623

with the true rewards, DR has lower variance than using the importance-sampled rewards624

alone. The DR estimate for a single trajectory, H, is given by:625

DR(πe, H, πθ, q̂
πe , v̂πe) := v̂(S0) +

l−1∑
t=0

wπe,t
wπθ ,t

(Rt − q̂πe(St, At) + v̂πe(St+1))

where wπ,t(H) =
∏t
i=0 π(At|St) and v̂πe and q̂πe be the state and action value functions of626

πe in the approximate model.627

We show here that we can adapt the behavior policy to lower the MSE of DR estimates.628

As of this writing, it is an open problem whether there exists a form for a minimal-variance629

behavior policy for DR. Therefore we only introduce a method that adapts the behavior630

policy from the perspective of minimizing variance. We denote this new method DR-BPG631

for doubly robust behavior policy gradient.632

The MSE gradient for the DR estimator is given by the following corollary to Theorem 1:633

634

Corollary 1.

∂

∂θ
MSE

[
DR(πe, H, πθ, q̂

πe , v̂πe)

]
= E

[
DR(πe, H,θ, q̂

πe , v̂πe)2
l−1∑
t=0

∂

∂θ
log πθ(At|St)

− 2 DR(πe, H, πθ, q̂
πe , v̂πe)

( l−1∑
t=0

γtδt
wπe,t
wθ,t

t∑
i=0

∂

∂θ
log πθ(Ai|Si)

)]
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where δt = Rt − q̂πe(St, At) + v̂πe(St+1) and the expectation is taken over H ∼ πθ.635

Proof See Appendix B.3 for the full proof.636

The first term of ∂
∂θ MSE is analogous to the gradient of the importance-sampling estimate637

with IS(πe, H,θ) replaced by DR(πe, H,θ, q̂
πe , v̂πe). The second term accounts for the638

covariance of the DR terms over time.639

In practice, DR has been noted to perform best when all available trajectories are used640

to estimate the approximate model and then also used to estimate v(πe) (Thomas and641

Brunskill, 2016). However, for DR-BPG, updating the model as πθ is learned will change the642

the surface of the MSE objective we seek to minimize and thus DR-BPG will only converge643

once the model stops changing. Computing the model from the same data used in the DR644

estimate also violates assumptions made for the theoretical analysis of DR (Thomas and645

Brunskill, 2016). In our experiments, we consider both a changing and a fixed model.646

Finally, as a special case of Corollary 1, we obtain the variance gradient for the per-647

decision importance sampling estimator (Precup et al., 2000).648

Corollary 2.

∂

∂θ
MSE

[
PDIS(πe, H, πθ)

]
= E

[
PDIS(πe, H,θ)2

l−1∑
t=0

∂

∂θ
log πθ(At|St)

− 2 PDIS(πe, H, πθ)

( l−1∑
t=0

γtRt
wπe,t
wθ,t

t∑
i=0

∂

∂θ
log πθ(Ai|Si)

)]
where the expectation is taken over H ∼ πθ.649

Proof Set q̂πe and vπe to 0 for all states, actions, and time-steps and the DR estimator650

reduces to the per-decision estimator and then Corollary 2 follows from 1.651

652

8.3 Weighted Importance Sampling653

Another common variance reduction technique for importance sampling is to use weighted654

(also known as self-normalized) importance sampling (Precup et al., 2000; Swaminathan and655

Joachims, 2015). The weighted importance sampling estimator for a set of m trajectory-656

behavior-policy pairs is defined as:657

WIS(πe, D) :=
1

Z

m∑
j=1

IS(πe, Hj , πj),

where the normalization factor, Z =
∑m

j=1
wπe (Hj)
wπj (Hj)

, is the sum of all importance weights.658

For finite sample sizes, weighted importance sampling is a biased estimator, however,659

it lowers variance due to the importance weights themselves. Though often noted to lower660

variance compared to the basic importance sampling estimator (Thomas et al., 2015b;661

Mahmood et al., 2014), if the behavior policy is optimized for basic importance sampling,662

then it may harm the efficiency of policy evaluation. We illustrate this fact with an example.663
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Consider a two-armed bandit problem in which the policy selects arm 1 with probability θ664

and arm 2 with probability 1− θ. Let the outcome of pulling arm 1 be a reward of 100 and665

the outcome of arm 2 be a reward of 1. The evaluation policy is defined as θe := 0.1. The666

minimal-variance behavior policy for the basic importance sampling estimator (computed667

with (2)) is θ?b ≈ 0.917.668

Figure 4 shows the MSE of weighted importance sampling compared to the basic669

importance sampling estimator for different values of θ. Estimates are computed with data670

sets of size 50 and the squared error is averaged over 500 different data sets. For values of θ671

greater than 0.5, the MSE of weighted importance sampling increases even while the MSE672

of the basic importance sampling estimator continues to decrease. This example illustrates673

that weighted importance sampling can harm the accuracy of policy evaluation estimates674

when using a behavior policy chosen to lower the variance of the basic importance sampling675

estimator. Since we focus on unbiased policy evaluation estimators, we leave how to best676

determine the behavior policy for a weighted importance sampling estimate as an open677

question.678

Figure 4: An example where optimizing the behavior policy for the MSE of the basic IS
estimator increases the MSE of WIS. For 100 values of θ evenly spaced between 0.01 and 0.99,
a data set of size 50 is collected and both the IS estimate and WIS estimate are computed
and the squared error calculated. The process is repeated 500 times and the mean squared
error reported with 95% confidence intervals shown. The horizontal axis gives the parameter
value and the vertical axis gives mean squared error.

9. Empirical Study679

This section presents an empirical study of variance reduction through behavior policy search.680

We design our experiments to answer the following questions:681

22



Behavior Policy Search

• Can behavior policy search with BPG-V and BPG-KL reduce the MSE of batch policy682

evaluation compared to on-policy estimates in both tabular and continuous domains?683

• Does adapting the behavior policy of the doubly robust estimator with DR-BPG lower684

MSE compared to the on-policy doubly robust estimator?685

• Does the rareness of actions that cause high magnitude rewards affect the performance686

gap between BPG-V and Monte Carlo estimates?687

9.1 Empirical Set-up688

We address our first experimental question by evaluating BPG-V and BPG-KL on several689

policy evaluation tasks.690

Figure 5: Grid World Domain

Grid World The first domain is the Grid World691

domain showed in Figure 5. All grid locations without692

a reward shown have a reward of −1. The action693

set contains the four cardinal directions and actions694

move the agent in its intended direction (except when695

moving into a wall, which produces no movement).696

The agent begins in (0, 0), γ = 1, and l = 100. Each697

state-action pair, (s, a), has a parameter θs,a and the698

probability of taking action a in state s is given by699

the softmax distribution:700

π(a|s) =
eθs,a∑
a′ e

θs,a′
.

In this domain it is unnecessary to represent the policy with function approximation and701

we can study BPG-V and BPG-KL without concern of whether our class of function702

approximator includes a lower variance behavior policy. We obtain two evaluation policies703

by applying a simple REINFORCE algorithm to maximize the expected return, starting704

from a policy that selects actions uniformly at random. We then select one evaluation policy705

from the early stages of learning – an improved policy but still far from converged –, π1,706

and one after learning has converged, π2. We run our set of experiments once with πe := π1707

and a second time with πe := π2. The ground truth value of v(πe) is computed with value708

iteration for both choices of πe.709

Control Tasks We also study BPG-V and BPG-KL on four tasks with real-valued state710

variables. The first two of these are the continuous control Cart Pole Swing Up and Acrobot711

tasks implemented within RLLAB (Duan et al., 2016), the third task is the Cart Pole task712

from OpenAI Gym (Brockman et al., 2016), and the final task is the PyBullet (Coumans713

and Bai, 2016–2019) variant of the Hopper domain from OpenAI gym (Brockman et al.,714

2016). In contrast to the tabular Grid World domain, these domains require that BPG-V715

and BPG-KL optimize the behavior policy within a given class of function approximator.716

For Cart Pole Swing Up and Acrobot, πe is a two layer neural network with 32 tanh units717

per layer that maps the state to the mean of a Gaussian distribution over the continuous718

action space. For Cart Pole Swing Up, πe was learned using 10 iterations of the TRPO719

algorithm (Schulman et al., 2015) applied to a randomly initialized policy. For Acrobot, πe720
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was learned using 60 iterations. For Cart Pole and Hopper, πe is a neural network with two721

layers of 64 tanh hidden units in each layer and is trained using 200 iterations of proximal722

policy optimization (Schulman et al., 2017). For Cart Pole the network maps the state to a723

softmax distribution over actions while in Hopper the network maps the state to a Gaussian724

distribution over the continuous-valued actions. For Cart Pole Swing Up and Acrobot we use725

l = 50 and γ = 1; CartPole and Hopper use l = 200 (with early termination possible) and726

γ = 1. For step-size selection at each iteration BPG-V and BPG-KL use the largest possible727

step-size subject to a constraint on the KL-divergence between the old and new policy. This728

type of update has been shown to be more stable than constant step-size updates in the729

policy gradient RL literature (Kakade, 2001; Peters and Schaal, 2008; Schulman et al., 2015).730

The ground truth value of v(πe) in all domains is computed with 1,000,000 Monte Carlo731

roll-outs.732

In all experiments, for both BPG-V and BPG-KL, we use a constant control variate (or733

baseline) when estimating the gradient. For BPG-V, the baseline, bi, is an estimate of:734

E

[
− IS(πe, H, πθi−1

)2

∣∣∣∣ H ∼ πθi−1

]
and for BPG-KL, the baseline, bi, is an estimate of735

E

[
−| IS(πe, H, πθi−1

)|
∣∣∣∣ H ∼ πθi−1

]
.

The baseline bi is estimated with trajectories from iteration i− 1 where for the first iteration736

bi = 0. The gradient with baseline for BPG-V is an estimate of:737

E

[(
− IS(πe, H, πθ)2 − bi

) l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]

and the gradient with baseline for BPG-KL is an estimate of:738

E

[(
−| IS(πe, H, πθ)| − bi

) l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]
.

Adding or subtracting a constant leaves the gradient unchanged in expectation since739

biE
[∑l−1

t=0
∂
∂θ log πθ(At|St)

]
= 0. However, the baseline variants of BPG-V and BPG-KL740

have lower variance gradient estimates so that the estimated gradient is closer in direction741

to the true gradient. Note that this baseline is for gradient estimation and is different than742

using a constant baseline for importance sampling.743

In all domains we run multiple trials where each trial consists of a fixed number of744

iterations. At each iteration, each algorithm collects a batch of trajectories and computes a745

new estimate of v(πe). We use batch sizes of 100 trajectories per iteration for Grid World746

experiments and size 500 for the continuous control tasks. All algorithms have access to the747

same number of trajectories at the same iteration across trials.748

9.2 Main Results749

In this section we present our empirical results to address the questions outlined at the750

beginning of Section 9.751
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(a) Results with πe := π1 (b) Results with πe := π2

Figure 6: Grid World experiments when πe is a partially optimized policy, π1, (6a) and a
converged policy, π2, (6b). Results are averaged over 100 trials of 1000 iterations with a
shaded region representing a 95% confidence interval. The vertical axis shows the mean
squared error and the horizontal axis shows the iteration number. Axes are log-scaled. In
both instances, BPG-V and BPG-KL lower MSE more than on-policy Monte Carlo returns
(statistically significant, p < 0.05).

9.2.1 Grid World752

Figure 6 compares BPG-V, BPG-KL, and the on-policy Monte Carlo estimator for both Grid753

World policies, π1 and π2. At each iteration, each method collects 100 additional trajectories.754

BPG-V gradient estimates will tend to have a different magnitude than BPG-KL gradient755

estimates because the importance-sampled return is squared instead of its absolute value756

taken. We normalize the gradient estimates to have magnitude one and use a step-size of757

0.1 for both methods in order to have similar magnitude behavior policy changes for each758

method.759

Our main point of comparison is the MSE of both estimates at iteration i over 100 trials.760

For π1, BPG-V and BPG-KL reduce the MSE of on-policy estimates (Figure 6a) by up to an761

order of magnitude. For π2, BPG-V and BPG-KL also reduce MSE, however, it is a more762

marginal improvement. In both cases, BPG-V and BPG-KL perform almost identically.763

At the end of each trial we used the final behavior policy to collect 100 more trajectories764

and estimate v(πe). For BPG-V, in comparison to a Monte Carlo estimate with 100765

trajectories from π1, MSE is 73.52% lower with this improved behavior policy; for π2, the766

MSE is 64.6% lower. For BPG-KL and π1, the MSE is 77.78% lower with the final behavior767

policy; for π2, the MSE is 46.28% lower. This result demonstrates that BPG-V and BPG-KL768

can find behavior policies that substantially lower MSE.769

To understand the disparity in performance when πe changes, we plot the variance of the770

Monte Carlo return under πe (Figures 7b and 7c). These plots show the variance of π1 is771

much higher; it sometimes samples returns with twice the magnitude of any sampled by π2.772
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(a) Variance Reduction

(b) Histogram of returns using π1 (c) Histogram of returns using π2

Figure 7: Comparison of variance reduction between π1 and π2 in Grid World domain.
Figure 7a shows variance on the vertical axis and iteration number on the horizontal axis.
These axes are log-scaled. Results are plotted for Monte Carlo value estimation with π1 and
π2 and for BPG-V evaluations of π1 and π2. Results are averaged over 100 trials of 1000
iterations. Figures 7b and 7c give the distribution of returns under the two different πe.
Taken together these plots show that the variance of a Monte Carlo evaluation of π1 is much
higher than a Monte Carlo evaluation of π2. Thus a behavior policy search algorithm has
more room for variance reduction when evaluating π1.

To quantify the decrease in variance from behavior policy search, we also measure and plot773

the variance of IS(πe, H, πθi) for the BPG-V algorithm (Figure 7a). Figure 7a shows much774

higher initial variance for importance sampling evaluation of π1. The high initial variance775

means there is much more room for BPG-V and BPG-KL to improve the behavior policy776

when θe is the partially optimized policy, π1.777

BPG-V and BPG-KL require setting two parameters for the stochastic gradient descent778

update: a step-size, α, and a batch-size, k. We ablate these parameters to test the sensitivity779

of performance to their values. Again, we use normalized gradient estimates to ensure780

comparability of the algorithms given the same step-size.781
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To ablate step-size, we run each algorithm for 1000 iterations with a batch-size of k = 100782

for different settings of α. Our point of comparison is the MSE of the estimate at the final783

iteration. Figure 8a shows that both BPG-V and BPG-KL perform as well as or better than784

Monte Carlo for a wide range of step-size values. However, for very high values (α = 5 or785

α = 10), the estimates may diverge.786

To ablate batch-size, we run each algorithm until it has collected 1000 trajectories with787

different settings of k. So a trial using k = 500 will collect 500 trajectories, adapt the788

behavior policy once, and then collect 500 more trajectories to compute the final estimate.789

Both algorithms use a step-size of 0.1. As with step-size, we see that both algorithms790

perform as well as or better than Monte Carlo evaluation for most batch-size settings. With791

the smallest tested batch (k = 1), BPG-V and BPG-KL perform worse, presumably because792

the gradient estimates are poor and so the algorithms fail to improve the behavior policy.793

(a) Step-size Sensitivity (b) Batch-size Sensitivity

Figure 8: BPG-V and BPG-KL parameter sensitivity. Figure 8a shows performance as a
function of the algorithm step-size, α, and Figure 8b shows performance as a function of
the algorithm batch-size, k. In both figures the vertical axis is mean squared error of the
importance sampling estimate. The horizontal axis is the parameter being ablated. Axes
are log-scaled.

9.2.2 Control Tasks794

Figure 9 shows reduction of MSE on the Cart Pole Swing Up Acrobot, Cart Pole, and795

Hopper domains. Each method uses a step-size of 5× 10−5. Again we see that both BPG-V796

and BPG-KL reduce MSE faster than Monte Carlo value estimation and that both methods797

perform similarly to one another. In contrast to the discrete Grid World experiment, these798

experiment demonstrates the applicability of BPG-V and BPG-KL to both continuous states799

and actions. These results also demonstrates that BPG-V and BPG-KL (and more generally800

behavior policy search) can lower the variance of batch policy evaluation when the policy801

must generalize across different states and actions.802

27



Hanna, Chandak, Thomas, White, Stone, and Niekum

(a) Cart Pole Swing Up MSE. (b) Acrobot MSE.

(c) Cart Pole MSE. (d) Hopper MSE.

Figure 9: Mean squared error reduction on the Cart Pole Swing Up Acrobot, Cart Pole,
and Hopper domains. The vertical axis gives MSE and the horizontal axis is the iteration
number. Axes are log-scaled. We adapt the behavior policy for 200 iterations and average
results over 100 trials. Error bars are for 95% confidence intervals.
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9.3 Control Variate Extension Results803

In this section, we evaluate the combination of model-based control variates with behavior804

policy search. Specifically, we compare doubly robust BPG-V (DR-BPG) with an on-policy805

doubly robust estimator that uses θi = θe for all i. We refer to the on-policy doubly806

robust estimator as the advantage-sum estimator (ASE) as it has appeared previously in the807

literature under this name (Zinkevich et al., 2006; White and Bowling, 2009; Veness et al.,808

2011).809

In these experiments we use a 10x10 stochastic Grid World where the added stochasticity810

and increased size increase the difficulty of building an accurate model from data. The811

layout of this Grid World is identical to the deterministic Grid World except the terminal812

state is at (9, 9) and the +1 reward state is at (1, 9). When the agent moves, it moves in its813

intended direction with probability 0.9, otherwise it goes left or right with equal probability.814

Stochasticity in the environment increases the difficulty of building an accurate model from815

trajectories.816

Since these methods require a model we construct this model in one of two ways. The817

first method uses all trajectories in D to build the model and then uses the same set to818

estimate v(πe) with ASE or DR. The second method uses trajectories from the first 10819

iterations to build the model and then fixes the model for the remaining iterations. For820

DR-BPG, behavior policy search starts at iteration 10 under this second condition. We call821

the first method “Update” and the second method “Fixed.” The update method invalidates822

consistency guarantees of these methods but learns a more accurate model. In both instances,823

we build the models with count-based estimates of the transition probabilities.824

Figure 10 demonstrates that combining BPG-V with a model-based control variate825

(DR-BPG) can lead to further reduction of MSE compared to either the control variate(ASE)826

or behavior policy search (BPG) alone. Specifically, with the fixed model, DR-BPG out-827

performed all other methods. DR-BPG using the update method for building the model828

performed competitively with ASE although not statistically significantly better. We also829

evaluate the final learned behavior policy of the fixed model variant of DR-BPG. For a830

batch size of 100 trajectories, the DR estimator with this behavior policy improves upon the831

ASE estimator with the same model by 56.9%. BPG-V outperforms Monte Carlo but both832

methods do significantly worse than the methods using a model-based control-variate.833

For DR-BPG, estimating the model with all data still allowed steady progress towards834

lower variance. This result is interesting since a changing model changes the surface of our835

variance objective and thus gradient descent on the variance has no theoretical guarantees836

of convergence. Informally, we observed that setting the step-size, α, for DR-BPG was more837

challenging for either model type. Thus while we have shown BPG-V can be combined with838

control variates, more work is needed to produce a robust method.839

9.4 Rareness of Event Study840

Our final experiment aims to understand how the gap between on- and off-policy variance is841

affected by the probability of rare events. The intuition for why behavior policy search can842

lower the variance of on-policy estimates is that a well selected behavior policy can cause843

rare and high magnitude events to occur. We test this intuition by varying the probability844

of a rare, high magnitude event and observing how this change affects the performance gap845
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Figure 10: Comparison of DR-BPG and ASE (on-policy DR) on a larger stochastic Grid
World. For the fixed model methods, the significant drop in MSE at iteration 10 is due to the
introduction of the model control variate. For visual clarity we omit error bars. The mean
difference between the final estimate of DR-BPG and ASE with the fixed model averaged
over 300 trials is statistically significant (p < 0.05); the difference between the same methods
with a constantly improving model is not.

between on- and off-policy policy evaluation. For this experiment, we use a variant of the846

deterministic Grid World where taking the UP action in the initial state (the upper left847

corner) causes a transition to the terminal state with a reward of +50. We use π1 from848

our earlier Grid World experiments but we vary the probability, p, of choosing UP when in849

the initial state, i.e., with probability p the agent will receive a large reward and end the850

trajectory. We use BPG-V with a step-size of 10−5 and unnormalized gradient estimates as851

the behavior policy search algorithm for all values of p. We plot the relative decrease of the852

variance after 500 iterations as a function of p over 100 trials for each value of p. We use853

relative variance to normalize across problem instances. Note that under this measure, even854

when p is close to 1, the relative variance remains greater than zero because as p approaches855

1 the initial variance also goes to zero.856

This experiment illustrates that as the initial variance increases, the amount of improve-857

ment BPG-V can achieve increases. As p becomes closer to 1, the rare high magnitude858

event becomes less rare and the initial variance becomes closer to zero. When this happens,859

BPG-V barely improves over the variance of Monte Carlo (in terms of absolute variance860

there is no improvement). When πe rarely takes the high rewarding UP action (p close to 0),861
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Figure 11: Varying the probability of a high rewarding terminal action in the Grid World
domain. Each point on the horizontal axis is the probability of taking this action. The
vertical axis gives the mean relative decrease in variance after adapting θ for 500 iterations.
Denoting the initial variance as Vi and the final variance as Vf , the relative decrease is

computed as
Vi−Vf
Vi

. Results are averaged over 100 trials. A 95% confidence interval region
is shaded around the mean but is small.

BPG-V lowers the variance of policy evaluation by increasing the probability of this action.862

This experiment supports our intuition for why off-policy data collection can be preferable863

to on-policy data collection.864

10. Discussion865

Our experiments demonstrate that behavior policy search with either BPG-V or BPG-KL866

can lower the variance of batch policy evaluation. One open question is characterizing the867

settings where adapting the behavior policy substantially improves over on-policy estimates.868

Towards answering this question, our Gridworld experiment showed that when πe has little869

variance, BPG-V or BPG-KL can only offer marginal improvement. BPG-V and BPG-KL870

increase the probability of observing rare events with a high magnitude. If the evaluation871

policy never sees such events then there is less benefit to using a behavior policy search872

algorithm. However, with an appropriately selected step-size, BPG-V and BPG-KL will873

never, in expectation, lower the data-efficiency of policy evaluation.874
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It is also necessary that the evaluation policy contributes to the variance of the returns.875

If all variance is due to the environment then it seems unlikely that BPG-V or BPG-KL876

will offer much improvement. For example, Ciosek and Whiteson (2017) consider a variant877

of the Mountain Car task (Singh and Sutton, 1996) where the dynamics can trigger a rare878

event – independent of the action – in which rewards are multiplied by 1000. No behavior879

policy adaptation can lower the variance due to this event.880

One limitation of gradient-based behavior policy search methods is the necessity of good881

step-size selection. In expectation, BPG-V and BPG-KL can never lead to worse policy882

evaluation compared to on-policy estimates. In practice, a poorly selected step-size may883

cause a step to a worse behavior policy at step i which may increase the variance of the884

gradient estimate at step i+ 1. Future work could consider methods for adaptive step-sizes,885

second order methods, or natural gradients.886

When to Perform Behavior Policy Search?887

We conclude with a discussion of the question of when should one prefer behavior policy888

search to just choosing the evaluation policy as the behavior policy. From our experiments889

with random MDPs in Section 4.1, we find that the most potential improvement is when the890

evaluation policy is stochastic (but not uniform random) and there is variation in the reward891

across the action space. This observation dovetails with the intuition that BPS is most892

useful when there are rare trajectories with high magnitude return under the evaluation893

policy because such settings are where the variance of on-policy Monte Carlo is highest.894

This intuition was demonstrated experimentally in Section 9.4. On the other hand, when πe895

is deterministic or uniform random there may be little or no room for improvement.896

In settings where πe is already a near optimal behavior policy for itself, the need to897

set hyper-parameters for BPG-V and BPG-KL may not be worth any additional variance898

reduction that could be gained through behavior policy search. Both methods lack guarantees899

that the behavior policy improves at every iteration and if intermediate behavior policies900

increase variance (e.g., due to variance in the behavior policy gradient estimate) then the901

final estimate may have higher squared error than if πe had just been ran to collect all902

trajectories. Thus, we recommend behavior policy search for settings where the variance of903

the return under πe is anticipated to be high.904

11. Future Work905

In this section, we outline directions for future work to further develop the utility of behavior906

policy search for reinforcement learning. As an overarching direction, we note that this work907

assumed a finite-horizon, episodic, and fully observable environment. Future work should908

consider what is the minimal-variance behavior policy and how to perform behavior policy909

search in infinite-horizon, continuing, or partially observable environments.910

11.1 Evaluating Multiple Evaluation Policies911

A common motivation for collecting data in an off-policy fashion is when we want to learn912

about multiple evaluation policies with the same stream of data (e.g., (Sutton et al., 2011)).913

In this work, we have assumed a single evaluation policy and considered finding a behavior914
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policy that provides low variance importance sampling evaluation of that evaluation policy.915

An important direction for future work is to develop behavior policy search algorithms that916

optimize the behavior policy for a set of evaluation policies. A straightforward way to adapt917

either BPG-KL or BPG-V to multiple evaluation policies is to use a linear combination918

of the objective they minimize for each evaluation policy. For example, BPG-V minimizes919

E[IS(πe, H, πθ)2|H ∼ πθ] for the single evaluation policy πe. If instead, we wished to920

minimize the variance of evaluating a set of policies, {π1, ..., πm}, a multi-policy variant of921

BPG-V could minimize
∑m

j=1 µ(πj)E[IS(πj , H, πθ)2|H ∼ πθ] where, we define µ(πj) to be922

an emphasis factor that provides the relative importance of evaluating each policy in the923

set of evaluation policies. This approach would be straightforward, however, it might be924

the case that lowering the variance for one evaluation policy might increase the variance of925

evaluating another.926

11.2 Behavior Policy Search for Value Function Learning927

This work has focused on batch policy evaluation in which we collect a set of trajectories and928

estimate v(πe). A more general policy evaluation problem is to estimate the value function:929

the function that gives the expected return of a policy from any state in the MDP. A first930

question for extending behavior policy search to value function learning is, “what is the931

minimal-variance behavior policy when learning a value function for a fixed policy?” The932

answer to this question may give insight into how to best adapt the behavior policy for low933

variance evaluation. One facet of this question is whether the minimal-variance behavior934

policy for estimating the expected return from one state is the same as the minimal-variance935

behavior policy for another. As with lowering variance for multiple evaluation policies, it936

may be necessary to assume a measure of the relative importance of states. Another facet937

of the minimal-variance behavior policy question concerns the use of intermediate value938

estimates or bootstrapping. The variance of a return estimate that uses an intermediate value939

estimate may change as the intermediate value estimate changes. Thus the minimal-variance940

behavior policy may be non-stationary as the value function is learned.941

11.3 Behavior Policy Search for Policy Improvement942

The primary goal of reinforcement learning is policy improvement: learning a policy that943

maximizes the expected sum of discounted rewards. A final direction for future work is944

to apply behavior policy search to policy improvement. Behavior policy search could aid945

policy improvement by lowering the variance of policy gradient estimation or improving946

value function learning for value-based methods. Regardless of the underlying approach, one947

fundamental difficulty will be balancing finding a behavior policy that lowers variance while948

maintaining sufficient exploration to find an optimal policy.949

11.4 Theoretical Variance Reduction950

We have shown empirically that behavior policy search methods can produce lower variance951

importance sampling estimates than on-policy data collection. Future work should establish952

in theory that variance is reduced and at what rate the variance decreases. It is known that953

the importance sampling estimator has variance σ2

n where n is the number of trajectories954
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and σ is the variance of the importance sampled return under a fixed sampling distribution955

(Owen, 2013). Prior work on adaptive IS outside of RL suggests that the rate of 1
n cannot956

be improved (Akyildiz and Mı́guez, 2021). Thus future work should focus on analysis of how957

σ decreases as the behavior policy changes. Such analysis could provide further guidance958

on identifying the settings where behavior policy search is preferable to simply running the959

evaluation policy for policy evaluation.960

12. Conclusion961

In this work we have shown that off-policy importance sampling policy evaluation can have962

lower variance than on-policy policy evaluation. We derived a condition for the minimal-963

variance behavior policy. We then introduced the behavior policy search (BPS) problem in964

order to improve estimation of v(πe) for an evaluation policy πe. We present two solution965

algorithms for this problem: the Behavior Policy Gradient on the Variance algorithm and966

the Behavior Policy Gradient on the KL-Divergence algorithm. BPG-V adapts the behavior967

policy with stochastic gradient descent on the variance of the importance-sampling estimator.968

BPG-KL adapts the behavior policy with stochastic gradient descent on the KL-divergence969

between the current behavior policy and the minimal-variance behavior policy. Experiments970

demonstrate that both algorithms lower the MSE of estimates of v(πe) compared to on-971

policy estimates. We also demonstrate BPS can further decrease the MSE of estimates in972

conjunction with a model-based control variate method.973
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Appendix A. Statistical Properties of Behavior Policy Search Estimates1121

In this appendix, we prove that the estimates from behavior policy search algorithms that1122

are computed as the mean of an unbiased off-policy estimator, OPE, such as IS, are unbiased1123

and consistent estimates of v(πe) and we provide a theoretical finite-rate bound on the1124

estimate. Typically, such results rely on i.i.d. sampling of trajectories from a single πθj or at1125

least independent sampling from a behavior policy that is independent of other behavior1126

policies. In our case, the difficulty is that the estimate at iteration i depends on all πθj for1127

i = 1 . . . i and each πθj is not independent of the others. Further, as πθj may be different1128

from πθk when j 6= k, both the assumptions of independence and identical distribution do1129

not hold. Nevertheless, we prove here that behavior policy search algorithms still produce1130

unbiased and consistent estimates of v(πe) at each iteration and have finite-rate bounds1131

similar to Hoeffding’s bounds.1132

Proposition 1. Under Assumption 2, OPE(πe, Dn) is an unbiased estimator of v(πe) for
any n ∈ N,

E
[
OPE(πe, Dn)

]
= v(πe).

1133

Proof We begin by expanding E
[
OPE(πe, Dn)

]
,

E
[
OPE(πe, Dn)

]
= E

 1

n

n∑
j=1

OPE(πe, Hj , πθj )

 =
1

n

n∑
j=1

E
[
OPE(πe, Hj , πθj )

]
. (4)

Recall that in OPE(πe, Hj , πθj ) the random variables are the parameters θj under the
(stochastic) algorithm and the trajectory Hj generated using πθj . Therefore,

E
[
OPE(πe, Hj , πθj )

]
=

∫
Θ
p(θj = θ)

(∑
h∈H

p(Hj = h|πθj ) OPE(πe, h, πθj )

)
dθ. (5)

Observe that (5) factors out the probability of observing parameter θj (which depends on1134

past parameters and trajectories) and the expected value of OPE given the value of θj1135

(which is independent of past parameters and trajectories given the value of θj). In Figure1136

3, this idea can be observed from d-separation: conditioned on a specific instance of πθk the1137

estimates Xk are independent of previous parameters and trajectories.1138

Therefore, as OPE is an unbiased estimator for any fixed policy πθj under Assumption 2,
(5) can be expressed as,

E[OPE(πe, Hj , πθj )] =

∫
Θ
p(θj = θ)v(πe)dθ

= v(πe). (6)

Therefore, combining (4) and (6),

E
[
OPE(πe, Dn)

]
=

1

n

n∑
j=1

v(πe) = v(πe).
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1139

1140

Lemma 1. Under Assumption 2, ∀j ∈ N, and ∀k ∈ N, where j 6= k, OPE(πe, Hj , πθj ) and
OPE(πe, Hk, πθk) are uncorrelated. That is,

∀j 6= k, Cov
(
OPE(πe, Hj , πθj ),OPE(πe, Hk, πθk)

)
= 0.

1141

Proof We begin by first establishing conditional independence in expectation between1142

OPE(πe, Hj , πθj ) and OPE(πe, Hk, πθk) for any j 6= k. For brevity, let Zj := OPE(πe, Hj , πθj ).1143

E
[
OPE(πe, Hj , πθj )|OPE(πe, Hk, πθk)

]
= E [Zj |Zk]

=

∫
Θ
p(θj = θ|Zk)

∑
h∈H

p(Hj = h|πθj , Zk) OPE(πe, h, πθj ) dθ

(a)
=

∫
Θ
p(θj = θ|Zk)

(∑
h∈H

p(Hj = h|πθj ) OPE(πe, h, πθj )

)
dθ

(b)
=

∫
Θ
p(θj = θ|Zk)v(πe) dθ

= v(πe), (7)

where (a) follows from the fact that given the policy πθj , Hj is independent of the Zk (see
Fig 3), and (b) follows from arguments similar to those used in the proof of Proposition 1.
The co-variance between OPE(πe, Hj , πθj ) and OPE(πe, Hk, πθk) can now be expressed as,

Cov
(
OPE(πe, Hj , πθj ),OPE(πe, Hk, πθk)

)
= Cov (Zj , Zk)

= E [ZjZk]− E [Zj ]E [Zk]

(b)
= E [E[Zj |Zk]Zk]− E [Zj ]E [Zk]

(c)
= v(πe)E [Zk]− E [Zj ]E [Zk]

(d)
= v(πe)

2 − v(πe)
2

= 0,

where (b) follows from the law of total expectation, (c) follows from (7), and (d) follows1144

from (6).1145

1146

1147
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Proposition 2. Under Assumption 2, OPE(πe, Di) converges to v(πe) in probability. That
is, for ε > 0,

lim
i→∞

Pr
(
|OPE(πe, Di)− v(πe)| > ε

)
= 0.

1148

Proof We begin by expanding the variance of OPE(πe, Di),

Var
[
OPE(πe, Di)

]
= Var

1

i

i∑
j=1

OPE(πe, Hj , θj)


=

1

i2

 i∑
j=1

Var [OPE(πe, Hj , θj)] + 2
i∑

j=1

i∑
k=1

Cov (OPE(πe, Hj , θj),OPE(πe, Hk, θk))



(a)
=

1

i2

 i∑
j=1

Var [OPE(πe, Hj , θj)]

 , (8)

where (a) follows using uncorrelatedness established in Lemma 1. Further, from Assumption 2,
OPE(πe, Hj , θj) is a bounded random variable for all j and thus it follows from Popoviciu’s
inequality (Popoviciu, 1935) that OPE(πe, Hj , πθj ) has variance bounded above by some
finite constant c̃. Therefore, as ∀j,Var[OPE(πe, Hj , πθj )] < ĉ, it follows from (8) that

Var[OPE(πe, Di)]→ 0. As OPE(πe, Di) is unbiased (Proposition 1) and has no variance in
the limit it follows from the bias-variance decomposition of mean-squared error that,

lim
i→∞

E
[(

OPE(πe, Di)− v(πe)
)2]

= lim
i→∞

(
E
[
OPE(πe, Di)

]
− v(πe)

)2
+ Var

[
OPE(πe, Di)

]
= 0. (9)

Now from Markov’s inequality,

Pr(|OPE(πe, Di)− v(πe)| > ε) ≤
E
[(

OPE(πe, Di)− v(πe)
)2]

ε2
(10)

Combining (9) and (10),1149

lim
i→∞

Pr(|OPE(πe, Di)− v(πe)| > ε) = 0.

1150

1151

Proposition 3. Under Assumption 2, let c̃ be the range of OPE(πe, Hj , πθj ) for any j ∈
{1, 2, ..., i}, then ∀δ ∈ [0, 1],

Pr

(∣∣OPE(πe, Di)− v(πe)
∣∣ > c̃

√
ln(2/δ)

2|Di|

)
≤ δ,

1152
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Proof We begin by observing that since the (OPE(πe, Hj , θj))
i
j=1 are sequentially dependent,1153

if we can convert them into a Martingale sequence then we can use concentration inequalities1154

for Martingales to obtain convergence rates for OPE(πe, Di).1155

Let Y0, Y1, ..., Yi denote the desired Martingale sequence constructed using the OPE
estimates OPE(πe, H1, θ1), ...,OPE(πe, Hi, θn), where

Y0 = 0,

Yj = OPE(πe, Hj , πθj )− v(πe) + Yj−1. (11)

From (11) notice that ∀j ≥ 1,

E [Yj |Yj−1] = E[OPE(πe, Hj , πθj )|Yj−1]− E[v(πe)|Yj−1] + E[Yj−1|Yj−1]

= E[OPE(πe, Hj , πθj )|Yj−1]− v(πe) + Yj−1. (12)

To simplify (12) further, notice that,

E[OPE(πe, Hj , πθj )|Yj−1] =

∫
R
p(OPE(πe, Hj , πθj ) = x|Yj−1)x dx

(a)
=

∫
Θ
p(θj = θ|Yj−1)

(∫
R
p(OPE(πe, Hj , πθj ) = x|πθj )x dx

)
dθ

(b)
=

∫
Θ
p(θj = θ|Yj−1)v(πe)dθ

= v(πe), (13)

where (a) follows from the fact that Yj−1 only contains information from iterates till j − 1
(inclusive) and OPE(πe, Hj , πθj ) is independent of the past conditioned on the value of θj .
Step (b) follows from the fact that OPE(πe, Hj , πθj ) (the OPE estimate) is an unbiased
estimator of v(πe) for any fixed behavior policy πθ under Assumption 1. Combining (13)
and (12), it can be observed that (Yj)

i
j=1 is a Martingale sequence as

E[Yj |Yj−1] = Yj−1.

Since OPE(πe, Hj , πθj ) is bounded (under Assumption 1), Yj is also bounded. Consequently,
the differences between Yj and Yj−1 are also bounded. Applying Azuma’s inequality (Azuma,
1967) for Martingales to the sequence (Yj)

i
j=0,

Pr (|Yi − Y0| > ε) ≤ 2 exp

(
−2ε2

|Di|c̃2

)
. (14)

First, considering |Yi − Y0|:

|Yi − Y0|
(a)
=

∣∣∣∣∣∣
i∑

j=1

(Yj − Yj−1)

∣∣∣∣∣∣ (b)
=

∣∣∣∣∣∣
i∑

j=1

(OPE(πe, Hj , πθj )− v(πe))

∣∣∣∣∣∣ , (15)
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where (a) follows by telescoping the summation and (b) follows from (11). Combining (15)
and (14),

Pr

∣∣∣∣∣∣
i∑

j=1

(OPE(πe, Hj , πθj )− v(πe))

∣∣∣∣∣∣ > ε

 ≤ 2 exp

(
−2ε2

|Di|c̃2

)

Pr

∣∣∣∣∣∣
i∑

j=1

OPE(πe, Hj , πθj )− |Di|v(πe)

∣∣∣∣∣∣ > ε

 ≤ 2 exp

(
−2ε2

|Di|c̃2

)

Pr

∣∣∣∣∣∣ 1

|Di|

i∑
j=1

OPE(πe, Hj , πθj )− v(πe)

∣∣∣∣∣∣ > ε

|Di|

 (c)

≤ 2 exp

(
−2ε2

|Di|c̃2

)

Pr

(∣∣OPE(πe, Di)− v(πe)
∣∣ > ε

|Di|

)
(d)

≤ 2 exp

(
−2ε2

|Di|c̃2

)
Pr
(∣∣OPE(πe, Di)− v(πe)

∣∣ > ε
) (e)

≤ 2 exp

(
−2|Di|ε2

c̃2

)
, (16)

where (c) follows from dividing both sides within the LHS by |Di|, (d) follows from definition
of OPE(πe, Di), and (e) follows from relabeling ε := ε

|Di| . Finally, relabeling the RHS in (16)
to δ, one can obtain,

Pr

(∣∣OPE(πe, Di)− v(πe)
∣∣ > c̃

√
ln(2/δ)

2|Di|

)
≤ δ,

thereby giving the desired error rate of O

(
1√
|Di|

)
.1156

1157

1158

Appendix B. Behavior Policy Gradient of the Variance1159

In this section, we derive the gradient of the variance of importance sampling with respect1160

to the behavior policy parameters. We first derive an analytic expression for the gradient of1161

the variance of an arbitrary, unbiased off-policy policy evaluation estimator, OPE(πe, H, πθ).1162

From our general derivation we derive the gradient of the variance of the basic importance1163

sampling estimator and then extend to the doubly robust and per-decision estimators.1164

B.1 MSE Gradient for an Unbiased Off-Policy Policy Evaluation Method1165

Lemma 2 gives the gradient of the MSE for any unbiased off-policy policy evaluation method.1166

1167
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Lemma 2.

∂

∂θ
MSE

[
OPE(πe, H, πθ)

]
= E

[
OPE(πe, H, πθ)2

( l−1∑
t=0

∂

∂θ
log πθ(At|St)

)
+

∂

∂θ
OPE(πe, H, πθ)2

∣∣∣∣ H ∼ πθ].
Proof We begin by decomposing Pr(H = h|π) into two components – one that depends on1168

π and the other that does not. Recall that we defined:1169

wπ(h) :=

l−1∏
t=0

π(at|st),

and define1170

p(h) := Pr(H = h|π)/wπ(h),

for any π such that h is in the support of π (any such π will result in the same value of1171

p(h)). These two definitions mean that Pr(H = h|π) = p(h)wπ(h).1172

The MSE of the OPE estimator is given by:

MSE[OPE(πe, H, πθ)] = Var[OPE(πe, H, πθ)] + (E[OPE(πe, H, πθ)]− v(πe))
2︸ ︷︷ ︸

bias2

.

Since the OPE estimator is unbiased, i.e., E[OPE(πe, H, πθ)] = v(πe), the second term is
zero and so:

MSE(OPE(πe, H, πθ)) = Var[OPE(πe, H, πθ)] (17)

=E
[
OPE(πe, H, πθ)2

∣∣H ∼ πθ]−E[OPE(πe, H, πθ)|H ∼ πθ]2 (18)

=E
[
OPE(πe, H, πθ)2

∣∣H ∼ πθ]− v(πe)
2 (19)

(18) follows from (17) by the definition of the variance and (19) follows from (18) because1173

the expectation of an unbiased estimator of v(πe) is v(πe).1174

To obtain the MSE gradient, we differentiate MSE[OPE(πe, H, πθ)] with respect to θ:

∂

∂θ
MSE[OPE(πe, H, πθ)] =

∂

∂θ

E
[
OPE(πe, H, πθ)2

∣∣H ∼ πθ]− v(πe)
2︸ ︷︷ ︸

const


=
∂

∂θ
E
[
OPE(πe, H, πθ)2

∣∣H ∼ πθ]
=
∂

∂θ

∑
h∈H

Pr(H = h|πθ) OPE(πe, h, πθ)2

=
∑
h∈H

Pr(H = h|πθ)
∂

∂θ
OPE(πe, h, πθ)2+

OPE(πe, h, πθ)2 ∂

∂θ
Pr(H = h|πθ)

=
∑
h∈H

Pr(H = h|πθ)
∂

∂θ
OPE(πe, h, πθ)2+

OPE(πe, h, πθ)2p(h)
∂

∂θ
wπθ(h) (20)
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Consider the last factor of the last term in more detail:

∂

∂θ
wπθ(h) =

∂

∂θ

l−1∏
t=0

πθ(at|st)

(a)
=

(
l−1∏
t=0

πθ(at|st)

)(
l−1∑
t=0

∂
∂θπθ(at|st)
πθ(at|st)

)
(b)
=wπθ(h)

l−1∑
t=0

∂

∂θ
log (πθ(at|st)) , (21)

where (a) comes from the product rule of differentiation and (b) comes from the likelihood-

ratio trick (i.e.,
∂
∂θ
πθ(A|S)

πθ(A|S) = log(πθ(A|S))) and the definition of wπθ(h). Continuing from

(20) we have that:

∂

∂θ
MSE(OPE(πe, H, πθ)) = E

[
OPE(πe, H, πθ)2

l−1∑
t=0

∂

∂θ
log (πθ(At|St)) +

∂

∂θ
OPE(πe, H, πθ)2

∣∣∣∣ H ∼ πθ].
1175

1176

B.2 Behavior Policy Gradient of the Variance1177

We now use Lemma 2 to prove the Behavior Policy Gradient of the Variance Theorem.1178

Theorem 1 (Behavior Policy Gradient of the Variance).

∂

∂θ
MSE

[
IS(πe, H, πθ)

]
= E

[
− IS(πe, H, πθ)2

l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]

Proof We first derive ∂
∂θ IS(πe, H, πθ)2. Theorem 1 then follows directly from using1179

∂
∂θ IS(πe, H, πθ)2 as ∂

∂θ OPE(πe, H, πθ)2 in Lemma 2.1180

IS(πe, H, πθ)2 =

(
wπe
wπθ

g(H)

)2

∂

∂θ
IS(πe, H, πθ)2 =

∂

∂θ

(
wπe(H)

wπθ(H)
g(H)

)2

= 2g(H)
wπe(H)

wπθ(H)

∂

∂θ

(
g(H)

wπe(H)

wπθ(H)

)
(a)
= −2g(H)

wπe(H)

wπθ(H)

(
g(H)

wπe(H)

wπθ(H)

) l−1∑
t=0

∂

∂θ
log πθ(At|St)

= −2 IS(πe, H, πθ)2
l−1∑
t=0

∂

∂θ
log πθ(At|St),
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where (a) uses (21) to differentiate wπθ(H).1181

Substituting this expression and IS(πe, H, πθ) for OPE(πe, H, πθ) into Lemma 2 completes1182

the proof of Theorem 1:1183

∂

∂θ
MSE[IS(πe, H, πθ)] = E

[
− IS(πe, H, πθ)2

l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]
.

1184

1185

B.3 MSE Gradient for the Doubly Robust Estimator1186

We also present an extension of the IS MSE gradient to the Doubly Robust (DR) estimator.1187

Recall that for a single trajectory, H, DR is defined as:1188

DR(πe, H, πθ) := v̂πe(S0) +
l−1∑
t=0

γt
wπe,t
wπθ ,t

(Rt − q̂πe(St, At) + v̂πe(St+1))

where v̂πe is an approximation of the state-value function of πe, q̂
πe is an approximation of1189

the action-value function of πe, and wπ,t :=
∏t
j=0 π(Aj |Sj).1190

The gradient of the MSE of the DR estimator is given by the following corollary to1191

Theorem 1:1192

Corollary 1.

∂

∂θ
MSE

[
DR(πe, H, πθ, q̂

πe , v̂πe)

]
= E

[
DR(πe, H,θ, q̂

πe , v̂πe)2
l−1∑
t=0

∂

∂θ
log πθ(At|St)

− 2 DR(πe, H, πθ, q̂
πe , v̂πe)

( l−1∑
t=0

γtδt
wπe,t
wθ,t

t∑
i=0

∂

∂θ
log πθ(Ai|Si)

)]

where δt = Rt − q̂πe(St, At) + v̂πe(St+1) and the expectation is taken over H ∼ πθ.1193

Proof1194

As with Theorem 1, we first derive ∂
∂θ DR(πe, H, πθ)2. Corollary 1 then follows directly1195

from using ∂
∂θ DR(πe, H, πθ)2 as ∂

∂θ OPE(πe, H, πθ)2 in Lemma 2.1196

Let δt := Rt − q̂πe(St, At) + v̂πe(St+1).1197

DR(πe, H, πθ)2 =

(
v̂πe(S0) +

l−1∑
t=0

γt
wπe,t
wπθ ,t

δt

)2
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∂

∂θ
DR(πe, H, πθ)2 =

∂

∂θ

(
v̂πe(S0) +

l−1∑
t=0

γt
wπe,t
wπθ ,t

δt

)2

=2 DR(πe, H, πθ)
∂

∂θ

(
v̂πe(S0) +

l−1∑
t=0

γt
wπe,t
wπθ ,t

δt

)

=− 2 DR(πe, H, πθ)(

l−1∑
t=0

γt
wπe,t
wπθ ,t

δt

t∑
i=0

∂

∂θ
log πθ(Ai|Si))

Thus the DR(πe, H, πθ) gradient is:

∂

∂θ
MSE [DR(πe, H, πθ)] = E[DR(πe, H, πθ)2

l−1∑
t=0

∂

∂θ
log πθ(At|St)

− 2 DR(πe, H, πθ)(

l−1∑
t=0

γtδt
wπe,t
wπθ ,t

t∑
i=0

∂

∂θ
log πθ(Ai|Si))|H ∼ πθ]

1198

1199

The expression for the DR behavior policy gradient is more complex than the expression1200

for the IS behavior policy gradient. Lowering the variance of DR involves accounting for1201

the covariance of the sum of terms. Intuitively, accounting for the covariance increases the1202

complexity of the expression for the gradient.1203

Appendix C. Convergence of BPG-V1204

In this section, we prove that BPG-V (Algorithm 1) converges under an appropriately chosen1205

step-size.1206

Proposition 4. Under Assumption 1 and Assumption 3, BPG-V converges. That is,1207

MSE[IS(πe, Hi, πθi)] converges to a finite value and limi→∞
∂
∂θ MSE[IS(πe, Hi, πθi)] = 0.1208

Proof The proof follows from an application of Proposition 3 in (Bertsekas and Tsitsiklis,1209

2000). To apply this result, we must show that BPG-V satisfies the following conditions:1210

1. MSE[IS(πe, H, πθ)] is continuously differentiable w.r.t. θ.1211

2. The gradient of the MSE objectives, ∂
∂θMSE[IS(πe, H, πθ)], is Lipschitz continuous1212

w.r.t. θ.1213

3. The variance of the gradient estimate used by BPG-V is bounded.1214

Other conditions of Proposition 3 in (Bertsekas and Tsitsiklis, 2000) are satisfied by the1215

unbiasedness of the gradient estimates used by BPG-VẆe also note that the MSE objective1216

is bounded below by zero which rules out the case of BPG-V converging to an MSE of −∞1217

which is technically allowed by Proposition 3 of (Bertsekas and Tsitsiklis, 2000). Theorem 11218

gives us ∂
∂θMSE[IS(πe, H, πθ)] which can be seen to be continuously differentiable under1219
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our assumption that πθ is continuously differentiable and Assumption 1 which implies that1220

IS(πe, H, πθ) always exists.1221

We next show that the second derivative of the MSE objective is bounded which implies
the Lipschitz continuity of ∂

∂θMSE[IS(πe, H, πθ)].

∂2

∂2θ
MSE[IS(πe, H, πθ)] =

∂

∂θ
E

−IS(πe, H, πθ)2
l−1∑
t=0

∂

∂θ
log πθ(At|St)︸ ︷︷ ︸

∂
∂θ

logwθ(H)

∣∣∣∣∣∣∣∣∣∣∣
H ∼ πθ


=
∂

∂θ

∑
h∈H

p(h)wθ(h)

(
−IS(πe, h, πθ)2 ∂

∂θ
logwθ(h)

)
(a)
=

∂

∂θ

∑
h∈H

p(h)wθ(h)

(
−IS(πe, h, πθ)2

∂
∂θwθ(h)

wθ(h)

)

=
∂

∂θ

∑
h∈H
−p(h)IS(πe, h, πθ)2 ∂

∂θ
wθ(h)

(b)
=
∑
h∈H
−p(h)

 ∂

∂θ
IS(πe, h, πθ)2︸ ︷︷ ︸

(c)

∂

∂θ
wθ(h)︸ ︷︷ ︸
(d)

+ IS(πe, h, πθ)2 ∂
2

∂2θ
wθ(h)︸ ︷︷ ︸

(e)



where (a) comes from the chain rule of calculus and (b) comes from the product rule of
calculus. We can now show that each term (c, d, and e) is bounded. First, for (c):

∂

∂θ
IS(πe, h, πθ)2 =

−2g(h)2wπe(h)2

wθ(h)3︸ ︷︷ ︸
(c.1)

∂

∂θ
wθ(h)︸ ︷︷ ︸
(c.2)

,

which is bounded because Assumption 1 implies (c.1) is bounded and (c.2) is the same as1222

(d) which we next show is bounded.1223

For (d):

∂

∂θ
wθ(h) =

∂

∂θ

l−1∏
t=0

πθ(at|st)

=

l−1∑
t=0

∂

∂θ
πθ(at|st)

l−1∏
t′=0,t′ 6=t

πθ(at′ |st′), (22)

which is bounded because each ∂
∂θπθ(at|st) is bounded by construct, and

∏l−1
t′=0,t′ 6=t πθ(at′ |st′) ≤1224

1.1225
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Finally, for (e), we just consider ∂2

∂2θ
wθ(h) since Assumption 1 implies that IS(πe, h, πθ)2

exists and is bounded.

∂2

∂2θ
wθ(h) =

∂

∂θ

l−1∑
t=0

∂

∂θ
πθ(at|st)

l−1∏
t′=0,t′ 6=t

πθ(at|st)

=

l−1∑
t=0

∂2

∂2θ
πθ(at|st)

∏
t′ 6=t

πθ(at′ |st′) +
∂

∂θ
πθ(at|st)

∑
t′ 6=t

πθ(at′ |st′)
∏

t′′ 6=t,t′
πθ(at′′ |st′′),

which is bounded under the construct that πθ is twice differentiable with bounded first and1226

second derivatives. Thus we conclude that the MSE objective is continuosly differentiable1227

with a Lipschitz derivative.1228

Finally, we have to show that the variance of the gradient estimate used by BPG-V is1229

bounded. To do so, we show that the gradient estimate with any single trajectory is bounded1230

which implies the variance of the estimates used by BPG-V is bounded because the variance1231

of a bounded random variable is itself bounded.1232

For any trajectory h, collected by following πθ, an unbiased estimate of the MSE estimate
is given as:

∂

∂θ
MSE[IS(πe, H, πθ] ≈ −IS(πe, h, πθ)2

l−1∑
t=0

∂

∂θ
log πθ(at|st)

(a)
= −wπe(h)2g(h)2

wπθ(h)2

∂

∂θ
logwπθ(h)

(b)
= −wπe(h)2g(h)2

wπθ(h)2

∂
∂θwπθ(h)

wπθ(h)

= −wπe(h)2g(h)2

wπθ(h)3

∂

∂θ
wπθ(h) (23)

where (a) uses wπ(h) =
∏l−1
t=0 π(at|st) and (b) uses the likelihood-ratio trick. On the RHS1233

of Equation (23), wπe (h)2g(h)2

wπθ (h)3
is bounded under Assumption 1 and ∂

∂θwπθ(h) was shown to1234

be bounded in Equation (22). Thus we conclude that the variance of the gradient estimate1235

used by BPG-V is bounded. Proposition 4 now follows from Proposition 3 of Bertsekas and1236

Tsitsiklis (2000).1237

1238

1239

Appendix D. Convexity of Variance Objective1240

In this appendix, we prove that, when πθ is a linear-softmax policy, then the variance1241

objective minimized by BPG-V is convex in the policy parameters. Thus, BPG-V is1242

guaranteed to converge to the parameter vector that minimizes the variance of the IS-return1243

under standard stochastic gradient descent step-size conditions (Bertsekas and Tsitsiklis,1244

2000).1245
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A linear-softmax policy is a policy over a finite set of actions where the probability of1246

each action is defined as a softmax distribution with logits from a linear combination of1247

state features. Formally, let φ : S → Rq for integer q be a state feature function that maps1248

states to feature vectors. For each action, a ∈ A, we have a vector θa ∈ Rq and θ is the1249

concatenation of all θa. A linear-softmax policy defines the probability of action a in state s1250

as:1251

πθ(a|s) =
eθ

T
a φ(s)∑

b∈A e
θTb φ(s)

.

Theorem 2. Assume πθ is a linear-softmax policy. Then, MSE[IS(πe, H,θ)] is a convex1252

function w.r.t. θ.1253

Proof1254

Var[IS(πe, H,θ)] =E[IS(πe, H,θ)2|H ∼ πθ]− v(πe)
2

We can ignore v(πe)
2 since it is a constant and only shifts the objective. Recall from

Appendix E, that we can factor trajectory probabilities, Pr(H = h|π), into factors that
depend on π and factors that do not: Pr(H = h|π) = p(h) ∗ wπ(h).

E[IS(πe, H,θ)2|H ∼ πθ] =
∑
h∈H

Pr(H = h|πθ)IS(πe, h,θ)2

=
∑
h∈H

eln(Pr(H=h|πθ)IS(πe,h,θ)2)

=
∑
h∈H

e
ln(wπθ (h)p(h)

wπe (h)
2

wπθ
(h)2

g(h)2)

=
∑
h∈H

elnwπθ (h)+ln p(h)+lnwπe (h)2+ln g(h)2−lnwπθ (h)2

=
∑
h∈H

e

− lnwπθ (h)+ln p(h) + lnwπe(h)2 + ln g(h)2︸ ︷︷ ︸
const w.r.t.θ

(h)

=
∑
h∈H

e− lnwπθ (h)+c1(h)

=
∑
h∈H

c2(h)e− lnwπθ (h) (24)

where c1 and c2 are functions of h that are constant w.r.t. θ. Furthermore, c2(h) = ec1(h)
1255

and therefore must be positive. We next show that e− lnwπθ (h) is convex in θ. We then1256

have a linear combination of convex functions with positive weights which is itself a convex1257

function. Note that we do not have to worry about taking the log of a non-positive value.1258

For any h such that g(h), wπe(h), or wπθ(h) is zero, then Pr(H = h|πθ) ∗ IS(πe, h,θ)2 is zero1259

and can be ignored in the summation. The only potential negative value is g(h) but it is1260

squared within the logarithm and can thus be replaced with its absolute value.1261

We next introduce the following lemma that shows that − lnwπθ(h) is a convex function1262

with respect to θ.1263
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Lemma 2. Assume πθ is a linear-softmax policy. Then for wπθ(h) :=
∏l−1
t=0 πθ(at|st),1264

− lnwπθ(h) is a convex function w.r.t. θ for any trajectory h = (s0, a0, ..., sl−1, al−1).1265

Proof

− lnwπθ(h) = − ln

l−1∏
t=0

πθ(at|st)

=
l−1∑
t=0

− lnπθ(at|st). (25)

Next, we show that each − lnπθ(at|st) is convex under the linear-softmax policy param-1266

eterization:1267

− lnπθ(a|s) = ln(
∑
b∈A

eθ
T
b φ(s))− θTa φ(s)

The log-sum-exp function is convex (Boyd et al., 2004, Chapter 3, Example 3.13) and1268

subtracting a linear function does not change convexity. Thus, (25) is a sum of convex1269

functions which is convex.1270

1271

Continuing with the proof of Theorem 4, Lemma 2 implies that e− lnwπθ (h) is the1272

exponential of a convex function. The exponential of a convex function is convex (Boyd et al.,1273

2004, Chapter 3, Eq 3.11) and thus e− lnwπθ (h) is convex in θ. Finally, we have that (24) is a1274

linear combination of convex functions with positive weights. Thus, E[IS(πe, H,θ)2|H ∼ πθ]1275

is a convex function which concludes the proof.1276

1277

1278

Appendix E. Minimal-Variance Behavior Policy1279

In this appendix we prove Proposition 5 that gives a sufficient condition for a minimal-1280

variance behavior policy:1281

Proposition 5. Let wπ(h) :=
∏l−1
t=0 π(at|st). Assume ∃h̃ ∈ H such that g(h̃) · Pr(H =1282

h̃|πe) 6= 0, i.e., there is non-zero probability that πe generates a trajectory with non-zero1283

return. If ∃π ∈ Π s.t.1284

∀h ∈ H, wπ(h) = |g(h)| wπe(h)

E

[
|g(H)|

∣∣∣∣ H ∼ πe] .
then π is a minimal-variance behavior policy.1285

Proof Recall that we defined wπ(h) :=
∏l−1
t=0 π(at|st) and define p(h) := d0(s0)

∏l−1
t=1 P (st|st−1, at−1).1286

From these definitions, note that Pr(H = h|π) = wπ(h)p(h).1287
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The variance of the importance sampling estimator is:

Var

[
IS(πe, H, πb)

]
=E

[(
wπe(H)

wπb(H)
g(H)

)2 ∣∣∣∣ H ∼ πb]−E

[(
wπe(H)

wπb(H)
g(H)

) ∣∣∣∣ H ∼ πb]2

(26)

=E

[(
wπe(H)

wπb(H)
g(H)

)2 ∣∣∣∣ H ∼ πb]− v(πe)
2, (27)

where (27) follows from (26) since the IS return is unbiased (Thomas, 2015). To prove1288

Proposition 5 we need to find wπ(h) for each trajectory, h ∈ H, such that (27) is minimized1289

subject to the constraints that
∑

h∈H p(h)wπb(h) = 1 and ∀h ∈ H, wπb(h) > 0. These1290

constraints enforce that the choices for wπb(h) lead to a valid probability distribution over1291

trajectories.1292

We ignore v(πe)
2 because it is a constant that does not affect the critical points of the

variance and arrive at the constrained minimization problem:

min
wπb

∑
h∈H

Pr(H = h|πb)
(
g(h)wπe(h)

wπb(h)

)2

s.t.
∑
h∈H

p(h)wπb(h) = 1

∀h ∈ H, wπb(h) ≥ 0

We will consider a relaxed version of this minimization problem that ignores the inequality1293

constraints; as we show, doing so still leads to a feasible solution to the original problem.1294

The Lagrangian for the relaxed constrained minimization problem is:1295

L(wπb , λ) =
∑
h∈H

Pr(h|πb)
(
g(h)wπe(h)

wπb(h)

)2

+ λ

(∑
h∈H

p(h)wπb(h)− 1

)
. (28)

Differentiating with respect to wπb(h̃) for any trajectory h̃, we obtain:1296

∂

∂wπb(h̃)
L(wπb , λ) = −p(h̃)(

g(h̃)wπe(h̃)

wπb(h̃)
)2 + λp(h̃).

Setting ∂
∂wπb (h̃)

L(wπb , λ) = 0, we obtain:1297

λ?wπb?(h̃) = |g(h̃)|wπe(h̃). (29)

Observe that Equation (29) holds ∀h̃ ∈ H and thus λ? must be non-zero since |g(h̃)|wπe(h̃) >1298

0 for at least one h̃ ∈ H by assumption. Thus, we can divide both sides by λ? to obtain the1299

optimal choice of wπb(h̃):1300

wπb?(h̃) =
|g(h̃)|wπe(h̃)

λ?
. (30)

The constant λ? can be determined by ensuring the equality constraint is satisfied giving1301

λ? =
∑

h∈H p(h)wπe(h)|g(h)| = E[|g(H)||H ∼ πe]. Furthermore, this form clearly makes1302

wπb(h) positive ∀h ∈ H, satisfying the constraint that ∀h ∈ H, wπb(h) > 0. Note that in1303
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the case that g(h) = 0 for all h ∈ H that Proposition 5 gives an undefined value for wπb? .1304

However we can ignore this case as, if g(h) = 0 for all h ∈ H, then the variance of the1305

IS-estimator is trivially zero for any choice of behavior policy.1306

So far we have found a critical point for the Lagrangian given by (28). In order to
establish that this critical point is indeed a global minimum we show that no other choice
for wπb has lower variance than wπb? .

Var[IS(πe, H, πb
?)] = E

[(
wπe(H)

wπb?(H)
g(H)

)2 ∣∣∣∣ H ∼ πb?]− v(πe)
2 (31)

= E

[
|g(H)|

∣∣∣∣ H ∼ πe]2

E

[(
g(H)

|g(H)|

)2

︸ ︷︷ ︸
=1

∣∣∣∣ H ∼ πb?]− v(πe)
2 (32)

= E

[
|g(H)|

∣∣∣∣ H ∼ πe]2

− v(πe)
2 (33)

= E

[
wπe(H)

wπb(H)
|g(H)|

∣∣∣∣ H ∼ πb]2

− v(πe)
2 (34)

≤ E

[(
wπe(H)

wπb(H)
|g(H)|

)2 ∣∣∣∣ H ∼ πb]− v(πe)
2

= Var[IS(πe, H, πb)] (35)

where (32) follows (31) by plugging in the solution for wπb? given by (30) and factoring1307

out the constant λ, (33) follows from (32) because the expected value of 1 is 1 under any1308

distribution, (34) follows (33) by using importance sampling to change the expectation to1309

be in terms of trajectories from any behavior policy πb instead of πe, and the inequality1310

follows from Jensen’s inequality. Finally, we can drop the absolute value in (35) because1311

it is squared. Thus we can conclude that Var[IS(πe, H, πb
?)] ≤ Var[IS(πe, H, πb)] for any1312

behavior policy πb.1313

1314

Appendix F. Behavior Policy Gradient of the KL1315

In this appendix we derive Theorem 3, which gives the gradient, with respect to the policy1316

parameters, of the KL-divergence between the distribution of trajectories under a minimal-1317

variance behavior policy, Pr(H|πb?), and the distribution of trajectories under πθ, Pr(H|πθ).1318

This gradient is:1319

Theorem 3 (Behavior Policy Gradient of the KL-Divergence).

∂

∂θ
DKL(Pr(H|πb?)||Pr(H|πθ)) ∝ E

[
−
∣∣∣∣IS(πe, H, πθ)

∣∣∣∣ l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]
.

Proof From Proposition 5 we know that a minimal-variance behavior policy is any policy,1320

πb
?, that satisfies the condition:1321

∀h ∈ H, wπb?(h) = |g(h)| wπe(h)

E[|g(H)||H ∼ πe]
.
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The KL-divergence between two probability distributions p and q with shared support
is defined to be DKL(p, q) := E[log(p(X)

q(X))|X ∼ p]. Thus, the KL-divergence between the
trajectory distribution of any minimal-variance behavior policy and that of the current
behavior policy πθ is given by:

DKL(Pr(H|πb?)||Pr(H|πθ)) = E

[
log

Pr(H|πb?)
Pr(H|πθ)

∣∣∣∣H ∼ πb?]
= E

[
log

wπb?(H)

wθ(H)

∣∣∣∣H ∼ πb?] .
Using Proposition 5 and defining λ := E[|g(H)||H ∼ πe], we can expand the w?πb(H) terms:

DKL(Pr(H|πb?)||Pr(H|πθ)) = E

[
logwπe

(H)− logwπθ
(H) + log |g(H)| − log λ

∣∣∣∣ H ∼ πb?]
=
∑
h∈H

Pr(h|πe)
|g(h)|
λ

(
logwπe(H)− logwπθ

(H) + log |g(H)| − log λ

)
=

1

λ
E

[
|g(H)|

(
logwπe

(H)− logwπθ
(H) + log |g(H)| − log λ

) ∣∣∣∣ H ∼ πe]
=

1

λ
E

[
−|g(H)| logwπθ

(H)

∣∣∣∣ H ∼ πe]
+

1

λ
E

[
|g(H)|(logwπe(H) + log |g(H)| − log λ)

∣∣∣∣ H ∼ πe]︸ ︷︷ ︸
const w.r.t. θ

.

1322

Differentiating with respect to θ, we obtain:

∂

∂θ
DKL(Pr(H|πb?)||Pr(H|πθ)) ∝ E

[
−|g(H)| ∂

∂θ
logwπθ(H)

∣∣∣∣H ∼ πe]
= E

[
−|g(H)|

l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πe
]

= E

[
−|IS(πe, H, πθ)|

l−1∑
t=0

∂

∂θ
log πθ(At|St)

∣∣∣∣∣H ∼ πθ
]

where the second step uses the multi-factor product rule and the final step uses importance1323

sampling to convert from an expectation under πe to one under πθ.1324

1325

Appendix G. Convergence of BPG-KL1326

In this section, we prove that BPG-KL (Algorithm 2) converges under an appropriately1327

chosen step-size.1328

Proposition 6. Under Assumption 1 and Assumption 3, BPG-KL converges. That is,1329

DKL(Pr(H|πb?)||Pr(H|πθ)) converges to a finite value and limi→∞
∂
∂θDKL(Pr(H|πb?)||Pr(H|πθ)) =1330

0.1331
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Proof Similar to Proposition 4, the proof follows from an application of Proposition 3 in1332

Bertsekas and Tsitsiklis (2000). A minor nuance for Proposition 6 is that BPG-KL does not1333

use unbiased estimates of the true KL-gradient but uses unbiased estimates of an expression1334

that is just proportional to the true KL-gradient. However, the proportionality constant is1335

fixed with respect to θ and so we can ignore it when showing convergence.1336

To apply Proposition 3 in Bertsekas and Tsitsiklis (2000), we must show the following1337

conditions:1338

1. DKL(Pr(H|πb?)||Pr(H|πθ)) is continuously differentiable w.r.t. θ.1339

2. The gradient of the KL objective, ∂
∂θDKL(Pr(H|πb?)||Pr(H|πθ)), is Lipschitz continuous1340

w.r.t. θ.1341

3. The gradient estimate used by BPG-KL has bounded variance.1342

Theorem 3 gives us an expression that is proportional to ∂
∂θDKL(Pr(H|πb?)||Pr(H|πθ)) which1343

can be seen to be continuously differentiable under our assumption that πθ is continuously1344

differentiable and Assumption 1 which implies that IS(πe, H, πθ) is bounded.1345

We next show that the KL objective has bounded second derivative which implies the
Lipschitz continuity of ∂

∂θDKL(Pr(H|πb?)||Pr(H|πθ)).

∂2

∂2θ
DKL(Pr(H|πb?)||Pr(H|πθ)) =

∂

∂θ
E

−|IS(πe, H, πθ)|
l−1∑
t=0

∂

∂θ
log πθ(At|St)︸ ︷︷ ︸

∂
∂θ

logwθ(H)

∣∣∣∣∣∣∣∣∣∣∣
H ∼ πθ


=
∂

∂θ

∑
h∈H
−p(h)wπe(h)|g(h)| ∂

∂θ
logwθ(h)

=
∑
h∈H
−p(h)wπe(h)|g(h)| ∂

2

∂2θ
logwθ(h)

=
∑
h∈H
−p(h)wπe(h)|g(h)|

l−1∑
t=0

∂

∂θ

∂
∂θπθ(at|st)
πθ(at|st)

=
∑
h∈H
−p(h)wπe(h)|g(h)|·

·
l−1∑
t=0

πθ(at|st) ∂2

∂2θ
πθ(at|st)− ( ∂

∂θπθ(at|st))2

πθ(at|st)2
(36)

The denominator in (36) cannot be zero as otherwise wθ(h) would be zero and the cor-1346

responding trajectory could be ignored in the expectation. Furthermore, by construct,1347

∂
∂θπθ(at|st) and ∂2

∂2θ
πθ(at|st) exist and are bounded. Thus we conclude that the first and1348

second derivative of the KL objective exist and the first derivative is Lipschitz.1349

Finally, we have to show that the variance of the gradient estimate used by BPG-KL is
bounded. To do so, we show that the gradient estimate with any single trajectory is bounded
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which implies the variance of the estimates used by BPG-KL is bounded. For any trajectory
h, collected by following πθ, an unbiased estimate of the KL gradient estimate is given as:

∂

∂θ
DKL(Pr(H|πb?)||Pr(H|πθ)) ≈ −|IS(πe, h, πθ)|

l−1∑
t=0

∂

∂θ
log πθ(at|st)

(a)
= −wπe(h)|g(h)|

wπθ(h)

∂

∂θ
logwπθ(h)

(b)
= −wπe(h)|g(h)|

wπθ(h)

∂
∂θwπθ(h)

wπθ(h)

= −wπe(h)|g(h)|
wπθ(h)2

∂

∂θ
wπθ(h) (37)

where (a) uses wπ(h) =
∏l−1
t=0 π(at|st) and (b) uses the likelihood-ratio trick. On the RHS1350

of Equation (37), wπe (h)|g(h)|
wπθ (h)2

is bounded under Assumption 1 and ∂
∂θwπθ(h) was shown to1351

be bounded in Equation (22). Thus we conclude that the variance of the gradient estimate1352

used by BPG-KL is bounded. Proposition 6 now follows from Proposition 3 of (Bertsekas1353

and Tsitsiklis, 2000).1354

1355

1356

Appendix H. Convexity of KL-Divergence Objective1357

In this appendix, we prove that, when πθ is a linear-softmax policy, then the objective1358

minimized by BPG-KL is convex in the policy parameters. Thus, BPG-KL is guaranteed1359

to converge to the parameter vector that minimizes the KL divergence with the minimal-1360

variance behavior policy under standard stochastic gradient descent step-size conditions1361

(Bertsekas and Tsitsiklis, 2000).1362

Theorem 4. Assume πθ is a linear-softmax policy. Then, DKL(Pr(H|πb?)||Pr(H|πθ)) is a1363

convex function w.r.t. θ.1364

Proof1365

Recall that for the minimal-variance behavior policy we have:1366

wπb?(h) =
|g(h)|wπe(h)

λ
,

where λ = E[|g(H)||H ∼ πθ].1367
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The KL-divergence between the minimal-variance behavior policy and policy πθ is given
as:

DKL(Pr(H|πb?)||Pr(H|πθ)) = E

[
log

Pr(H|πb?)
Pr(H|πθ)

∣∣∣∣H ∼ πb?]
= E

[
log

wπb?(H)

wπθ(H)

∣∣∣∣H ∼ πb?] .
=
∑
h∈H

Pr(H = h|πb?) log
|g(h)|wπe(h)

wπθ(h)λ

=
∑
h∈H

p(h)
|g(h)|
λ

wπe(h)︸ ︷︷ ︸
const w.r.t. θ

log
|g(h)|wπe(h)

wπθ(h)λ

=
∑
h∈H

c1(h)(log(
|g(h)|
λ

wπe(h))− logwπθ(h))

=
∑
h∈H
−c3(h) logwπθ(h) + c2(h) (38)

Functions c1, c2, and c3 are positive for any h and constant with respect to θ. Lemma 21368

says that − logwπθ(h) is convex w.r.t θ. Thus, (38) is a weighted sum of convex functions1369

with positive weights which is itself convex. Thus the KL-divergence objective optimized1370

by BPG-KL is convex with respect to θ. An interesting observation from the proof is that1371

the KL-divergence between the trajectory distribution of πθ and any trajectory distribution1372

that does not depend on θ is also a convex function (under the assumption that πθ is a1373

linear-softmax policy).1374

1375

1376
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