
SaVeR: Optimal Data Collection Strategy for Safe Policy Evaluation in Tabular
MDP

Subhojyoti Mukherjee 1 Josiah P. Hanna 2 Robert Nowak 1

Abstract

In this paper, we study safe data collection for the
purpose of policy evaluation in tabular Markov
decision processes (MDPs). In policy evaluation,
we are given a target policy and asked to estimate
the expected cumulative reward it will obtain. Pol-
icy evaluation requires data and we are interested
in the question of what behavior policy should
collect the data for the most accurate evaluation
of the target policy. While prior work has con-
sidered behavior policy selection, in this paper,
we additionally consider a safety constraint on
the behavior policy. Namely, we assume there
exists a known default policy that incurs a par-
ticular expected cost when run and we enforce
that the cumulative cost of all behavior policies
ran is better than a constant factor of the cost that
would be incurred had we always run the default
policy. We first show that there exists a class of
intractable MDPs where no safe oracle algorithm
with knowledge about problem parameters can
efficiently collect data and satisfy the safety con-
straints. We then define the tractability condition
for an MDP such that a safe oracle algorithm can
efficiently collect data and using that we prove
the first lower bound for this setting. We then
introduce an algorithm SaVeR for this problem
that approximates the safe oracle algorithm and
bound the finite-sample mean squared error of
the algorithm while ensuring it satisfies the safety
constraint. Finally, we show in simulations that
SaVeR produces low MSE policy evaluation while
satisfying the safety constraint.

1Department of Electrical and Computer Engineering, Uni-
versity of Wisconsin-Madison, Madison, USA 2Computer Sci-
ences Department, University of Wisconsin-Madison, Madison,
USA. Correspondence to: Subhojyoti Mukherjee <smukher-
jee27@wisc.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Reinforcement learning has emerged as a powerful tool
for decision-making in a wide range of applications, from
robotics (Ibarz et al., 2021; Agarwal et al., 2022) and game-
playing (Szita, 2012) to autonomous driving (Kiran et al.,
2021), web-marketing (Bottou et al., 2013), healthcare (Fis-
cher, 2018; Yu et al., 2019) and finance (Hambly et al.,
2021). However, in these applications, it is often necessary
to first evaluate the decision-making policy before its long-
term deployment in the real world. In fact, policy evaluation
is a critical step in reinforcement learning, as it allows us to
assess the quality of a learned policy and to check whether
it can truly achieve the desired goal for the target task. One
potential solution to this issue is off-policy evaluation (OPE)
(Dudı́k et al., 2014; Li et al., 2015; Swaminathan et al., 2017;
Wang et al., 2017; Su et al., 2020; Kallus et al., 2021; Cai
et al., 2021). However, for OPE estimators there is no con-
trol over how the static dataset is generated, which could
result in low accuracy estimates.

Hence, a natural idea is to actively gather the dataset using
an adaptive behavior policy and thus increase accuracy in
the evaluation of the target policy’s value. In many real-
world settings, the behavior policy itself must satisfy some
side constraints (specific to the industry) (Wu et al., 2016)
or safety constraints (Wan et al., 2022) while collecting
the dataset. For instance, in web marketing, it is common
to run an A/B test with safety constraints over a subset of
all users before a potential new policy is deployed for all
users (Kohavi and Longbotham, 2017; Tucker and Joachims,
2022). While testing autonomous vehicles it is quite natural
to incorporate safety constraints in the behavior policy. So
it is of great practical importance to ensure that our data
collection rule is safe (Zhu and Kveton, 2022).

In this paper, we consider the question of optimal data col-
lection for policy evaluation under safety constraints in the
tabular reinforcement learning (RL) setting. Consider the
following scenario that could arise in web marketing. Sup-
pose we have a policy learned from offline data that has
never been run in a real application. Moreover, we want
this learned policy to be at least as good as a baseline policy
that is already deployed in the application (Wu et al., 2016;
Zhu and Kveton, 2021; 2022). Off-policy evaluation often
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has high variance, so engineers may want to have some
controlled deployment where the learned policy only makes
decisions for some users before letting the policy make de-
cisions for all users. We are motivated by how to make this
controlled deployment as data-efficient and safe as possible.
By safe, we mean that we want the expected return seen
during data collection to remain close to the expected return
under the baseline policy. A similar motivation can be found
in Tucker and Joachims (2022). In this paper, we focus on
finding a behavior policy that produces a minimal variance
estimate while remaining safe. We can state this formally
as follows: We are given a target policy, π, for which we
want to estimate its value denoted by V π(s1). To estimate
V π(s1) we will generate a set of K episodes where each
episodic interaction ends after L timesteps. We denote the
total available budget of samples as n = KL. Each episode
is generated by following some behavior policy and collect
the dataset D. Let Y π

n (s1) be the estimate of V π(s1) com-
puted fromD. Then our objective is to determine a sequence
of behavior policies that minimizes error in the estimation
of V π(s1) defined as ED[(Y

π
n (s1)− V π(s1))

2] subject to
a safety constraint on the cost-value of the behavior policies
(to be defined later) that must hold with high probability.

There is a growing body of literature studying this impor-
tant problem of data collection for policy evaluation in both
constrained and unconstrained setups. The work of Antos
et al. (2008); Carpentier and Munos (2011; 2012); Carpen-
tier et al. (2015); Fontaine et al. (2021); Mukherjee et al.
(2022a; 2024) studies this problem in the bandit setting
without any constraints under the finite sample regime. A
common metric of performance that these works consider
is the difference between the loss of the agnostic algorithm
that does not know problem-dependent parameters, and the
oracle loss (which has access to problem-dependent param-
eters). This metric is termed regret and these works show
that in the bandit setting the regret of the agnostic algorithm
scales as Õ(n−3/2) where Õ(·) hides log factors. One might
be tempted to just run the target policy π, build D and then
estimate Y π

n (s1). This is called on-policy data collection.
However, these works show that the on-policy regret de-
grades at a much slower rate of Õ(n−1) compared to active
agnostic algorithms. Hence, a natural question arises, can
we achieve similar performance for policy evaluation in the
MDP setup under a finite sample regime even when we must
conform to safety constraints? Thus, the goal of our work is
to answer the following questions:

1) Is there a class of MDPs where it is possible to
incur a regret that degrades at a faster rate than
Õ(n−1)? while satisfying safety constraints?

2) If the answer is yes to (1), can we de-
sign an adaptive algorithm (for this class of
MDPs) to collect data for policy evaluation

that does not violate the safety constraints (in
expectation), and its regret degrades at a faster
rate than Õ(n−1)?

In this paper, we answer these questions affirmatively. Re-
garding the first question, we state the tractability condition
on the class of MDPs which enables the optimal behavior
policy to gather data for policy evaluation without violating
the safety constraint and suffer a regret of Õ(n−3/2). This
condition leads to the first lower bound for this setting.

We also note that safe data collection for policy evaluation
has also been studied in the bandit setting in Zhu and Kve-
ton (2021; 2022). However, these works provide asymptotic
guarantees whereas we are the first to provide finite-time
regret guarantees when per-step constraints must be main-
tained in expectation. We also show that in the bandit setup,
our method empirically outperforms the adaptive impor-
tance sampling based algorithms in these works. Our formu-
lation is also related to constrained MDPs though we specify
that the constraint must be satisfied throughout learning and
not just by the final policy (Efroni et al., 2020; Vaswani et al.,
2022). We discuss further related works in Appendix A.1.

Our main contributions are as follows:

(1) We formulate the problem of safe data collection for
policy evaluation. We introduce the safety constraint such
that at the end of n trajectories, the cumulative cost is above
a constant factor of the baseline cost. To our knowledge,
this is the first work to study this setting under such a safety
constraint in the MDP setup with the goal of minimizing the
estimate of the MSE of the target policy’s expected reward.

(2) We then show that even in the special case of finite
tree-structured MDPs the safe data collection for policy
evaluation can be intractable. Then we come up with a
condition on MDPs that enables any behavior policy to
collect data without violating safety constraints. We also
provide the first regret lower bound for the bandit and Tree
MDP setting and show that it scales with Ω(n−3/2).

(3) We then consider an oracle strategy that knows the re-
ward variances (problem-dependent parameter) of the re-
ward distributions and derives its sampling strategy. We then
introduce the agnostic algorithm Safe Variance Reduction
(SaVeR) that does not know the problem-dependent parame-
ters and show that its regret scales as Õ(n−3/2). We evalu-
ate its performance against other baseline approaches and
show that SaVeR reduces MSE faster while satisfying the
safety constraint.

2. Preliminaries
We consider the standard finite-horizon Markov Decision
process, M, with both a reward and constraint function.
Formally,M, is a tuple (S,A, P,R,C, γ, d0, L), where S

2



SaVeR: Optimal Data Collection Strategy for Safe Policy Evaluation in Tabular MDP

is a finite set of states, A is a finite set of actions, P : S ×
A×S → [0, 1] is a state transition function, R is the reward
function (formalized below), C is the constraint function
(formalized below), γ ∈ [0, 1) is the discount factor, d0
is the starting state distribution, and L is the maximum
episode length. A (stationary) policy, π : S × A → [0, 1],
is a probability distribution over actions conditioned on a
given state. We assume data can only be collected through
episodic interaction: an agent begins in state s1 ∼ d0 and
then at each step t takes an action at ∼ π(·|st) and proceeds
to state st+1 ∼ P (·|st, at).

When the agent takes an action, a, in state, s, it re-
ceives both a reward R ∼ R(s, a) and a constraint value
C ∼ C(s, a). We assume the transition model P is
known but the reward distributions and constraint values
are unknown. We define the reward value of a policy as:
V π(s1) := Eπ[

∑n
t=1 γ

t−1Rt], where Eπ is the expecta-
tion w.r.t. trajectories sampled by following π from the
initial state s1. We define a constraint-value of π similarly:
V π
c (s1) := Eπ[

∑n
t=1 γ

t−1Ct]. For simplicity, let the initial
state distribution has probability mass on a single state s1.

Our goal is to efficiently estimate V π(s1) for a given policy
π and this estimation requires data from the environment
MDP. Past work has approached this problem by designing
a sequence of behavior policies which are ran to produce
informative data for evaluating π. However, in practical
applications, it is often infeasible to simply run any behav-
ior policy as doing so may violate domain constraints. We
formalize this constraint by first assuming the existence
of a safe baseline policy, π0 that provides an acceptable
constraint-value V π0

c (s1). Our objective is to determine a
sequence of behavior policies, {b1, ..,bK}, that will pro-
duce a set of K episodes that lead to the most accurate
estimate of V π(s1) subject to the constraint that the cumu-
lative expected constraint-value V b

c (s1) always exceeds a
fixed percentage of V π0

c (s1). We consider the objective:

min
b

ED[(Y
π
n (s1)− V π(s1))

2
] (1)

s.t.
k∑

k′=1

V bk′

c (s1) ≥ (1− α)kV π0
c (s1) for all k ∈ [K]

where Yn(s1) is our estimate of V π(s1), α ∈ (0, 1] is the
risk parameter, and the expectation is over the collected data
set D. We also make the following simplifying assumption.
We assume π0 is deterministic, i.e., will only select one
action in any given state. W.l.o.g., we give this action the
index 0 and refer to it as the safe action. The entire action
set is A = {0, 1, . . . , A}. This assumption is reasonable
in applications where existing, safe policies were created
through non-learning methods or manually designed.

For analysis, we will estimate V π(s1) with a certainty-
equivalence estimator. We define the random vari-

able representing the estimated future reward from state
s at time-step ℓ as Y π

n (s, ℓ) :=
∑

a π(a|s)µ̂n(s, a) +

γ
∑

s′ P̂n(s
′|s, a)Y π

n (s′, ℓ + 1) where Y π
n (s, ℓ + 1):=0 if

ℓ≥L, and µ̂n(s, a) is an estimate of µ(s, a), both computed
from D. Finally, the estimate of V π(s1) is computed as
Y π
n (s1) :=

∑
s d0(s1)Y

π
n (s1, 0). Note that the total avail-

able budget of samples is n. We assume that there are K
episodes and each episodic interaction terminates in at most
L steps which implies n = KL.

We assume V b
c (s1) is known for b = π0 but not for any

other policy. The constraint in (1) implies that the total
constraint value over all deployed behavior policies should
be above the total constraint value that can be obtained from
the baseline policy π0 till episode k with high probabil-
ity. Observe that small values of α force the learner to be
highly conservative, whereas larger α values correspond to
a weaker constraint. A similar setting has been studied for
policy improvement by Wu et al. (2016); Yang et al. (2021)
for a variety of sequential decision-making settings. How-
ever, our objective is policy evaluation and we formulate a
more general safety constraint in terms of C(·) while these
prior works define the constraint in terms of R(·).

Similar to the recent works of Chowdhury et al. (2021);
Ouhamma et al. (2023); Agarwal et al. (2019); Lattimore
and Szepesvári (2020) we assume the reward function
R(s, a) = N (µ(s, a), σ2(s, a)), where N denotes a Gaus-
sian distribution with mean µ(s, a) and variance σ2(s, a).
Similarly we assume a constraint function C(s, a) =
N (µc(s, a), σc,(2)(s, a)), where µc(s, a) and σc,(2)(s, a)
are the mean and variance of N (·). Note that this sub-
Gaussian distribution assumption is required only for the-
oretical analysis, whereas our algorithm works for any
bounded reward and cost functions. We assume that we have
bounded reward and constraint mean µ(s, a), µc(s, a) ∈
[0, η] respectively. Finally, we define the MSE of a behavior
policy b for the target policy π at the end of budget n as

Ln(π,b) = ED[(Y
π
n (s1)− V π(s1))

2
] (2)

where the expectation is over dataset D which is collected
by b. Our main objective is to minimize the cumulative
regretRn subject to the safety constraint defined in (1). To
defineRn we first define the MSE of a safe oracle behavior
policy bk

∗ that collects the dataset D as L∗
n(π,b

k
∗). We will

formally describe such oracle policies in Section 3. Then
the regretRn is defined as

Rn = Ln(π,b)− L∗
n(π,b

k
∗). (3)

3. Intractability and Lower Bounds
In this section, we first define an oracle data collection
strategy that ignores the constraints. We call this the uncon-
strained oracle. This oracle data collection algorithm can
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reach a regret bound of Õ(n−3/2) in the unconstrained set-
ting (Carpentier and Munos, 2012; Carpentier et al., 2015;
Mukherjee et al., 2022a). We then show how data collection
for policy evaluation under safety constraints in MDPs is
challenging compared to standard policy improvement chal-
lenges in constrained MDPs (Efroni et al., 2020; Vaswani
et al., 2022) as well as safe data collection for policy evalu-
ation in bandits (Zhu and Kveton, 2021; Wan et al., 2022;
Zhu and Kveton, 2022). To show this challenging aspect, we
first discuss how the unconstrained oracle fails to satisfy the
constraint and achieve the desired regret of Õ(n−3/2) in the
constraint MDP setting. We then propose a safe variant of
the oracle policy and finally, discuss a tractability condition
that enables the safe oracle algorithm to achieve a regret
bound of Õ(n−3/2).

3.1. Unconstrained Oracle

In this section, we discuss the unconstrained oracle data
collection strategy that knows the variances of reward
and constraint value but does not know the mean of ei-
ther. Moreover, this oracle does not take into account
the safety constraints in (1). After observing n samples
(state-action-reward tuples), the oracle computes the esti-
mate of V π(s11) as Y π

n (s11) =
∑A

a=1 π(a|s11)
(
µ̂n(s

1
1, a) +∑

sℓ+1
j

P (s2j |s11, a)Yn(s
2
j )
)
. Note that we defined Y π

n (s, ℓ)

before, but now we use Y π
n (s) and assume the timestep is

implicit in the state for this finite-horizon MDP. Mukherjee
et al. (2022a) shows that in the unconstrained setting, to
reduce the Var(Y π

n (s11)) the optimal sampling proportion
of the oracle for any state sℓi is:

b∗(a|sℓi) ∝
(
π2(a|sℓi)

[
σ2(sℓi , a)

+
∑
sℓ+1
j

P (sℓ+1
j |sℓi , a)M2(sℓ+1

j )
]) 1

2 (4)

where, M(sℓj) is the normalization factor defined as follows:

M(sℓi) =
∑
a

(
π2(a|sℓi)

(
σ2(sℓi , a)

+
∑
sℓ+1
j

P (sℓ+1
j |sℓi , a)M2(sℓ+1

j )
)) 1

2 . (5)

Observe from the definition of b∗(a|sℓi) that the optimal pro-
portion in the terminal states, i.e. b∗(a|sLj ), do not affect
subsequent states and only depends on the target probabil-
ity π2(a|sℓi) and variance σ2(sℓi , a). The key difference is
in the non-terminal states, sL−1

i , where the optimal action
proportion, b∗(a|sL−1

i ) depends on the expected terminal
state normalization factor M(sLj ) where sLj is a state sam-
pled from P (·|sL−1

i , a). The normalization factor, M(sLj ),
captures the total contribution of state sLj to the variance of
Y π
n (sL−1

j ) and thus actions in the starting state must be cho-
sen to 1) reduce variance in the immediate reward estimate

and to 2) get to states that contribute more to the variance
of the estimate. This observation is also noted in Mukher-
jee et al. (2022a). Finally, since b∗(a|s) also depends on
P (s′|s, a), it will put a low sampling proportion on actions
a leading to such s′ which has low transition probabilities.

3.2. Safe Oracle Algorithm for Safe Data Collection

The behavior policy defined in the previous section ignores
the safety constraint and is thus inapplicable to our problem
setting. In this section, we describe a safe variant of this or-
acle. We define a few notations before introducing the safe
algorithm. Let T k

ℓ (s, a) :=
∑k−1

k′=1

∑ℓ−1
ℓ′=1 1{Sk′

ℓ′ =s,Ak′

ℓ′ =
a} be the number of times (s, a) is visited before episode k.
Let the mean reward estimate of (s, a) till episode k be com-
puted as µ̂k

ℓ (s, a) := (T k
ℓ (s, a))

−1
∑k−1

k′=1

∑ℓ−1
ℓ′=1 1{Sk′

ℓ′ =

s,Ak′

ℓ′ = a}Rk′

ℓ′ , where Rk′

ℓ′ is the observed reward. Simi-
larly define the constraint-values estimate µ̂k

c,ℓ(s, a) based
on constraint value Ck

ℓ . Define the confidence inter-
val at the timestep L of k-th episode as βk

L(s, a) :=

L
√

log(SAn(n+ 1))/T k
L(s, a) (Agarwal et al., 2019).

Let Y bk

c,L(s
1
1) =

∑A
a=1 b

k(a|s11)
(
µ̂k
c,L(s

1
1, a) +∑

sℓ+1
j

P (s2j |s11, a)Y bk

c,L(s
2
j )
)

denote the empirical estimate

of V bk

c (s11) at the end of the k-th episode, and µ̂k
c,L(s, a)

is the empirical estimate of µc(s, a) at the end of the k-th
episode. Note that the oracle algorithm knows the variances
of reward R(·) and constraint-value C(·). Using this knowl-
edge, it maintains a safety budget Ẑk−1

L where Ẑk−1
L :=∑k−1

k′=1(Y
bk′

c,L (s11) − βk′

L (s, a)) − (1 − α)(k − 1)V π0
c (s11)

is the safety budget at the end the k − 1-th episode. The
Y bk

c,L(s
1
1) = Y bk

c,L(s
1
1) − βk

L(s, a) is the lower confidence

bound to the Y bk

c,L(s
1
1).

Exploration policy πx: We require an exploration policy
πx as the oracle algorithm needs a good estimation of the
constraint-value µc(s, a) and following the oracle propor-
tion b∗(a|s) may not lead to a good estimation of µc(s, a).
This exploration policy should ensure with high probability
that the estimation error of µc(s, a) is low in each (s, a) for
which π(a|s) > 0 and can be an optimal design based policy
like PEDEL that explores the state space informatively (Wa-
genmaker and Jamieson, 2022) or other exploration policies
(e.g., Dann et al. (2019); Ménard et al. (2020); Uehara et al.
(2021)).

We now state the following safe oracle algorithm: At the
k-th episode run the policy

bk
∗ =


b∗, if Ẑk−1

L ≥ 0, k >
√
K

π0 if Ẑk−1
L < 0

πx, if Ẑk−1
L ≥ 0, k ≤

√
K

. (6)

The safe oracle algorithm in (6) alternates between the op-
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timal oracle policy b∗ in (4) when the safety budget Ẑk−1
L

at the start of the episode k is greater than 0, otherwise it
falls back to running the baseline policy π0. Additionally,
the safe oracle conducts forced exploration for at most

√
K

episodes when Ẑk−1
L ≥ 0 using the exploration policy πx

to estimate µc(s, a). This is because following the oracle
proportion b∗ in (4) that samples high variance state-action
tuples may not lead to a good estimate of µc(s, a).

3.3. An Intractable MDP

In this section, we now show that there exist MDPs where
even a safe oracle algorithm may not be able to reach the
desired Õ(n−3/2) regret bound. We then introduce the
tractability condition which depends on the budget as the b∗
needs to be run sufficient number of times to reach a regret
of Õ(n−3/2). So a more benign MDP allows one to run b∗
most of the time whereas a less benign MDP allows you to
play b∗ less. Hence tractability depends on the budget being
sufficiently large and also depends on properties of the MDP
and the risk parameter α. To show this challenging aspect
of safe data collection, we first define a Tree MDP. Using
Tree MDPs to analyze the hardness of learning in MDPs and
deriving lower bounds is common in the literature (Jiang
and Li, 2016; Weisz et al., 2021; Wagenmaker et al., 2022;
Jin et al., 2022). The tree MDP is defined as follows:

Definition 3.1. (Tree MDP) An MDP is a discrete tree
MDP T ⊂M in which: (1) There are L levels indexed by
ℓ where ℓ = 1, 2, . . . , L. (2) Every state is represented as
sℓi where ℓ is the level of the state s indexed by i. (3) The
transition probabilities are such that one can only transition
from a state in level ℓ to one in level ℓ + 1 and each non-
initial state can only be reached through one other state and
only one action in that state. Formally, ∀s′, P (s′|s, a) ̸= 0
for only one state-action pair s, a and if s′ is in level ℓ+ 1
then s is in level ℓ. Finally, P (sL+1

j |sLi , a) = 0,∀a. (4)
For simplicity, we assume that there is a single starting
state s11 (called the root). It is easy to extend our results to
multiple starting states with a starting state distribution, d0,
by assuming that there is only one action available in the
root that leads to each possible start state, s, with probability
d0(s). The leaf states are denoted as sLi . (5) The interaction
stops after L steps in state sLi after taking an action a.

Proposition 1. Fix an arbitrary n > 0. Then there ex-
ists an environment where no algorithm (including the
safe oracle bk

∗) can be run that will result in a regret
Rn = Ln(π,b

∗
k) − L∗

n(π,b∗) of Õ(n−3/2) while satis-
fying the safety constraint, where b∗ is the unconstrained
oracle.

Proof (Overview) We first construct a worst-case 3 armed
bandit environment (MDP with single state) such that
µc(0) = 0.5, µc(1) = 0.5 + α, µc(2) = 0 and variance of
σr,(2)(0) = 0.001, σr,(2)(1) = 0.001 and σr,(2)(2) = 0.25.

So action {2} has low constraint value (unsafe) but has high
variance. So the safe oracle policy must sample the action
2 a large number of times to reach a regret of Õ(n−3/2).
However, since action {2} is unsafe, the safe oracle has to
sample baseline action 0 a sufficient number of times to
accrue some safety budget. Combining these two observa-
tions we show that achieving a regret rate of Õ(n−3/2) is
impossible. The full proof is in Appendix B.

The key reason the above environment is intractable is that
some trajectories taken by safe oracle has very less con-
straint value associated with them, compared to the trajec-
tory taken by the baseline policy. To rule out such patholog-
ical MDPs, we define the tractability condition as follows:
Let b− be any behavior policy that minimizes V c

b (s1). De-
fine V c

b−(s1) as the value of the policy b− starting from
state s1. This policy b− suffers a value V c

b−(s1) that is
lower than any other behavior policy b. So this policy b−

can be thought of as the worst possible behavior policy that
can be followed by the agent during an episode. Then the
tractability condition states that

√
n ≥

1
α

(
1− V c

b− (s1)

V c
π0

(s1)

)
Cσ

α

(
1−

V c
b− (s1)

V c
π0

(s1)

)
− 1

(7)

where Cσ ∈ (0, 1) is a MDP dependent parameter that
depends on the reward variance of state-action pairs such
that Cσ

α

(
1− V c

b− (s1)

V c
π0

(s1)

)
− 1 > 0. The quantity Cσ =

maxs,a
b∗(a|s)
M(s) where b∗(a|s) and M(s) are defined in (4)

and (5) respectively. So Cσ ∈ (0, 1) and it captures the
worst case trajectory that can be followed by b∗.

This condition gives us (1) the lower bound to the budget n
to run the behavior policy b− to achieve a regret bound of
Õ(n−3/2) and satisfy the safety constraint; (2) V c

b−(s1) <
V c
π0
(s1) so that the RHS is positive, (3) depends on the

reward variance of state action pairs in the MDP so that
Cσ

α

(
1− V c

b− (s1)

V c
π0

(s1)

)
−1 > 0, and (4) for smaller α (high risk)

the R.H.S increases which increases the required budget n.
We further discuss how this condition in (7) is derived in
Remark B.1. Then we define the following assumption.

Assumption 3.2. (Tractability) We assume a sufficiently
large budget n and an MDPM that satisfies the constraint
in (7). We call such an MDPM tractable.

Assumption 3.2 ensures that even the worst possible be-
havior policy b− that can reach a regret of Õ(n−3/2) has
sufficient budget n to satisfy the safety constraint. Moving
forward, we will define regret relative to this safe oracle bK

∗
instead of the unconstrained oracle. Furthermore, we as-
sume tractability in (3.2) such that the safe oracle decreases
MSE at a comparable rate to the unconstrained oracle b∗.
Define the reward regret as Rn = Ln(π,b) − L∗

n(π,b
k
∗)

5
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where L∗
n(π,b

k
∗) is the safe oracle MSE, and Ln(π,b) is

the agnostic algorithm MSE that does not know reward or
constraint-value variances. Now we present the first general
lower bound theorem for the safe data collection strategy in
MDPs.

Theorem 1. (Lower Bounds) Let π(a|s) = 1
A for each state

s ∈ S . Under Assumption 3.2 the regretRn = Ln(π,b)−
L∗
n(π,b

k
∗) is lower bounded by

E [Rn] ≥


Ω

(
max

{
A1/3

n3/2 ,

(
H2

∗,(1)A
2/3

n3/2

)})
, (MAB)

Ω

(
max

{√
SAL2

n3/2 ,

(
H2

∗,(1)SAL2

n3/2

)})
(MDP)

where, ∆0 = V b∗
c (s11) − V π0

c (s11) and H∗,(1) =
1

αV
π0
c (s11)

(αV π0
c (s11) + ∆0) is the hardness parameter.

Discussion: Theorem 1 shows that in the constrained setting
the lower bound scales as Ω(H2

∗,(1)n
−3/2). Note that we can

recover the lower bound for the unconstrained setting using
this result. In the unconstrained bandit setting the bound
scales as O

(
A1/3n−3/2

)
which matches the lower bound

of Carpentier and Munos (2012) (see their Theorem 5). We
also establish the first lower bound for the unconstrained
setting in data collection for policy evaluation in the tabular
MDP setup that scales as O

(√
SAL2n−3/2

)
. The H∗,(1)

captures the hardness in learning in the MDP and consists
of the gap ∆0, V π0

c (s11) and α. Note that H∗,(1) increases
with α, and the ∆0 captures how much constraint value the
b∗ can obtain compared to π0. Finally, the smaller value of
π0 increases the hardness as the π0 has to be run more times
so that the safety constraint is not violated.

Proof (Overview) We first build two deterministic tree
MDPs T and T ′ which differ in the variances at only one
state. This leads to different optimal oracle behavior poli-
cies in T and T ′. Then using the divergence decomposition
lemma for MDPs from Garivier and Kaufmann (2016); Wa-
genmaker et al. (2022) we show in Lemma C.6 that in T
the regret lower bound scales as Ω(

√
SAL2 log(n)/n3/2).

Next, we follow a reduction-based proof technique to prove
the reward regret lower bound in the constrained setting.
Consider any sequential decision-making problem A (for
instance a multi-armed bandit problem, tabular RL) such
that there exists a problem-dependent constant ξ ∈ R
that only depends on on the number of actions in ban-
dits, or state-action-horizon in tabular RL. Then for a large
budget n and any algorithm we have from Lemma C.5
and Lemma C.6 that E[Rn] ≥

ξ
n3/2 for an MDP de-

pendent parameter ξ. Then we lower bound how many
times under the budget n the algorithm can run the base-
line policy. This is lower bounded in step 2 as E[Rn] ≳

min
{

ξ
n3/2 ,

(αV π0
c (s11)+∆0)

2ξ2

(αV
π0
c (s11))

2n3/2

}
. We finish off the proof by

noting that the quantity H∗,(1)=
1

αV
π0
c (s11)

(αV π0
c (s11) + ∆0)

is the hardness parameter when π(a|s) = 1/A, and sub-
stituting the value of ξ = A1/3 for bandits (Lemma C.5)
and ξ =

√
SAL2 for T (Lemma C.6). Since T ⊂M, this

result is a lower bound toM as well. The full proof is in
Appendix C. ■

4. Agnostic Algorithm for Safe Policy
Evaluation

In this section, we introduce the more realistic agnostic
algorithm that does not know the mean and variances of the
reward and constraint values of the actions. We then analyze
this algorithm and establish its finite-time MSE. We call this
algorithm Safe Variance Reduction algorithm (abbreviated
as SaVeR) as it reduces the variance of the estimated value
of the target policy by following (4) while simultaneously
satisfying the safety constraint (1) with high probability.

We introduce a few notations before presenting the algo-
rithm. Define the upper confidence bound on the empirical
reward variance as σ̂

k

L(s, a) := σ̂k
L(s, a) + βk

L(s, a), where
βk
L(s, a) is the confidence interval defined in Section 3.1.

We define the empirical sampling proportion for an arbitrary
state-action (sℓi , a) as b̂k

ℓ (a|sℓi). Define the policy b̂k
∗,ℓ(a|sℓi)

as similar to b∗(a|sℓi) defined in (4), but it uses plug-in es-

timate σ̂
k

ℓ (s, a) instead of σk
ℓ (s, a). This is because the

agnostic algorithm does not know the reward and constraint-
value variances. We define Ẑk−1

L similar to (6). Finally, we
define our algorithm, SaVeR, as follows: At episode k run
the policy:

b̂k =


b̂k
∗ if Ẑk−1 ≥ 0, k >

√
K

π0 if Ẑk−1 < 0

πx if Ẑk−1 ≥ 0, k ≤
√
K

(8)

where b̂k
∗ for the episode k is defined as follows: For

each timestep ℓ = 1, 2, . . . , L sample action Ak
ℓ =

argmaxa
b̂k

∗(a|s
ℓ
j)

Tk
ℓ (sℓj ,a)

, where b̂k
∗(a|sℓj) is the plug-in estimate

of b∗(a|sℓj) as defined in (4). SaVeR alternates between the
exploration policy πx, plugin optimal policy b̂k

∗ , and base-
line policy based on the safety budget Ẑk and the number of
episodes K. In contrast to (8) the oracle policy in (6) uses
the true oracle proportions b∗ when Ẑk−1 ≥ 0, k>

√
K.

Also, observe that the action selection rule ensures that the
ratio b̂k

∗,ℓ(a|s)/T k
ℓ (s, a)≈ 1. It is a deterministic action

selection rule and thus avoids inadvertently violating the
safety constraint due to random sampling from the optimal
proportions b̂k

ℓ (a). Now we formally state the SaVeR for the
tree MDP. At every episode k ∈ [K] it generates a sampling
history Hk := {Sk

ℓ , A
k
ℓ , R(Sk

ℓ , A
k
ℓ ), C(Sk

ℓ , A
k
ℓ )}Lℓ=1 by se-

lecting Ak
ℓ according to (8) and appends it to the dataset D.

After observing the feedback it updates the model param-

6
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eters and estimates b̂k+1
1 (a|s) for each s, a. It returns the

dataset D to evaluate π. The pseudocode is in Algorithm 1.

Algorithm 1 Safe Variance Reduction (SaVeR) for T
1: Input: Risk Parameter α > 0, target policy π.
2: Output: Dataset D.
3: Initialize D = ∅, b̂1(a|s) uniform over all actions.
4: for k = 1, 2, . . . ,K do
5: for ℓ = 1, 2, . . . , L do
6: Get Hk := {Sk

ℓ , A
k
ℓ , R(Sk

ℓ , A
k
ℓ ), C(Sk

ℓ , A
k
ℓ )}Lℓ=1

by selecting bk according to (8).
7: D ← D ∪ {(Hk, b̂k)}
8: Update model parameters and estimate b̂k+1

1 (a|s)
for each s, a

9: end for
10: end for
11: Return Dataset D to evaluate policy π.

We now present a theorem that gives the MSE of the ag-
nostic algorithm SaVeR in the tree MDP in the following
theorem. We define the problem complexity parameters
M =

∑L
ℓ=1

∑
sℓj
M(sℓj) summed over all stated s ∈ [S].

Define predicted agnostic constraint violation

Cn(π, b̂k) :=

K∑
k=1

I{Ẑk < 0}

when taking actions according to (8). For scalars x, y ∈ R
define min+(x, y) := |min(x, y)|. Define the problem
complexity parameter H∗,(2)=

∑L
ℓ=1

∑
sℓj
H∗,(2)(s

ℓ
j) where

H∗,(2)(s
ℓ
j)=

1

αµc(sℓj , 0)

∑
a∈A\{0}

π(a|sℓj)σ(sℓj , a)
+

min
{
∆c(s

ℓ
j , a),

∆c(s
ℓ
j , 0)−∆c(s

ℓ
j , a)}

}
. (9)

Remark 4.1. The quantity H∗,(2)(s
ℓ
j) signifies the total cost

of maintaining the safety constraint at state sℓj by sampling
action 0 instead of sampling based on π(a)σ(a). Observe
that ∆c(s

ℓ
j , 0) − ∆c(s

ℓ
j , a) = µc(s

ℓ
j , a) − µc(s

ℓ
j , 0). So

min+{∆c(s
ℓ
j , a),∆c(s

ℓ
j , 0)−∆c(s

ℓ
j , a)} depends on how

close is the action a to the best cost action µ∗,c(sℓj) or the
baseline action 0. Also observe that because of the min+

operator, this quantity cannot be 0. Further, observe that the
gap is weighted by π(a|sℓj)σ(sℓj , a) signifying that actions
with low variance and target probability contribute less to
the constraint violation MSE. Also, observe that higher risk
setting (α → 0) leads to higher H∗,(2)(s

ℓ
j). Finally, it can

be easily verified that H∗,(2) > H∗,(1).

Now we present a theorem that we will use to bound the
regret of SaVeR in Tree MDP T under Assumption 3.2.

Theorem 2. (informal) The MSE of the SaVeR in T
for n

log(SAn(n+1)/δ) ≥O((LSA2)2 + SA

∆
c,(2)
min

+ 1
4H2

∗,(2)
) is

bounded by Ln(π, b̂
k) ≤ Õ

(M2(s11)
n +

M2(s11)
n (MLSA2 +

H∗,(2))
2 +

(LSA2)2H2
∗,(2)M

2

mins b∗,k,(3/2)(s)n3/2

)
with probability (1 − δ).

The total predicted constraint violations are bounded by

Cn(π, b̂k) ≤ Õ
(H∗,(2)

2
n

Mmin
+ LSA2 +

(LSA2)2H2
∗,(2)M

2

n1/2

)
with probability (1− δ), where Mmin := mins M(s).

Discussion: In Theorem 2 the first quantity upper bound-
ing Ln(π, b̂

k) is denoted as the safe MSE when the safety
budget Ẑk ≥ 0 and scales as M2(s11)/n. The second
quantity is denoted as the unsafe MSE which is accu-
mulated due to constraint violation (Ẑk < 0) and sam-
pling of the safe action 0. Finally, the third quantity is
the MSE suffered due to estimation error of the variances
σ2(s, a). Comparing the result of the Theorem 2 with the
unconstrained setting of Mukherjee et al. (2022a) we have
the additional quantity of (MLSA2 +H∗,(2))

2/n where
H∗,(2) is the problem-dependent quantity summed over all
states. Observe that if all actions are safe then we have that
L∗
n(π, b̂

k) = M2(s11)/n which recovers the MSE of the
unconstraint setting in Carpentier and Munos (2011; 2012);
Carpentier et al. (2015); Mukherjee et al. (2022a).

Proof (Overview) The agnostic SaVeR does not know the
reward variances. The sampling rule in (8) ensures that
the good variance event ξv,K defined in (18) (step 2) holds
such that SaVeR has good estimates of reward variances.
Then, note that in the tree MDP T we have a closed form
expression of b∗(s

ℓ
j |a). We divide the total budget n = nf+

nu where nf are the samples allocated when safety budget
Ẑk ≥ 0. The nf samples are also used by the exploration
policy πx to ensure a good estimate of the constraint means
as stated in the event ξc,K (17). This is ensured by πx

and noting that n > SA log(1/δ)/∆2
c,min. The remaining

samples from nf are allocated for reducing the MSE by
sampling according to argmaxa(b∗(a|s)/T k

ℓ (s, a)). We
again prove an upper and lower bound to Tn(s, a) in (27)
in step 4 and (28) in step 5. Finally using Lemma A.1
we can bound the MSE for the duration nf for all actions
a ∈ A \ {0} for each state sℓj in step 6. Now for an upper
bound to constraint violations, we use the gap ∆α

c (s, a) :=
(1− α)µc,0(s, a)− µc(s, a) to bound how much each a ∈
A \ {0} in sℓj is underpulled and their pulls replaced by
action {0} weighted by π(a|sℓj)σ(sℓj , a). This is captured
by H∗,(2)(s). Summing over all s, and horizon L gives the
upper bound to the violations as shown in step 7. Finally, we
also show a lower bound to constraint violations to bound
the MSE for the duration when actions a ∈ A \ {0} are
underpulled. This is shown in steps 8 and 9 where we equate
the safety budget to 0 to obtain a lower bound to Tn(s

ℓ
j , 0)

for each state sℓj . Combining everything in step 10 gives the
result. The proof is in Appendix D. ■
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Note that we do not have a closed-form solution to bk
∗ that

both minimizes MSE as well as upholds (1) for all k ∈ [K]
(as opposed to Carpentier and Munos (2011); Mukherjee
et al. (2022b)). Therefore, we now define two additional
notions of regret. The first is the regret defined as Rn =

Ln(π, b̂
k)−L∗

n(π,b
k
∗) whereL∗

n(π,b
k
∗) is the upper bound

to the safe oracle MSE. The second is the constraint regret
defined as follows: Rc

n = Cn(π, b̂k) − C∗n(π,bk
∗) where

C∗n(π,bk
∗) is the upper bound to the oracle constraint viola-

tions. Note that the oracle knows the variances of reward
and constraint-values for all state-action tuples (but does not
know the mean of either). The following corollary bounds
SaVeR regret.
Corollary 1. Under Assumption 3.2, the constraint regret
of SaVeR is bounded byRc

n ≤ O
( log(n)

n1/2

)
and the regret is

bounded byRn ≤ O
( log(n)

n3/2

)
.

The proof is in Appendix E.1 and directly follows from The-
orem 2, and Proposition 2. In Proposition 2 in Appendix E
we prove the MSE upper bound of the oracle. Observe,
that the regret decreases at a rate of Õ(n−3/2), faster than
the rate of decrease of on-policy MSE of Õ(n−1). Thus,
we have been able to answer the second main question of
this paper affirmatively. We also state a constraint and re-
gret upper bound in the bandit setting in Corollary 2 in
Appendix E.1. Also, observe that our upper bound matches
the rate in the lower bound shown in Theorem 1.

5. Extension to DAG
In this section, we approximate the solution in T to DAG G
and formulate the safe algorithm for policy evaluation. We
first define the DAG MDP in the following definition.
Definition 5.1. (DAG MDP) A DAG MDP follows the
same definition as the tree MDP in Definition 3.1 except
P (s′|s, a) can be non-zero for any s in layer ℓ, s′ in layer
ℓ+1, and any a, i.e., one can now reach s′ through multiple
previous state-action pairs.

Then we state the following lemma from Mukherjee et al.
(2022a).
Lemma 5.2. (Proposition 3 of Mukherjee et al. (2022a))
Let G be a 3-depth, A-action DAG defined in Definition 5.1.
The minimal-MSE sampling proportions b∗(a|s11),b∗(a|s2j )
depend on themselves such that b(a|s11) ∝ f(1/b(a|s11))
and b(a|s2j ) ∝ f(1/b(a|s2j )) where f(·) is a function that
hides other dependencies on variances of s and its children.

The Lemma 5.2 (Mukherjee et al., 2022a) shows that one
cannot derive a closed-form solution to b∗ in G because of
the existence of multiple paths to the same state resulting
in a cyclical dependency. Note that in T there is only a
single path to each state and this cyclical dependency does
not arise. If we ignore the multiple path problem, we can

approximate the optimal sampling proportion in G by using
the tree formulation in the following way: At every time t
during an episode k call the Algorithm 2 to estimate M0(s)
where Mt′(s) ∈ RL×|S| stores the expected standard devia-
tion of the state s at iteration t′. After L such iteration we
use the value B0(s) to estimate b(a|s) as follows:

b∗(a|s)∝
√
π2(a|s)

[
σ2(s, a)+γ2

∑
s′

P (s′|s, a)M2
0 (s)

]
.

Note that for a terminal state s we have the transition prob-
ability P (s′|s, a) = 0 and then the b(a|s) = π(a|s)σ(s, a).
This iterative procedure follows from the tree formulation
in Lemma A.2 and is necessary in G to take into account
the multiple paths to a particular state. Algorithm 2 gives
pseudocode for this procedure which takes inspiration from
value-iteration for the episodic setting.

Algorithm 2 Estimate B0(s) for G
1: Initialize BL(s) = 0 for all s ∈ S
2: for t′ ∈ L− 1, . . . , 0 do
3: Bt′(s) =

∑
a

(
π2(a|s)

(
σ2(s, a)

+γ2
∑
s′

P (s′|s, a)B2
t′+1(s)

)) 1
2

4: end for
5: Return B0.

Finally, the safe algorithm in G can be stated as follows: At
episode k

Play bk =


πe if Ẑk ≥ 0, k ≤

√
K

πb̂k if Ẑk ≥ 0, k >
√
K

π0 if Ẑk < 0

(10)

where πb̂k for the episode k is defined as follows:
For each time ℓ = 1, 2, . . . , L sample action Ak

ℓ =

argmaxa
b̂k(a|sℓj)
Tk
ℓ (sℓj ,a)

, where b̂k(a|sℓj) is the plug-in estimate

of b∗(a|sℓj) that is obtained using Algorithm 2.

6. Experiments
In this section, we show numerical experiments validating
our theoretical results. The full experimental details and
numerical results are in Appendix G. We test the oracle, and
SaVeR algorithm and introduce a method that we call safe
on-policy. The safe on-policy algorithm follows the target
policy π when the safety budget is positive and plays base-
line policy π0 when the safety budget is negative. We also
test against the SEPEC (Wan et al., 2022) algorithm for the
bandit setting which uses importance sampling to safely col-
lect data for policy evaluation. Note that the bandit setting
consists of a single state and every episode K consists of a

8
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(a) Bandit setting (b) Movielens setting

(c) Tree MDP (d) Grid MDP

Figure 1. MSE in different settings. The vertical axis (log-scaled)
gives MSE and the horizontal axis is the number of episodes (or
rounds for bandits). Confidence bars show one standard error.

single timestep L = 1. Figure 1 shows the MSE obtained
by each algorithm for a varying number of episodes. In Fig-
ure 2, we show that all algorithms respect the constraint but
that the oracle and SaVeR are not excessively conservative.

Experiment 1 (Bandit): We implement a general bandit
environment with A = 11 and show that SaVeR achieves
lower MSE than SEPEC and safe on-policy algorithm as
the number of rounds increases. The performance is shown
in Figure 1(a). From Figure 2(a) we see that SaVeR, and
oracle do not oversample the safe action but allocate the
right amount to be just safe. They allocate more samples
to reduce the MSE, whereas the safe on-policy and SEPEC
over-sample the safe action instead of focusing on reducing
the MSE.

Experiment 2 (Movielens): We conduct this experiment
on the real-life Movielens 1M dataset (Lam and Herlocker,
2016) for A = 30 actions and show that SaVeR achieves
lower MSE than safe on-policy and SEPEC algorithm as
the number of rounds increases. The performance is shown
in Figure 1(b). From Figure 2(b), we see that SaVeR and
oracle SaVeR, and the oracle do not oversample the safe
action compared to SEPEC.

Experiment 3 (Tree): We experiment with a 4-depth 2-
action deterministic tree MDP consisting of 15 states. With
increasing episodes SaVeR reaches lower MSE than safe
on-policy and eventually matches the oracle’s MSE in Fig-
ure 1(c). In Figure 2(c) the SaVeR and oracle run the base-
line policy almost similar number of times compared to the
safe on-policy.

Experiment 4 (Gridworld): This setting consist of a 4× 4
stochastic gridworld of 16 grid cells. We point out that

(a) Bandit violation (b) Movielens violation

(c) Tree MDP violation (d) Grid MDP violation

Figure 2. The vertical axis gives cumulative constraint violation
and the horizontal axis is the number of episodes/rounds. The
0-axis is shown in pink. A safe algorithm has its plot below the
0-axis with the plot showing the cumulative unsafe budget.

Gridworld has a DAG structure (due to the finite horizon)
which violates the tree structure assumption under which
the oracle and SaVeR bounds were derived. Nevertheless,
both SaVeR and oracle reach lower MSE with increasing
episodes compared to safe onpolicy in Figure 1(d). We use
(10) to estimate b̂ in this setting. In Figure 2(d) we see that
SaVeR allocates more samples to reduce the MSE, whereas
the safe on-policy runs the baseline policy more instead of
focusing on reducing the MSE.

7. Conclusions
In this paper, we studied the question of how to take action
to build a dataset for minimal-variance policy evaluation
of a fixed target policy under a safety constraint (1). We
developed a theoretical foundation for data collection in
policy evaluation by showing that there exists a class of
MDPs (namely tree-structured MDPs T ) where safe policy
evaluation is intractable. We then showed the necessary
condition for T to be tractable such that the optimal behavior
policy can collect data without violating safety constraints.
We then proved the first lower bound for this setting under
the tractability conditions that scales as Ω̃(n−3/2), where Ω̃
hides log factors. We then introduced a practical algorithm,
SaVeR, that approximates the optimal behavior strategy by
computing an upper confidence bound on the variance of
the cumulative cost in place of the true cost variances in
the optimal behavior strategy. We bound the finite-sample
regret (excess MSE) of SaVeR and show that it scales as
Õ(n−3/2) matching the lower bound. Hence, we answer
both the questions raised in the introduction positively. In
the future, we would like to extend our derivation of optimal
data collection strategies and regret analysis of SaVeR to
linear/contextual bandits and more general MDPs.
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minimax off-policy value estimation. In Artificial Intelli-
gence and Statistics, pages 608–616. PMLR, 2015.

11

https://aaai.org/ojs/index.php/AAAI/article/view/5812
https://proceedings.neurips.cc/paper/2017/hash/bdc4626aa1d1df8e14d80d345b2a442d-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/bdc4626aa1d1df8e14d80d345b2a442d-Abstract.html


SaVeR: Optimal Data Collection Strategy for Safe Policy Evaluation in Tabular MDP

Qingkai Liang, Fanyu Que, and Eytan Modiano. Acceler-
ated primal-dual policy optimization for safe reinforce-
ment learning. arXiv preprint arXiv:1802.06480, 2018.

Pascal Massart. Concentration inequalities and model selec-
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A. Appendix
A.1. Related Works

Our work lies at the intersection of two areas: 1) optimal data collection for policy evaluation, and 2) safe sequential
decision-making. Optimal data collection for policy evaluation has been studied in reinforcement learning (Antos et al.,
2008; Carpentier and Munos, 2012; 2011; Carpentier et al., 2015; Hanna et al., 2017; Mukherjee et al., 2022a; Riquelme
et al., 2017; Fontaine et al., 2021; Mukherjee et al., 2024; Zhong et al., 2022) without considering the safety constraints.
In the bandit setting the optimal data collection has been studied in the context of estimating a weighted sum of the mean
reward associated with each arm. (Antos et al., 2008) study estimating the mean reward of each arm equally well and show
that the optimal solution is to pull each arm proportional to the variance of its reward distribution. Since the variances
are unknown a priori, they introduce an algorithm that pulls arms in proportion to the empirical variance of each reward
distribution. A similar set of works by Carpentier and Munos (2012); Carpentier et al. (2015) extend the above work by
introducing a weighting on each arm that is equivalent to the target policy action probabilities in our work. They show that
the optimal solution is then to pull each arm proportional to the product of the standard deviation of the reward distribution
and the arm weighting. The work of Riquelme et al. (2017); Fontaine et al. (2021); Mukherjee et al. (2024) considers the
linear bandit setting to study the policy evaluation setup where actions have different variances. Finally, Mukherjee et al.
(2022a) study the policy evaluation setting for tabular MDP. However, these works only look into the policy evaluation
setting without considering the safety constraint introduced in (1).

The safe sequential decision-making setup has recently attracted much attention in machine learning (Amodei et al., 2016;
Turchetta et al., 2019) and reinforcement learning (Efroni et al., 2020; Wachi and Sui, 2020; Camilleri et al., 2022). In
reinforcement learning, and specifically in the bandit setting, safety has been studied in the context of policy improvement.
In the bandit literature regret minimization under safety constraints has been studied in Wu et al. (2016); Kazerouni et al.
(2017); Amani et al. (2019); Garcelon et al. (2020). In these works the safety requirements are encoded in the form of
constraints on the cumulative rewards observed by the learner. These works refer to the setup as conservative bandits because
exploration is limited by the constraints on the cumulative reward. The work of Wu et al. (2016) consider the setting of
stochastic bandits for policy improvement with a safety constraint similar to (1). However, Kazerouni et al. (2017); Amani
et al. (2019); Garcelon et al. (2020); Moradipari et al. (2021); Pacchiano et al. (2021); Hutchinson et al. (2024) study the
linear bandit setting under safety constraints where the actions have features associated with them. Note that none of the
above works study policy evaluation under safety constraints. Wan et al. (2022); Zhu and Kveton (2021; 2022) analyzes
off policy evaluation in the context of designing a non-adaptive policy using inverse probability weighting estimator (as
opposed to designing an adaptive policy using certainty equivalence estimator in this work).

In the MDP setting the works of Efroni et al. (2020); Altman (2021); Wachi et al. (2024); Li et al. (2024); Zheng et al.
(2024); Xiong et al. (2024); Ding et al. (2024); Wang et al. (2024); Mazumdar et al. (2024) study different variations of
the safe exploration in constraint MDPs in both offline and online policy improvement settings. The work of Yang et al.
(2024) studies the safe policy improvement in constraint MDP setting under non-stationary policies. The work of Gupta
et al. (2024) proposed a safe policy improvement approach for variable horizon setting such that the safe reinforcement
learning agent uses a variable look-ahead horizon to avoid unsafe states. The constrained MDP problems have also been
looked into from the lens of optimization where Chen et al. (2021; 2022); Qiu et al. (2020); Ding et al. (2020); Vaswani et al.
(2022); Ding et al. (2021); Liang et al. (2018); Ying et al. (2024) have proposed a primal-dual sampling-based algorithm to
solve CMDPs for the policy improvement setting.

A.2. Previous results and Probability Tools

Proposition 1. (Restatement from Carpentier and Munos (2011)) In an A-action bandit setting, the estimated return of π
after n action-reward samples is denoted by Yn. Note that the expectation of Yn after each action has been sampled once is
given by V π . Minimal MSE, ED

[
(Yn − V π)

2
]
, is obtained by taking actions in the proportion:

b∗(a) :=
π(a)σ(a)∑A

a′=1 π(a
′)σ(a′)

. (11)

where b∗(a) denotes the optimal sampling proportion.

Lemma A.1. (Wald’s lemma for variance) (Resnick, 2019) Let {Ft} be a filtration and Rt be a Ft-adapted sequence of i.i.d.
random variables with variance σ2. Assume that Ft and the σ-algebra generated by {Rt′ : t

′ ≥ t+ 1} are independent
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and T is a stopping time w.r.t. Ft with a finite expected value. If E
[
R2

1

]
<∞ then

E

( n∑
t′=1

Rt′ − nµ

)2
 = E[n]σ2

Lemma A.2. (Restatement of Theorem 1 of Mukherjee et al. (2022a)) Assume the underlying MDP is an L-depth tree MDP
as defined in Definition 3.1. Let the estimated return of the starting state s11 after n state-action-reward samples be defined
as Yn(s

1
1). Let D be the observed data over n state-action-reward samples. To minimize MSE ED[(Yn(s

1
1)− V π(s11))

2] the
optimal sampling proportions for any arbitrary state is given by:

b∗(a|sℓi)∝
(
π2(a|sℓi)

[
σ2(sℓi , a) +

∑
sℓ+1
j

P (sℓ+1
j |sℓi , a)M2(sℓ+1

j )

])1/2

,

where, M(sℓj) is the normalization factor defined as follows:

M(sℓi) :=
∑
a

(
π2(a|sℓi)

(
σ2(sℓi , a) +

∑
sℓ+1
j

P (sℓ+1
j |sℓi , a)M2(sℓ+1

j )
))1/2

B. Intractable MDP
Proposition 1. Fix an arbitrary n > 0. Then there exists an environment where no algorithm (including the safe oracle
bk
∗) can be run that will result in a regretRn = Ln(π,b)− L∗

n(π,b∗) of Õ(n−3/2) while satisfying the safety constraint,
where b∗ is the unconstrained oracle.

Proof. We first consider a bandit setting where there are 3 arms, action {0} which is the safe action, and actions 1 and 2.
Assume π(a) = 1/A so that we can ignore its effect on optmal sampling policy b∗

Case 1 (All actions safe): First consider an environment when all actions are safe. That is µc(0) = 0 and µc(1) = 1 and
µc(2) = 1− ϵ and reward distributions are bounded between [0, 1]. Therefore at round ℓ ∈ [L] we can guarantee for any
α ∈ (0, 1] that

ℓ∑
ℓ′=1

2∑
a=0

π(a)µ̂c,ℓ′(a) ≥ (1− α)ℓ π0(0)µ
c(0)︸ ︷︷ ︸

0

, ∀ℓ ∈ [L]

where, π0 always samples safe action 0. Assume a safe oracle that knows the variances of the actions but does not know
the means of the actions (both reward and cost means). Therefore from Carpentier and Munos (2011) we know that the
optimal way to reduce the MSE minb ED[(Y

π
n (s1)− V π(s1))

2
] is to run the policy b∗(a) ∝ π(a)σ(a). We also know from

Carpentier and Munos (2011) that there exists an algorithm Asafe (like MC-UCB that tracks b∗) that achieves a regret after
n rounds asRsafe

n = Õ(K log(n)
n3/2 ) where Õ hides logarithmic factors and problem dependent factors like bmin.

Case 2 (Some actions are unsafe): In this case, we now analyze a safe oracle algorithm bk
∗ . Consider an environment

where µc(0) = 0.5, µc(1) = 0.5 + α, and µc(2) = 0. Let the rewards be bounded in [0, 1] again. So action {2} is unsafe.
Therefore safe oracle policy which first runs action 1 for C1n number of times for some C1 > 0. Then it runs the safe
action 0 for C0n number of times (for some C0 > 0) such that it has enough safety budget and then it runs action 2 for
n(1− (C0 + C1)) number of times. Let the variance of σr,(2)(0) = 0.001, σr,(2)(1) = 0.001 and σr,(2)(2) = 0.25.

The cost cumulative value over rounds for the algorithm for α = 1
4 is given by

V c
A = (C1n)(0.5 + α) + n(1− C0 − C1)0 + (C0n)0.5 = (C1n) ·

3

4
+ (C0n)

2

4
=

n

4
(3C1 + 2C0) .
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Then to satisfy the safety budget we have to show that

V c
A ≥ n(1− α)0.5

(a)
=⇒ n

4
(3C1 + 2C0) ≥

3n

8

=⇒ 3C1 + 2C0 ≥
3

2

Say we just want to satisfy the safety constraint, then setting C1 = 1
4 and C0 = 3

8 in the above equation we can achieve that.
Therefore we have that Tn(1) =

n
4 and Tn(0) =

3n
8 . This implies that Tn(2) = n− n

4 −
3n
8 = 3n

8 . Therefore we get that
the loss of bk

∗ is given by

Ln(π,b
k
∗) =

∑
a,Tn(a)>0

σr,(2)(a)

Tn(a)
=

8(0.001)2

3n
+

4(0.001)2

n
+

8(0.25)2

3n

Now we calculate the loss of the optimal data collection algorithm following the unconstrained b∗. Note that now
T ∗
n(0) =

0.001
0.001+0.001+0.25n = n

252 , T ∗
n(1) =

n
252 and T ∗

n(2) =
250n
252 . Then the loss of the optimal data collection algorithm

following b∗ is given by

L∗
n(π,b∗) =

∑
a,T∗

n(a)>0

σr,(2)(a)

T ∗
n(a)

=
252(0.001)2

n
+

252(0.001)2

n
+

252(0.25)2

250n
≈ 2

4000n
+

15

n
.

It follows then that the regret scales as

Rn = Ln(π,b
k
∗)− L∗

n(π,b∗) =
∑

a,Tn(a)>0

σr,(2)(a)

Tn(a)
−

∑
a,T∗

n(a)>0

σr,(2)(a)

T ∗
n(a)

= O

(
K

n

)
≥ Rsafe

n = Õ(
K log(n)

n3/2
).

Note that this regret rate holds for any C1 < C0 and we cannot shift any more proportion to action {2}. Therefore the
algorithm will choose the sub-optimal safe action {0}more than the action that reduces the MSE (to satisfy safety constraint)
most resulting in a regret that scales as n−1. So any algorithm (including the safe oracle algorithm) will not be able to
achieve the desired regret rate of Õ(n−3/2). The claim of the proposition follows.

Remark B.1. (Tractability condition) Let b be any behavior policy that minimizes MSE. However, running b only once is
not enough to guarantee a regret of Õ(n−3/2). Let b be run for Kb episodes to guarantee a regret of Õ(n−3/2). Note that
Kb is the number of rounds in the bandit setting. Observe that the number of rounds (or episodes in case of MDP) Kb is
behavior policy specific.

Case 1 (Two action bandits): Consider two action bandit setting such that A = 2. Further, let π(a) = 1/A and the left
action has a constraint-value of C1 while the right action has a constraint-value of C2. Let the deterministic baseline policy
π0 always choose the left action, while the behavior policy b chooses the right action. Note that b may or may not be b∗.
Then to satisfy the safety constraint (1) we need that

(n−Kb)C1 +KbC2 ≥ (1− α)nC1 =⇒ nC1 −KbC1 +KbC2 ≥ nC1 − αnC1

=⇒ Kb(C1 − C2) ≤ nC1α

=⇒ 1− C2

C1
≤ nα

Kb

=⇒ Kb

α
(1− C2

C1
) ≤ n

=⇒ n ≥ Kb

α

(
1− C2

C1

)
The above inequality shows two things, (1) the lower bound to the budget n to run the behavior policy b for Kb rounds and
satisfy the safety constraint; (2) The condition C1 > C2 has to be satisfied so that the RHS is positive.
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Case 2 (General multi-armed bandits): Now generalizing this to A ≥ 2 we can show that the above condition can be
modified into

(n−Kb)µ
c(0) +Kb min

a∈A\{0}
µc(a) ≥ (1− α)nµc(0)

=⇒ nµc(0)−Kbµ
c(0) +Kb min

a∈A\{0}
µc(a) ≥ nµc(0)− αnµc(0)

=⇒ Kb(µ
c(0)− min

a∈A\{0}
µc(a)) ≤ αnµc(0)

=⇒ 1−
mina∈A\{0} µ

c(a)

µc(0)
≤ αn

Kb

=⇒ Kb

α

(
1−

mina∈A\{0} µ
c(a)

µc(0)

)
≤ n

=⇒ n ≥ Kb

α

(
1−

mina∈A\{0} µ
c(a)

µc(0)

)

The above inequality shows two things, (1) the lower bound to the budget n to run the behavior policy b for Kb rounds and
satisfy the safety constraint for a general Kb armed bandit; (2) The condition mina∈A\{0} µ

c(a) < µc(0) has to be satisfied
so that the RHS is positive.

Case 3 (Tabular MDP): Define V b−

c (s1) as the value of the policy b− starting from state s1. So this policy b− can be
thought of as the worst possible policy that can be followed by the agent during an episode. Let this policy be run for Kb−

episodes. Also, recall that V π0
c (s1) is the value of the baseline policy π0 starting from state s1. It can easily shown following

a similar line of argument as case 2 that we need a budget of

n ≥ Kb−

α

(
1− V b−

c (s1)

V π0
c (s1)

)
.

Again the above inequality shows two things for a general Tree MDP: (1) the lower bound to the budget n to run the behavior
policy b− for Kb− episodes and satisfy the safety constraint for a Tree MDP; (2) V b−

c (s1) < V π0
c (s1) so that the RHS is

positive.

Now observe that in the first two cases of the bandit setting the V b−

c (s1) yields mina∈A\{0} µ
c(a). Therefore combining all

three cases we can state the budget n ≥ Kb−
α

(
1− V b−

c (s1)

V
π0
c (s1)

)
. Now from (Carpentier and Munos, 2012; Mukherjee et al.,

2022a) we know that Kb− ≥ Cσ(n−
√
n) where Cσ ∈ (0, 1] is an MDP dependent parameter that depends on the reward

variance of state-action pairs to achieve a regret bound of Õ(n−3/2). We define the quantity Cσ = maxs,a
b∗(a|s)
M(s) where

b∗(a|s) and M(s) are defined in (4) and (5) respectively. Observe that Cσ ∈ (0, 1). Then we have that

n ≥ Kb−

α

(
1− V b−

c (s1)

V π0
c (s1)

)
=⇒ n ≥ Cσ(n−

√
n)

α

(
1− V b−

c (s1)

V π0
c (s1)

)

=⇒ n ≥ Cσn

α

(
1− V b−

c (s1)

V π0
c (s1)

)
−
√
n

α

(
1− V b−

c (s1)

V π0
c (s1)

)

=⇒ n

(
1− Cσ

α

(
1− V b−

c (s1)

V π0
c (s1)

))
+

√
n

α

(
1− V b−

c (s1)

V π0
c (s1)

)
≥ 0

=⇒
√
n

(
√
n− Cσ

√
n

α

(
1− V b−

c (s1)

V π0
c (s1)

)
+

1

α

(
1− V b−

c (s1)

V π0
c (s1)

))
≥ 0.
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This implies that

√
n− Cσ

√
n

α

(
1− V b−

c (s1)

V π0
c (s1)

)
+

1

α

(
1− V b−

c (s1)

V π0
c (s1)

)
≥ 0

=⇒
√
n

(
1− Cσ

α

(
1− V b−

c (s1)

V π0
c (s1)

))
≥ − 1

α

(
1− V b−

c (s1)

V π0
c (s1)

)

=⇒
√
n ≥

− 1
α

(
1− V b−

c (s1)

V
π0
c (s1)

)
(
1− Cσ

α

(
1− V b−

c (s1)

V
π0
c (s1)

))

=⇒
√
n ≥

1
α

(
1− V b−

c (s1)

V
π0
c (s1)

)
Cσ

α

(
1− V b−

c (s1)

V
π0
c (s1)

)
− 1

.

This yields the tractability condition.

C. Tractable MDP and Lower Bounds
Some Definitions for proving Lower Bound: These definitions follow similar definitions in Wagenmaker et al. (2022).
Define the Q-function that satisfies the Bellman equation as

Qπ
ℓ (s, a) = Rℓ(s, a) +

∑
s′

Pℓ (s
′ | s, a)V π

ℓ+1 (s
′)

and Qπ
L+1(s, a) = 0. Define the optimal Q-function as Qπ∗

ℓ (s, a) := supπ Q
π
ℓ (s, a), V

π∗
ℓ (s) := supπ V

π
ℓ (s), and let π⋆

denote an optimal policy. A policy π̂ is called ϵ-optimal which satisfies the following

V π∗(s1)− V π̂(s1) ≤ ϵ

with probability greater than 1− δ using as few episodes as possible. We further define a few more notations for proving the
lower bound. Define the suboptimality gap as

∆ℓ(s, a) := V π∗
ℓ (s)−Qπ∗

ℓ (s, a).

such that ∆ℓ(s, a) denotes the suboptimality of taking action a in (s, h), and then playing the optimal policy henceforth.
Define the state-action visitation distribution as:

wπ
ℓ (s, a) := Pπ [sℓ = s, aℓ = a] , wπ

ℓ (s) := Pπ [sℓ = s] .

Note that wπ
ℓ (s, a) = πℓ(a|s)wπ

ℓ (s). We denote the maximum reachability of (s, ℓ) by

Wℓ(s) := sup
π

wπ
ℓ (s).

This is the maximum probability with which we could hope to reach (s, ℓ). Define the best-policy gap-visitation complexity
as C⋆(T ). Finally, recall that tree MDP is a subset of general MDPs which let us restate the following lemmas on lower
bound for unconstrained tree MDPs from Wagenmaker et al. (2022).
Lemma C.1. (Divergence Lemma, Restatement of Lemma 4.1 from Wagenmaker et al. (2022)) Consider tree MDPs T
and T ′ with the same state space S , actions space A, horizon L, and initial state distribution P0. Fix some (s, ℓ) ∈ S × [L],
and for any a ∈ A let νℓ(s, a) denote the law of the joint distribution of (s′, R) where s′ ∼ PT (· | s, a) and R ∼ RT (s, a).
Define the law ν′ℓ(s, a) analogously with respect to T ′. Fix some policy π and let PT = Pνπ and PT ′ = Pν′π be the
probability measures on T and T ′ induced by the τ -episode interconnection of π and ν (respectively by π′ and ν′). For any
almost-sure stopping time τ with respect to filtration (Fτ ),∑

s,a,h

ET [Nτ
ℓ (s, a)] KL (νℓ(s, a), ν

′
ℓ(s, a)) ≥ sup

ξ∈Fτ

d (PT (ξ),PT ′(ξ))

where d(x, y) = x log x
y + (1− x) log 1−x

1−y and Nτ
ℓ (s, a) denotes the number of visits to (s, a, ℓ) in the τ episodes.
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Figure 4. Tractable Tree MDPs T and T ′. The difference between the two Tree MDPs is highlighted in the square box.

Lemma C.2. (Proposition 12 from Wagenmaker et al. (2022) Fix some tree MDP T . Then:

1. The set of valid state-action visitation distributions on T is convex.

2. For any valid state-action visitation distribution on T , there exists some policy that realizes it.

Lemma C.3. (Restatement of Lemma F.3 from Wagenmaker et al. (2022)) In the tree MDP T , fix some ℓ̄ ∈ [L]. Then

C⋆(T ) ≤ inf
b

max
s,a

1

wb
ℓ̄
(s, a)∆ℓ(s, a)2

+max
s,ℓ

SAL

Wℓ(s)
.

is the complexity of the Tree MDP T .

Lemma C.4. (Proposition 4 from Wagenmaker et al. (2022)) The following bounds hold for any unconstrained tree MDP
T :

1. C⋆(T ) ≤ L3SA
ϵ2

2. C⋆(T ) ≤
∑L

ℓ=1

∑
s,a min

{
1

Wℓ(s)∆ℓ(s,a)2
, Wℓ(s)

ϵ2

}
+ L2|OPT(ϵ)|

ϵ2

3. C⋆(T ) ≤
∑L

ℓ=1

∑
s,a

1
ϵmax{∆ℓ(s,a),ϵ} + L2|OPT(ϵ)|

ϵ2 .

where, C⋆(T ) is the complexity of the Tree MDP T . The second term in C⋆(T ), L2|OPT(ϵ)|/ϵ2, captures the complexity of
ensuring that after eliminating ϵ/Wℓ(s)-suboptimal actions, sufficient exploration is performed to guarantee the returned
policy is ϵ-optimal.

Lemma C.5. (Restatement of Theorem 5 in Carpentier and Munos (2012)) Let A ∈ N be a set of actions for a bandit
setting. Let inf be the infimum taken over all online sampling algorithms that reduce the MSE and sup represent the
supremum taken over all environments. Define the regret of the algorithm over the target policy π asRn := Ln(π)−L∗

n(π)
where Ln(π) is the MSE of the target policy following the algorithm. Then:

inf supE [Rn] ≥ C
A1/3

n3/2
,

where C is a numerical constant, and n is the total budget,

Lemma C.6. Define the regret of the algorithm over the target policy π asRn := Ln(π,b)− L∗
n(π,b∗) where Ln(π,b)

is the MSE of the target policy following the algorithm and b∗ is the unconstrained oracle behavior policy. The reward
regret in tree MDP T is lower bounded by

inf supE [Rn] ≥ Ω

(√
SAL2 log(1/δ)

n3/2

)
.
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Proof. We prove this lemma in two steps. In the first step, we prove the minimum number of episodes required by an
ϵ-optimal policy b in tree MDP T (Figure 4) such that V b∗(s1) − V b(s1) ≤ ϵ. Next in step 2 we show that given this
minimum number of episodes, what is the loss suffered by b against b∗ at the end of episode K.

Step 1 (Minimum episodes): We consider the two tree MDPs T and T ′ shown in Figure 4. We will apply Lemma C.1 on
our MDP, T , and MDP T ′ which is identical to T except in state (s22, 1) where we have σ2(s22, 1) = (µ−∆)(1− µ+∆)
in T ′ and σ2(s21, 1) = (µ+ α)(1− µ− α) for T and some ∆ > 0. This yields a different b∗ for MDP T than b∗ for T ′.

Fix some ℓ̄ ∈ [L]. Since T and T ′ are identical at all points but this one, we have∑
s,a,ℓ

ET [Nτ
ℓ (s, a)] KL (Bernoulli(µ−∆),Bernoulli(µ+ α))

= ET
[
Nτ

ℓ̄ (s, a)
]
KL (Bernoulli(µ−∆),Bernoulli(µ+ α)) .

where, ET ,ET ′ denotes the expectation over the data collected in tree MDP T and T ′ respectively following policy b∗.

Let b∗ denote the optimal policy on T , and b denote the ϵ -optimal policy by any other algorithm. Let the event
ξ = {b = b∗}. Since we assume algorithm is δ-correct, and since the optimal policies on T and T ′ differ, we have
PT (ξ) ≥ 1− δ and PT ′(ξ) ≤ δ. By Garivier and Kaufmann (2016), we can then lower bound

d (PT (ξ),PT ′(ξ)) ≥ log
1

2.4δ

Thus, by Lemma C.1, we have shown that, for any (s, a), a ̸= b∗,ℓ̄(s),

ET
[
Nτ

ℓ̄ (s, a)
]
≥ 1

KL (Bernoulli(µ−∆),Bernoulli(µ+ α))
· log 1

2.4δ

For small α > 0, we can bound (see e.g. Lemma 2.7 of Tsybakov (2009))

KL (Bernoulli(µ−∆),Bernoulli(µ+ α)) ≤ 6(∆− α)2.

Taking α→ 0, we have

ET
[
Nτ

ℓ̄ (s, a)
]
≥ 1

6∆2
· log 1

2.4δ
.

We can write ET
[
Nτ

ℓ̄
(s, a)

]
= ET

[∑τ
k=1 w

bk

ℓ̄
(s, a)

]
where bk denotes the policy the algorithm played at episode k. Note

that all state-visitation distributions lie in a convex set in [0, 1]SA and that for any valid state-visitation distribution, there
exists some policy that realizes it, by Lemma C.2. By Caratheodory’s Theorem, it follows that there exists some set of
policies Π with |Π| ≤ SA+ 1 such that, for any b and all s, a, wb

ℓ̄
(s, a) =

∑
b′∈Π λb′wb′

ℓ̄
(s, a), for some λ ∈ △Π. Note

that λ is a distribution over the policies in Π. Letting λk denote this distribution satisfying the above inequality for bk, it
follows that

ET

[
τ∑

k=1

wbk

ℓ̄ (s, a)

]
= ET

[
τ∑

k=1

∑
b∈Π

λk
bw

b
ℓ̄ (s, a)

]

=
∑
b∈Π

ET

[
τ∑

k=1

λk
b

]
wb

ℓ̄ (s, a)

= ET [τ ]
∑
b∈Π

ET
[∑τ

k=1 λ
k
b

]
ET [τ ]

wℓ̄(s, a).

Note that
∑

b∈Π ET
[∑τ

k=1 λ
k
b

]
= ET

[∑τ
k=1

∑
b∈Π λk

b

]
= ET [τ ] so it follows that

(
ET [

∑τ
k=1 λk

b]
ET [τ ]

)
b∈Π

∈ △Π. Thus, a

δ-correct algorithm must satisfy, for all s, a and some λ ∈ △Π,

ET [τ ] ≥
1

6∆2 ·
∑

b∈Π λbwb
ℓ̄
(s, a)

· log 1

2.4δ
.
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Since the set of state visitation distributions is convex, and since for any state-visitation distribution we can find some policy
realizing that distribution, for any λ ∈ △Π, it follows that there exists some b′ such that, for all s, a,

∑
b∈Π λbw

b
ℓ̄
(s, a) =

wb′

ℓ̄
(s, a). So, we need, for all s, a

ET [τ ] ≥
1

6∆2 · wb
ℓ̄
(s, a)

· log 1

2.4δ
.

It follows that every δ-correct algorithm must satisfy

ET [τ ] ≥ inf
b

max
s,a

1

6∆2 · wb
ℓ̄
(s, a)

· log 1

2.4δ
,

≳ C⋆(T ) · log 1

2.4δ
−max

s,ℓ

SAL

Wℓ(s)

from which the first inequality follows, and the second inequality follows from Lemma C.3.

The second term in C⋆(T ), L2|OPT(ϵ)|/ϵ2, captures the complexity of ensuring that after eliminating ϵ/Wℓ(s)-suboptimal
actions, sufficient exploration is performed to guarantee the returned policy is ϵ-optimal. Using Lemma C.4 we have that
C⋆(T ), L2|OPT(ϵ)|/ϵ2 will be no worse than L3SA/ϵ2, it could be much better, if in the MDP the number of (s, a, ℓ)
with ∆ℓ(s, a) ≲ ϵ/Wℓ(s) is small (note that since ∆ℓ(s, a) ≥ ∆min(s, ℓ) by definition, OPT(ϵ) will only contain states
for which the minimum non-zero gap is less than ϵ/Wℓ(s) ). Wagenmaker et al. (2022) obtains the bounds on C⋆(T ) in
Lemma C.4, providing an interpretation of C⋆(T ) in terms of the maximum reachability, and illustrating C⋆(T ) is no larger
than the minimax optimal complexity. This implies that

ET [τ ] ≳ Ω

(
SAL2

ϵ2
log(1/δ)

)
.

Hence the V bK

(s11)− V b∗(s11) ≤ ϵ for K ≥ SAL2

ϵ2
log(1/δ).

Step 2 (Bound regret in T ): In the T in Figure 4 we now have

M(s11) =
√
2σ2

1 + σ2
2 +

√
2σ2

2 + σ2
1 , M(s21) = M(s22) = σ1 + σ2

Define confidence interval βK
L = L

√
SA log(SAL2/δ)/n. It can be shown using pointwise uncertainty estimation from

Corollary 3 that

|σ̂K,1 − σ1| ≤ βK
L , |σ̂K,2 − σ2| ≤ βK

L (12)

holds with probability greater than 1− δ, where the σ̂K,1, σ̂K,2 denote the estimated variances after K episodes. Then the
loss of the agnostic algorithm at the end of the K-th episode is given by

LK
n (π,b) =

√
2σ̂2

K,1 + σ̂2
K,2 +

√
2σ̂2

K,2 + σ̂2
K,1

n

(a)

≥

√
2(σ2

1 − βK
L ) + σ2

2 − βK
L +

√
2(σ2

2 − βK
L ) + σ2

1 − βK
L

n

=

√
2σ2

1 + σ2
2 − 3βK

L +
√
2σ2

2 + σ2
1 − 3βK

L

n
(b)

≥
√
2σ2

1 + σ2
2 +

√
2σ2

2 + σ2
1

n
− C

βK
L

n

where, (a) follows from concentration inequality in (12), and (b) follows for some appropriate constant C > 0. Then for
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K ≥ SAL2

ϵ2 log(1/δ) (from step 1) we have the total loss as

Ln(π,b) = LK
n (π,b) ≥

(√
2σ2

1 + σ2
2 +

√
2σ2

2 + σ2
1

n
− βK

L

n

)
SAL2

ϵ2
log(1/δ)

(a)

≥
√
2σ2

1 + σ2
2 +

√
2σ2

2 + σ2
1

n︸ ︷︷ ︸
Ln(π,b∗)

+
βK
L

n

Ln(π,b)− L∗
n(π,b∗)

(b)

≥
√
SAL2 log(SAL2/δ)

n
√
K

= Ω

(√
SAL2 log(1/δ)

n3/2

)

where, (a) follows by first setting ϵ = 1/
√
n and then noting that

(√
2σ2

1 + σ2
2 +

√
2σ2

2 + σ2
1 − βK

L

)
(SAL2) log(1/δ) ≥

√
2σ2

1 + σ2
2 +

√
2σ2

2 + σ2
1

n
+

βK
L

n
.

Also note that Ln(π,b∗) =

√
2σ2

1 + σ2
2 +

√
2σ2

2 + σ2
1

n
. The (b) follows by substituting the value of βK

L . The claim of the
lemma follows.

Theorem 1. (Lower Bound, formal) Let π(a|s) = 1
A for each state s ∈ S. Assume the MDP M is tractable under

Assumption 3.2 and satisfies (7). Then the reward regret is lower bounded by

E [Rn] = Ln(π,b)− L∗
n(π,b

k
∗) ≥


Ω

(
max

{
A1/3

n3/2 ,

(
H2

∗,(1)A
2/3

n3/2

)})
, (MAB)

Ω

(
max

{√
SAL2

n3/2 ,

(
H2

∗,(1)SAL2

n3/2

)})
(Tabular MDP)

where, ∆0 = |V bk
∗

c (s11)− V π0
c (s11)| and H∗,(1) =

1
αV

π0
c (s11)

(αV π0
c (s11) + ∆0) is the hardness parameter.

Proof. We follow a reduction-based proof technique to prove this lower bound (Yang et al., 2021).

Step 1 (Reduction): First recall we have that the regret for any online algorithm Alg that minimizes the MSE Ln(π) is given
byRn(Alg) = Ln(π,b)− L∗

n(π,b
k
∗), where L∗

n(π,b) is the MSE of the oracle algorithm. We also assume π(a) = 1/A
for all a ∈ A, and σ(a) ≥ 1

16 for all a.

Now consider any sequential decision-making problem A (for instance a multi-armed bandit problem) such that there exists
ξ ∈ R (a constant solely depending on the sequential decision-making problem, e.g., the number of actions in bandits, or
state-action-horizon in tabular RL), an instance of problem A where for the budget n large enough and any algorithm Alg
we have from Lemma C.5 and Lemma C.6 that:

E
[
RA

n (Alg)
]
≥ ξ

n3/2
, (13)

For instance, in the MAB case ξ = A1/3 with A the number of arms and in tabular RL ξ = SAL2. Using this non-
conservative (unconstraint) lower bound, we show our lower bound for the safe setting for the problem A with a baseline
policy π0. We assume the MDP T ⊂M where we run the behavior policy bk

∗ satisfies Assumption 3.2. This is required
because otherwise we will not be able to run the behavior policy a sufficient number of times to reach a regret bound of
Õ(n−3/2)(see Proposition 1). To do so, let’s consider any safe algorithm (that is to say it satisfies safety constraint) noted as
Algc. We assume this algorithms selects behavior policies (bt)t∈[n] and let N0 denotes the set of episodes in {1, . . . ,K}
where Algc selects the safe policy π0. Let |N0| = N0 and ∆0 := |V bk

∗ − V π0
c |. Here we assume the budget n is large such
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that n ≥ SAL2/ϵ2 for some ϵ > 0 (see Lemma C.6) and

n ≥
√

ξ

αV π0
c (s11) · (αV

π0
c (s11) + ∆0)

+
ξ2

4 (αV π0
c (s11) + ∆0)

2

=⇒ n2 ≥ ξ

αV π0
c (s11) · (αV

π0
c (s11) + ∆0)

+
ξ2

4 (αV π0
c (s11) + ∆0)

2 .

=⇒ n ≥ ξ

nαV π0
c (s11) · (αV

π0
c (s11) + ∆0)

+
ξ2

4n (αV π0
c (s11) + ∆0)

2

Step 2 (Loss estimate): Let L(N0) be the loss suffered in first N0 episodes. We now distinguish two cases:

(a) If E [L(N0)] ≥ ξ

nαV
π0
c (s11)·(αV

π0
c (s11)+∆0)

, then the definition of the regret implies that:

E
[
RA

n (Alg)
]
= E [L(N0)] ·∆0 ≥

ξ∆0

nαV π0
c (s11) · (αV

π0
c (s11) + ∆0)

. (14)

(b) If E [L(N0)] <
ξ

nαV π0·(αV π0
c (s11)+∆0)

, then let’s note NC
0 =

{
i1, i2, · · · , i|N c

0 |
}

the set of episodes where Algc does

not execute the baseline policy π0. Now consider the safety budget (similar to Definition 1 of Yang et al. (2021)) we have:

BN c
0
(Algc) = max

t∈N c
0

E
t∑

k=1

[
(1− α)V π0

c (s11)− V πt

(s11)
]

= max
t∈N c

0

E
t∑

k=1

[
V bk

∗ (s11)− V πt

(s11)− αV π0
c (s11)−

(
V

bk
∗

c (s11)− V π0
c (s11)

)]
= max

t∈N c
0

E
[
RA

NC
0
(Ac) (t)

]
−
(
αV π0

c (s11) + ∆0

)
t,

where ∆0 = V
bk

∗
c (s11) − V π0

c (s11) is the difference between the constraint value of the optimal policy and the baseline

policy and E
[
R

NC
0

A (Ac) (t)
]

is the regret incurred by the episodes {ik}k∈[t]. Therefore, for any t ∈ [|T c
0 |], by (13)

we have that there exists an instance u (for instance in a bandit problem u is the means of each arm) of A such that

E
[
R

NC
0

A (Ac) (t)
]
≥ ξ

t3/2
. Let t0 = ξ2

4n(αV π0
c (s11)+∆0)

2 , then there exists an instance such that

BNC
0
(Algc) ≥

ξ

t
3/2
0

−
(
αV π0

c (s11) + ∆0

)
t0 =

4
(
αV π0

c (s11) + ∆0

)3
n3/2

ξ2
− ξ2

4(αV π0
c (s11) + ∆0)

1

n2

(a)

≳
(αV π0

c (s11) + ∆0)
2ξ2

n3/2
.

where, (a) follows as n3/2 − n−2 ≥ n−3/2. Combining the safety condition in Equation (1), we have

E [L(N0)] ≥
BN0

(Algc)
αV π0

c (s11)
≳

(
αV π0

c (s11) + ∆0

)2
ξ2

αV π0
c (s11)n

3/2
.

By the same derivation of Equation (14), we have

E
[
RA

n (Alg)
]
≳

ξ2∆0

nαV π0
c (s11) · (αV

π0
c (s11) + ∆0)

(a)

≥ ξ2

n3/2αV π0
c (s11) · (αV

π0
c (s11) + ∆0)

. (15)

where, (a) follows for ∆0 ≥ 1/
√
n. Combining Equation (13), 14, and 15 we can show that

E
[
RA

n (Alg)
]
≳ max

{
ξ

n3/2
,
(αV π0

c (s11) + ∆0)
2ξ2

(αV π0
c (s11))

2n3/2

}
.
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Step 3 (Combine with MAB:) Now considering that safe oracle bk
∗ is also an online algorithm Alg, we can drop the

notation. Then for multi-armed bandits, by Lemma C.5, we choose ξ = A1/3. Then we have

E [Rn] ≳ max

{
A1/3

n3/2
,

(
αV π0

c (s11) + ∆0

)2
(αV π0

c (s11))
2

(
A2/3

n3/2

)}
(a)
= min

{
A1/3

n3/2
,

(
H2

∗,(1)A
2/3

n3/2

)}
.

where, (a) follows from the problem complexity parameter H∗,(1) =
1

αV
π0
c (s11)

(αV π0
c (s11) + ∆0) when π(a) = 1/A and

σ(a) ≥ 1/16 for the bandit setting.

Step 4 (Combine with tabular RL:) For tabular RL, by Lemma C.6, we choose ξ =
√
SAL2. Then we have

E [Rn] ≳ max

{√
SAL2

n3/2
,

(
αV π0

c (s11) + ∆0

)2
(αV π0

c (s11))
2

(
SAL2

n3/2

)}
(a)
= min

{√
SAL2

n3/2
,

(
H2

∗,(1)SAL2

n3/2

)}
.

where, (a) follows from the problem complexity parameter H∗,(1) =
1

αV
π0
c (s11)

(αV π0
c (s11) + ∆0) when π(a) = 1/A and

σ(a) ≥ 1/16. This concludes the proof.

Remark C.7. (Comparing regret) Observe that the regret lower bound is proved onR′
n = Ln(π)−L∗

n(π) which assumes
that we can exactly solve for the oracle sampling solution. However, L∗

n(π) inRn is an upper bound to L∗
n(π) and so we

cannot directly compareRn withR′
n. However, sinceR′

n gives a lower bound by directly solving for the oracle solution,
we conjecture that this is the lower bound toRn. Proving this conjecture we leave it to future works.

D. Proof of Tree Agnostic MSE
Theorem 2. (formal) Let Assumption 3.2 hold. Then the MSE of the SaVeR for n

log(SAn(n+1)/δ) ≥ 32(LSA2)2 +
SA

mins,a ∆c,(2)(s,a)
+ 1

4H2
∗,(2)

is bounded by

Ln(π, b̂
k) ≤M2(s11)

n
+

8AM2(s11)

n2
+

16A2M2(s11)

n3
+

M2(s11)

n

(
32MLSA+H∗,(2)

)2
+ 2

n∑
t=1

2η + 4η2

n2

+O

(
(2η + 4η2)(LSA2)2H2

∗,(2)M
2
√
log(SAn(n+ 1)/δ)

mins b
k,(3/2)
∗,min (s)n3/2

)

with probability (1 − δ). The M =
∑L

ℓ=1

∑
sℓj
M(sℓj), and H∗,(2) =

∑L
ℓ=1

∑
sℓj
H∗,(2)(s

ℓ
j) is the problem complexity

parameter. The total predicted constraint violations is bounded by

Cn(π, b̂k) ≤
H∗,(2)

2

n

Mmin
+ 16LSA2 +O

(
(2η + 4η2)(LSA2)2H2

∗,(2)M
2
√
log(SAn(n+ 1)/δ)

mins b
k,(3/2)
∗,min (s)n1/2

)
with probability (1− δ), where Mmin := mins M(s).

Proof. Step 1 (Sampling rule): First note that agnostic SaVeR samples by the following rule

Play bk =


πx if Ẑk−1 ≥ 0, k ≤

√
K

b̂k if Ẑk−1 ≥ 0, k >
√
K

π0 if Ẑk−1 < 0

(16)

where, Ẑk−1
L :=

∑k−1
k′=1(Y

bk′

c,L (s11)− βk′

L (s, a))− (1− α)(k − 1)V π0
c (s11) is the safety budget till the k-th episode.

Step 2 (MSE Decomposition): Now recall that the agnostic algorithm does not know the variances and the means. We
define the good cost event when the oracle has a good estimate of the cost mean. This is stated as follows:

ξc,K :=
⋂

1≤k≤K,
1≤a≤A,1≤s≤S

{∣∣µ̂k
c,L(s, a)− µc(s, a)

∣∣ ≤ (2η + 4η2)L

√
log(SAn(n+ 1)/δ)

2T k
L(s, a)

}
(17)
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where, n = KL and K is the number of episodes and L is the length of horizon of each episode. The exploration policy πx

results in a good constraint estimate of state-action tuples. This is shown in Corollary 4. We define the good variance event
as

ξv,K :=
⋂

1≤k≤K,
1≤a≤A,1≤s≤S

{
|σ̂k

L(s, a)− σ(s, a)| ≤ (2η + 4η2)L

√
log(SAn(n+ 1)/δ)

2T k
L(s, a)

}
. (18)

We define the safety budget event

ξZ,K :=
⋂

1≤k≤K

{
Ẑk ≥ 0

}
. (19)

Using the definition of MSE, and Lemma A.1 we can show that

ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξZ,K} ∩ I{ξc,K} ∩ I{ξv,K}

]
≤
∑
a

π2(a|s11)
[

σ2(s11, a)

T
(2),K
L (s11, a)

]
E[TK

L (s11, a)I{ξZ,K} ∩ I{ξc,K} ∩ I{ξv,K}]

+ γ2
∑
a

π2(a|s11)
∑
s2j

P (s2j |s11, a)Var[Yn(s
2
j )]E[TK

L (s2j , a)I{ξZ,K} ∩ I{ξc,K} ∩ I{ξv,K}]

≤
∑
a

π2(a|s11)
[

σ2(s11, a)

T
(2),K
L (s11, a)

]
E[TK

L (s11, a)I{ξZ,K ∩ I{ξv,K}} ∩ I{ξc,K}]

+ γ2
∑
a

π2(a|s11)
L∑

ℓ=2

∑
sℓj

P (sℓj |s11, a)
∑
a′

π2(a′|sℓj)
[

σ2(sℓj , a
′)

T
(2),K
L (sℓj , a

′)

]
E[TK

L (sℓj , a
′)I{ξZ,K} ∩ I{ξc,K} ∩ I{ξv,K}]

(20)

which implies that SaVeR does not need to know the reward means µ(s, a). Hence, the MSE of SaVeR is bounded by

Ln(π) ≤ ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξZ,K} ∩ I{ξc,K} ∩ ξv,K

]
︸ ︷︷ ︸

Part A, Ẑn ≥ 0, safety event holds

+ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξCZ,K}

]
︸ ︷︷ ︸

Part B, Ẑn < 0, constraint violation

+ ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξCc,K}]︸ ︷︷ ︸

Part C, Safety event does not hold

+ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξCv,K}]︸ ︷︷ ︸

Part D, Variance event does not hold

≤
∑
a

π2(a|s11)
[

σ2(s11, a)

T
(2),K
L (s11, a)

]
E[TK

L (s11, a)I{ξZ,K} ∩ I{ξc,K} ∩ I{ξv,K}]

+ γ2
∑
a

π2(a|s11)
L∑

ℓ=2

∑
sℓj

P (sℓj |s11, a)
∑
a′

π2(a′|sℓj)
[

σ2(sℓj , a
′)

T
(2),K
L (sℓj , a

′)

]
E[TK

L (sℓj , a
′)I{ξZ,K} ∩ I{ξc,K}]

+ ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξCZ,K}

]
︸ ︷︷ ︸

Part B, Ẑn < 0, constraint violation

+ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξCc,K}]︸ ︷︷ ︸

Part C, Safety event does not hold

+ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξCv,K}]︸ ︷︷ ︸

Part D, Variance event does not hold

.

Divide the total budget n into two parts, nf when
∑k

j=1 I{Ẑj ≥ 0} is true, then b∗ or πx is run. Hence define

nf :=

K∑
k=1

L∑
ℓ=1

∑
sℓj

A∑
a′=1

E[T k
ℓ (s

ℓ
j , a

′)I{ξZ,K} ∩ I{ξc,K} ∩ I{ξv,K}].
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The other part consist of nu = n− nf number of samples when
∑k

j=1 I{Ẑk < 0} and only π0 is run. Hence we define,

nu =

K∑
k=1

L∑
ℓ=1

∑
sℓj

A∑
a′=1

E[T k
ℓ (s

ℓ
j , a

′)I{ξCZ,K}].

Step 3 (Sampling of SaVeR for Ẑk ≥ 0): First note that when Ẑk ≥ 0 the SaVeR samples at episode k and round ℓ+ 1 the
action argmaxa U

k
ℓ+1(s

ℓ+1
i , a) where

Uk
ℓ (s

ℓ
i , a) :=

b̂k
ℓ (a|sℓi)

T k
ℓ (s

ℓ
i , a)

≤ π(a|sℓi)
T k
ℓ (s

ℓ
i , a)

(
σ(sℓi , a) + (2η + 4η2)

√
log(SAn(n+ 1)/δ)

2T k
ℓ (s

ℓ
i , a)

+ γ2
∑
a′

π(a′|sℓi)
∑
sℓ+1
j

P (sℓ+1
j |sℓi |a′)M̂(sℓ+1

j )

︸ ︷︷ ︸
B(sℓi)

)
. (21)

Let ℓ+1 > 2SA be the time at which a given state-action (sℓi , p
′) is visited for the last time, i.e., T k

ℓ (p
′) = TK

L (p′)− 1 and
T k
ℓ+1(p

′) = TK
L (p′). Note that as n = KL ≥ 4SA, there is at least one state-action pair (sℓi , p

′) such that this happens, i.e.
such that it is visited after the initialization phase. Note that under Assumption 3.2 it is possible to visit each (s, a) atleast
once. Since the SaVeR chooses to visit (sℓi , p

′) at time ℓ+ 1, we have for any state-action pair (sℓi , p
′)

Uk
ℓ+1(s

ℓ+1
i , p) ≤ Uk

ℓ+1(s
ℓ+1
i , p′). (22)

From (21) and using the fact that T k
ℓ (s

ℓ
i , p

′) = TK
L (sℓi , p

′)− 1, we can show that

Uk
ℓ+1(s

ℓ+1
i , p′) ≤ b∗(p

′|sℓ+1
i )

T k
t (s

ℓ+1
i , p′)

(
(2η + 4η2)

√
log(SAn(n+ 1)/δ)

2T k
t (s

ℓ+1
i , p′)− 1

+B(sℓ+1
i )

)

=
b∗(p

′|sℓ+1
i )

TK
L (sℓ+1

i , p′)− 1

(
(2η + 4η2)

√
log(SAn(n+ 1)/δ)

2TK
L (sℓ+1

i , p′)− 1
+B(sℓ+1

i )

)
. (23)

Also note that

Uk
ℓ+1(s

ℓ+1
i , p) =

b∗(p|sℓ+1
i )

T k
t (s

ℓ+1
i , p)

(
(2η + 4η2)

√
log(SAn(n+ 1)/δ)

2T k
t (s

ℓ+1
i , p)− 1

+B(sℓ+1
i )

)
(a)

≥ b∗(p|sℓ+1
i )

TK
L (sℓ+1

i , p)
. (24)

where, (a) follows as Tt(p) ≤ TK
L (p, sℓ+1

i ) (i.e., the number of times p has been visited can only increase after time ℓ).
Combining (22), (23), (24) we can show that for any action p:

b∗(p|sℓ+1
i )

TK
L (p, sℓ+1

i )
≤ b∗(p

′|sℓ+1
i )

TK
L (p′, sℓ+1

i )− 1

(
(2η + 4η2)

√
log(SAn(n+ 1)/δ)

2TK
L (sℓ+1

i , p′)− 1
+B(sℓ+1

i )

)
. (25)

Note that in the above equation, there is no dependency on ℓ, and thus, the probability that (25) holds for any (sℓ+1
i , p) and

for any (sℓ+1
i , p′) such that action (sℓ+1

i , p′) is visited after the initialization phase, i.e., such that TK
L (sℓ+1

i , p′) > 2 depends
on the probability of event ξZ,n.

Step 4. ((Lower bound on TK
L (sℓi , p) for Ẑk ≥ 0): If a state-action tuple (sℓi , p) is less visited compared to its optimal

allocation without taking into account the initialization phase, i.e., TK
L (sℓi , p)−2 < b(p|sℓi)(n−2A), then from the constraint∑

p′

(
TK
L (s, p′)− 2

)
= n− 2SA and the definition of the optimal allocation, we deduce that there exist at least another

state-action tuple sℓi , p
′ that is over-visited compared to its optimal allocation without taking into account the initialization

phase, i.e., TK
L (sℓi , p

′)− 2 > b(sℓi , p
′)(n− 2A). Note that for this action, TK

L (sℓi , p
′)− 2 > b∗(p

′|sℓi)(n− 2SA) ≥ 0, so
we know that this specific action is taken at least once after the initialization phase and that it satisfies (25). Recall that we
have defined M(sℓi) =

∑
a π(a|sℓi)σ(sℓi , a). Further define M =

∑L
ℓ=1

∑
sℓi
M(sℓi). Using the definition of the optimal
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allocation T ∗,K
L (sℓi , p

′) = nf
b∗(p

′|sℓi)
M(sℓi)

, and the fact that TK
L (sℓi , p

′) ≥ b∗(p
′|sℓi)(nf − 2SA) + 2, (25) may be written as for

any state-action tuple (sℓi , p)

b∗(p|sℓi)
TK
L (sℓi , p)

≤ b∗(p
′|sℓi)

T ∗,K
L (p′, sℓi)

nf

(nf − 2SA)

(
(2η + 4η2)

√
log(SAn(n+ 1)/δ)

2TK
L (sℓ+1

i , p′)− 1
+B(sℓ+1

i )

)

≤ M(sℓi)

nf
+

4SAM(sℓi)

n2
f

+
(2η + 4η2)

√
log(SAn(n+ 1)/δ)

b
3/2
∗,min(s

ℓ
i)n

3/2
f

(26)

because nf ≥ 4SA. By rearranging (26), we obtain the lower bound on TK
L (sℓi , p) :

TK
L (sℓi , p) ≥

b∗(p|sℓi)
M(sℓi)

nf
+

4SAM(sℓi)

n2
f

+
(2η + 4η2)

√
log(SAn(n+ 1)/δ)

b
3/2
∗,min(s

ℓ
i)n

3/2
f

(a)

≥ T ∗,K
L (sℓi , p)−

(2η + 4η2)b∗(p|sℓi)
√
log(SAn(n+ 1)/δ)

M(sℓi)b
3/2
∗,min(s

ℓ
i)n

3/2
f

− 4Ab∗(p|sℓi), (27)

where in (a) we use 1/(1 + x) ≥ 1− x (for x > −1 ). Note that the lower bound holds on ξc,K for any state-action (sℓi , p).

Step 5. (Upper bound on TK
L (sℓi , p) for Ẑk ≥ 0): Now using (27) and the fact that nf is given by∑L

ℓ=1

∑
sℓj

∑A
a′=1 E[TK

L (sℓj , a
′)I{ξZ,K} ∩ I{ξc,K} ∩ I{ξv,K}] = nf , we obtain

TK
L (sℓi , p) = nf −

∑
p′ ̸=p

TK
L (sℓi , p

′) ≤

nf −
∑
p′ ̸=p

T ∗,K
L (sℓi , p

′)


+
∑
p′ ̸=p

(
(2η + 4η2)b∗(p

′|sℓi)
√
log(SAn(n+ 1)/δ)

M(sℓi)b
3/2
∗,min(s

ℓ
i)n

3/2
f

+ 4Ab∗(p
′|sℓi)

)
.

Now since
∑

p′ ̸=p b∗(p
′|sℓi) ≤ 1 we can show that

TK
L (sℓi , p) ≤ T ∗,K

L (sℓi , p) +
(2η + 4η2)b∗(p|sℓi)

√
log(SAn(n+ 1)/δ)

M(sℓi)b
3/2
∗,min(s

ℓ
i)n

3/2
f

+ 4A. (28)
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Step 6 (Bound part A): We now bound the part A using (26)

∑
a

π2(a|s11)
[

σ2(s11, a)

T
(2),K
L (s11, a)

]
E[TK

L (s11, a)I{ξZ,K} ∩ I{ξc,K} ∩ I{ξv,K}]

+ γ2
∑
a

π2(a|s11)
L∑

ℓ=2

∑
sℓj

P (sℓj |s11, a)
∑
a′

π2(a′|sℓj)
[

σ2(sℓj , a
′)

T
(2),K
L (sℓj , a

′)

]
E[TK

L (sℓj , a
′)I{ξZ,K} ∩ I{ξc,K}]

(a)

≤

(
M(s11)

nf
+

4SAM(s11)

n2
f

+
(2η + 4η2)

√
log(SAn(n+ 1)/δ)

b
3/2
∗,min(p|sℓi)n

3/2
f

)2

nf

+ γ2
∑
a

π2(a|s11)
L∑

ℓ=2

∑
sℓj

P (sℓj |s11, a)

(
M(sℓj)

nf
+

4SAM(sℓj)

n2
f

+
(2η + 4η2)

√
log(SAn(n+ 1)/δ)

b
3/2
∗,min(p|sℓi)n

3/2
f

)2

nf

=
M2(s11)

nf
+

8AM2(s11)

n2
f

+
16A2M2(s11)

n3
f

+O

(
(2η + 4η2)

√
log(SAn(n+ 1)/δ)

b
3/2
∗,min(p|sℓi)n

3/2
f

)

+ γ2
∑
a

π2(a|s11)
L∑

ℓ=2

∑
sℓj

P (sℓj |s11, a)

(
M2(sℓj)

nf
+

8AM2(sℓj)

n2
f

+
16A2M2(sℓj)

n3
f

+O

(
(2η + 4η2)

√
log(SAn(n+ 1)/δ)

b
3/2
∗,min(p|sℓj)n

3/2
f

))

where, in (a) follows from the definition of M(s) and nf .

Step 7 (Upper Bound to Constraint Violation): In this step we bound the quantity Cn(π) =
∑k

j=1 I{Ẑj < 0,bj ∈
{b̂k, π0}}. Define the number of times the policy b∗ is played till episode k is T k(b∗) and the number of times the baseline
policy is played is given by T k(π0). Observe that Cn(π) =

∑k
j=1 I{Ẑj < 0,bj ∈ {b̂k, π0}} = TK(π0)I{ξCZ,K} as when

the constraint are violated policy π0 is sampled. Let τ = max
{
k ≤ K and nf ≥ log(SAn(n+1)/δ)

mins,a ∆c,α,(2)(s,a)
| bk = π0

}
be the

last episode in which the baseline policy is played. We will define formally the gap ∆c,α,(2)(s, a) later. Observe that the
constraint violation can be re-stated as follows:

τ∑
k=1

Y c
bk(s

1
1) :=

τ∑
k=1

∑
a

bk(a|s11)

µ̂c,k
L (s1, a) +

∑
s2j

P (s2j |s11, a)Y c
bk(s

2
j )

 < (1− α)τV c
π0
(s11)

=⇒
τ∑

k=1

∑
a

bk(a|s11)

µ̂c,k

L
(s11, a) +

∑
s2j

P (s2j |s11, a)Y
c
bk(s2j )

 < (1− α)τV c
π0
(s11)

(a)
=⇒

τ∑
k=1

∑
a

bk(a|s11)

µ̂c,k

L
(s11, a) +

∑
s2j

P (s2j |s11, a)Y
c
bk(s2j )


< (1− α)

τ∑
k=1

π0(0|s11)

µc(s11, 0) +
∑
s2j

P (s2j |s11, 0)V c
π0
(s2j )
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=⇒
τ∑

k=1

∑
a

T k
L(s

1
1, a)

µ̂c,k

L
(s11, a)+

∑
s2j

P (s2j |s11, a)Y
c
bk(s2j )


< (1− α)

τ∑
k=1

T k
L(s

1
1, a)

µc(s11, 0)+
∑
s2j

P (s2j |s11, 0)V c
π0
(s2j )


(b)
=⇒

∑
a

T τ
L(s

1
1, a)µ̂

c,τ

L
(s11, a)︸ ︷︷ ︸

Part A

+
∑
a

T τ
L(s

1
1, a)

∑
s2j

P (s2j |s11, a)Y
c
bk(s2j )

< (1− α)
∑
a

T τ
L(s

1
1, 0)µ

c(s11, 0)︸ ︷︷ ︸
Part B

+(1− α)T τ
L(s

1
1, 0)

∑
s2j

P (s2j |s11, 0)V c
π0
(s2j ). (29)

Comparing Part A and Part B for level ℓ = 1 we observe that the constraint violation must satisfy∑
a

T τ
L(s

1
1, a)µ̂

c,τ

L
(s11, a) < (1− α)T τ

L(s
1
1, 0)µ

c(s11, 0)

which can be reduced as follows

T τ−1
L (s11, 0) ≤

1

αµc(s11, 0)

(
1 +

A∑
a=1

N(s11, a)

)
.

where ∆c,α(s11, a) := (1− α)µc(s11, 0)− µc(s11, a) and

N(s11, a) := T τ−1
L (s11, a) ·

(
(1− α)µc(s11, 0)− µc(s11, a) + c1

√
log(An(n+ 1)/δ)/T τ−1

L (s11, a)

)
= ∆c,α(s11, a)T

τ−1
L (s11, a) + c1

√
log(An(n+ 1)/δ)T τ−1

L (s11, a) (30)

is a bound on the decrease in Ẑτ in the first τ − 1 rounds due to choosing action a in s11. We will now bound N(s11, a) for
each a. Now observe

∆c,α(s11, a) = (1− α)µc(s11, 0)− µc(s11, a) = µc(s11, 0)− αµc(s11, 0)− µc(s11, a)

= −(µ∗,c(s11)− µc(s11, 0))− αµc(s11, 0) + (µ∗,c(s11)− µc(s11, a))

= −∆c(s11, 0)− αµc(s11, 0) + ∆c(s11, a).

where, µ∗,c(s11) = maxa µ
c(s11, a). Let J(nf ) =

(2η+4η2)b∗(p|sℓi)
√

log(SAn(n+1)/δ)

M(sℓi)b
3/2
∗,min(s

ℓ
i)n

3/2
f

. The first case is ∆c,α(s11, a) > 0, i.e.

∆c(s11, a) > ∆c(0) + αµc(0). These are the unsafe actions as ∆c,α(s11, a) := (1− α)µc(0)− µc(s11, a) > 0 we have from
(28)

Tn(s
1
1, a) ≤ T ∗

n(s
1
1, a) + J(nf ) + 4A =

π(s11, a)σ(s
1
1, a)

M
nf + J(nf ) + 4A

Plugging this back in N(s11, a) we get

N(s11, a) = ∆c,α(s11, a)Tτ−1(s
1
1, a) + c1

√
log(An(n+ 1)/δ)Tτ−1(s11, a) + J(nf )

≤ π(s11, a)σ(s
1
1, a)

M
nf∆

c,α(s11, a) + 4A∆c,α(s11, a) + c1

√
log(An(n+ 1)/δ)

(
π(s11, a)σ(s

1
1, a)

M
nf + 4A

)
+ J(nf )

(a)

≤ π(s11, a)σ(s
1
1, a)

M
nf∆

c,α(s11, a) + 4A∆c,α(s11, a) + c1

√
∆c,α,(2)(s11, a)

(
π(s11, a)σ(s

1
1, a)

M
nf + 4A

)
+ J(nf )

≤ 2

(
π(s11, a)σ(s

1
1, a)

M
nf∆

c,α(s11, a) + 4A∆c,α(s11, a)

)
+ J(nf ). (31)
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where, (a) follows for nf ≥ log(SAn(n+1)/δ)
mina ∆c,α,(2)(s11,a)

. The other case is ∆c,α(s11, a) < 0, i.e. ∆c(s11, a) < ∆c(s11, 0) + αµc(s11, 0)

then only safe actions are pulled. Then

N(s11, a) ≤ −∆c,α(s11, a)Tτ−1(s
1
1, a) + c1

√
log(An(n+ 1)/δ)Tτ−1(s11, a) + J(nf )

= −∆c,α(s11, a)︸ ︷︷ ︸
a

Tτ−1(s
1
1, a) + c1

√
log(An(n+ 1)/δ)︸ ︷︷ ︸

b

√
Tτ−1(s11, a) + J(nf )

(a)

≤ − log(An(n+ 1)/δ)

4∆c,α(s11, a)
=

log(An(n+ 1)/δ)

4(∆c(0) + αµc(0)−∆c(s11, a))

(b)

≤ 4

(
π(s11, a)σ(s

1
1, a)

M
nf (∆

c(0) + αµc(0)−∆c(s11, a))

)
(32)

where, (a) follows by using ax2 + bx ≤ −b2/4a for a < 0, and (b) follows as nf ≥ log(An(n+1)/δ)

min+
a∈A\{0} π(s11,a)σ(s

1
1,a)∆

c,α,(2)(s11,a)

which implies

log(An(n+ 1)/δ)

nf
≤ 4

 ∑
A\{0}

π(s11, a)σ(s
1
1, a)

+
min{∆c(s11, a),∆

c(0)−∆c(s11, a)}

2

=⇒ log(An(n+ 1)/δ)∑
A\{0} π(s

1
1, a)σ(s

1
1, a)min+{∆c(s11, a),∆

c(0)−∆c(s11, a)}

≤ 4

 ∑
A\{0}

π(s11, a)σ(s
1
1, a)

+
min{∆c(s11, a),∆

c(0)−∆c(s11, a)}

nf .

Plugging everything back in (32), we get

nu = Tτ−1(s
1
1, 0) =

1

αµc(0)

(
A∑

a=1

N(s11, a)

)

≤ 2

αµc(0)

∑
a∈Au

∆c(s11, a)

(
π(s11, a)σ(s

1
1, a)

M
nf

)
+

4

αµc(0)

∑
a∈As\{0}

(
∆c(0)−∆c(s11, a)

)(π(s11, a)σ(s
1
1, a)

M
nf

)

=
6

αµc(0)

∑
a∈A\{0}

+
min{∆c(s11, a),∆

c(0)−∆c(s11, a)}
(
π(s11, a)σ(s

1
1, a)

M
(n− nu)

)
≤

H∗,(2)

2

n

M
. (33)

It follows then that for the state s11

nu(s
1
1) ≤

1

αµc(s11, 0)

(
1 +

A∑
a=1

N(s11, a)

)
≤

H∗,(2)(s
1
1)

2

n

M(s11)

where

H∗,(2)(s
ℓ
i) :=

∑
a

b∗(a|sℓi)
+

min{∆c(sℓi , a),∆
c(sℓi , 0)−∆c(sℓi , a)},

M(sℓi) :=
∑
a

√√√√√√π2(a|sℓi)

σ2(sℓi , a)+
∑
sℓ+1
j

P (sℓ+1
j |sℓi , a)M2(sℓ+1

j )

. (34)
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For an arbitrary level ℓ ∈ [L], we can show using (29) that the constraint violation must satisfy

ℓ∑
ℓ′=1

∑
sℓ

′
i

∑
a

T τ
L(s

ℓ′

i , a)µ̂
c,τ

L
(sℓ

′

i , a) < (1− α)

ℓ∑
ℓ′=1

∑
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′
i

T τ
L(s

ℓ′

i , 0)µ
c
0(s

ℓ′

i , 0)

(a)
=⇒

ℓ∑
ℓ′=1

∑
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′
i

∑
a

T ∗,K
L (sℓ

′

i , a)− 4Ab∗(a|sℓ
′

i )−O
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√
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minsℓ′i
b
k,(3/2)
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′
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3/2
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 µ̂c,τ
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(sℓ

′
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ℓ∑
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sℓ

′
i

T ∗,K
L (sℓ

′
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√
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minsℓ′i
b
k,(3/2)
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′
i )n

3/2
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′
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=⇒
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i
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a

(
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′
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)
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T ∗,K
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L
(sℓ

′

i , a)) +O

 ℓ∑
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(2η + 4η2)
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b
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)
µ̂c,τ

L
(sℓ
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T ∗,K
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)
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 ℓ∑
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b
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∑
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′
i

∑
a

(
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′
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)
µ̂c,τ

L
(sℓ

′

i , a) < (1− α)max
s

µc(s, 0)

ℓ∑
ℓ′=1

∑
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′
i

(
T ∗,K
L (sℓ

′

i , 0)
)
+ 16LSA2
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(
(2η + 4η2)L

√
log(SAn(n+ 1)/δ)
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k,(3/2)
∗,min (s)n

3/2
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)
(35)

where, (a) follows as µ(s, a) ∈ (0, 1] for all s, a and using (27) and (28). Summing over all states sℓj till level L we can
show that

nu =

L∑
ℓ=1

∑
sℓj

T ∗,K
L (sℓj , 0) ≤

n

2

L∑
ℓ=1

∑
sℓj

H∗,(2)(s
ℓ
j)

M(sℓj)
+ 16LSA2 +O
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(2η + 4η2)L

√
log(SAn(n+ 1)/δ)
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k,(3/2)
∗,min (s)n
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)
nf
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≤
H∗,(2)

2

n

Mmin
+ 16LSA2 +O

(
(2η + 4η2)L

√
log(SAn(n+ 1)/δ)
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∗,min (s)n
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≤
H∗,(2)

2

n

Mmin
+ 16LSA2 +O

(
(2η + 4η2)L

√
log(SAn(n+ 1)/δ)

mins b
k,(3/2)
∗,min (s)n1/2

)
(36)

where, in (a) we define Mmin = mins M(s), and H∗,(2) =
∑L

ℓ=1

∑
sℓj
H∗,(2)(s

ℓ
j), and (b) follows by setting nf = n− nu.

Finally, observe that 16LSA2 does not depend on the episode K, and the quantity O

(
(2η+4η2)L

√
log(SAn(n+1)/δ)

mins b
k,(3/2)
∗,min (s)n1/2

)
decreases with n.

Step 8 (Lower Bound to Constraint Violation): For the lower bound to the constraint we equate Equation (29) to 0 and
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show that ∑
a

T τ
L(s

1
1, a)µ̂

c,τ

L
(s11, a)︸ ︷︷ ︸
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+
∑
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T τ
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1
1, a)

∑
s2j

P (s2j |s11, a)Y
c
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T τ
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1
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+(1− α)T τ
L(s

1
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P (s2j |s11, 0)V c
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(s2j ).

Again comparing Part A and Part B for level ℓ = 1 we observe that the lower bound to constraint violation must satisfy∑
a
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L(s

1
1, a)µ̂

c,τ

L
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1
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1
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(
1 +
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N(s11, a)

)
.

where ∆c,α(s11, a) := (1− α)µc(s11, 0)− µc(s11, a) and

N(s11, a) := T τ−1
L (s11, a) ·

(
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Similarly for any arbitrary level ℓ ∈ [L] following the same way as step 7 above it can be shown that
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Finally summing over all states sℓj and level L we can show that
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Again, observe that 16LSA2 does not depend on the episode K.

Step 9 (Bound Part B): Then from (37) we can show that
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where, (a) follows for 1/(x− c) ≤ x+ c for x2 ≥ 1 + c2 and c > 0. The (b) follows for H∗,(2) =
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ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξCZ,K}

]
(a)

≤

(
(M(s11) + 16LSA2)M

(
2 +H∗,(2)

)
nf

+O

(
(2η + 4η2)L

√
log(SAn(n+ 1)/δ)

mins b
k,(3/2)
∗,min (s)n

3/2
f

))2

nu

(b)

≤ (M(s11) + 16LSA2)2nu

(n− nu)2
(
2 +H∗,(2)

)2
+O

(
(2η + 4η2)L2S2A4H2

∗,(2)M
2
√
log(SAn(n+ 1)/δ)

mins b
k,(3/2)
∗,min (s)(n− nu)3/2

)
(c)

≤
(M(s11) + 16LSA2)2H∗,(2)n

(n−H∗,(2)n)2
(
2 +H∗,(2)

)2
+O

(
(2η + 4η2)L2S2A4H2

∗,(2)M
2
√
log(SAn(n+ 1)/δ)

mins b
k,(3/2)
∗,min (s)(n−H∗,(2)n)3/2

)

≤ M2(s11)

n

(
32MLSA2 +H∗,(2)

)2
+O

(
(2η + 4η2)L2S2A4H2

∗,(2)M
2
√

log(SAn(n+ 1)/δ)

mins b
k,(3/2)
∗,min (s)n3/2

)
where, (a) follows from Lemma A.1, (b) follows from definition of H∗,(2), and (c) follows from (36).

Step 10 (Combine everything): Combining everything from step 5, step 8 and setting δ = 1/n2 we can show that the MSE
of SaVeRscales as

Ln(π, b̂
k) ≤ M2(s11)

n
+

8AM2(s11)

n2
+

16A2M2(s11)

n3
+

M2(s11)

n

(
32MLSA+H∗,(2)

)2
+ ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξCc,K}]︸ ︷︷ ︸

Part C, Safety event does not hold

+ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξCv,K}]︸ ︷︷ ︸

Part D, Variance event does not hold

(a)

≤ M2(s11)

n
+

8AM2(s11)

n2
+

16A2M2(s11)

n3
+

M2(s11)

n

(
32MLSA+H∗,(2)

)2
+ 2

n∑
t=1

2η + 4η2

n2

+O

(
(2η + 4η2)L2S2A4H2

∗,(2)M
2
√
log(SAn(n+ 1)/δ)

mins b
k,(3/2)
∗,min (s)n3/2

)
(38)

where, (a) follows as ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξCc,K}] ≤ 2η + 4η2 and using the low error probability of the cost event

from Lemma F.4 and variance event from Corollary 3. The claim of the theorem follows.
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E. Proof of Tree Oracle MSE
Proposition 2. (formal) Let Assumption 3.2 hold. Then the MSE of the oracle for n

log(SAn(n+1)/δ) ≥ 32(LSA2)2 +
SA

mins,a ∆c,(2)(s,a)
+ 1

4H2
∗,(2)

is bounded by

Ln(π,b
k
∗) ≤

M2(s11)

n
+

8AM2(s11)

n2
+

16A2M2(s11)

n3
+

M2(s11)

n

(
32MLSA2 +H∗,(2)

)2
+ 2

n∑
t=1

2η + 4η2

n2
+

2

n

with probability (1 − δ). The M =
∑L

ℓ=1

∑
sℓj
M(sℓj), and H∗,(2) =

∑L
ℓ=1

∑
sℓj
H∗,(2)(s

ℓ
j) is the problem complexity

parameter. The total predicted constraint violations is bounded by

C∗n(π,bk
∗) ≤

H∗,(2)

2

n

Mmin
+ 16LSA2

with probability (1− δ), where Mmin := mins M(s).

Proof. Step 1 (Sampling rule): We follow the proof technique of Theorem 2. Note that the oracle tree algorithm knows the
variances of reward and constraints values (but does not know the mean of either) and samples by the following rule

bk
∗ =


πx, if Ẑk−1

L ≥ 0, k ≤
√
K

b∗, if Ẑk−1
L ≥ 0, k >

√
K

π0 if Ẑk−1
L < 0

. (39)

where, Ẑk−1
L :=

∑k−1
k′=1(Y

bk′

c,L (s11)− βk′

L (s, a))− (1− α)(k − 1)V π0
c (s11) is the safety budget till the k-th episode.

Step 2 (MSE Decomposition): Now recall that the oracle knows the variances but does not know the means (constraint and
reward). We define the good constraint event when the oracle has a good estimate of the constraint mean. This is stated as
follows:

ξc,K :=
⋂

1≤k≤K,
1≤a≤A,1≤s≤S

{∣∣∣µ̂c,k
L (s, a)− µc(s, a)

∣∣∣ ≤ (2η + 4η2)

√
log(SAn(n+ 1)/δ)

2T k
L(s, a)

}
(40)

where, n = KL and K is the number of episodes and L is the length of horizon of each episode. Define c1 = 2η + 4η2.

The exploration policy πe results in a good constraint estimate of state-action tuples. This is shown in Corollary 4.

We also define the safety budget event ξZ,K :=
⋂

1≤k≤K

{
Ẑk ≥ 0

}
. Now using Lemma A.1 we can show that

ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξZ,K} ∩ I{ξc,K}

]
≤
∑
a

π2(a|s11)
[

σ2(s11, a)

T
(2),K
L (s11, a)

]
E[TK

L (s11, a)I{ξZ,K} ∩ I{ξc,K}]

+ γ2
∑
a

π2(a|s11)
∑
s2j

P (s2j |s11, a)Var[Yn(s
2
j )]E[TK

L (s2j , a)I{ξZ,K} ∩ I{ξc,K}]

≤
∑
a

π2(a|s11)
[

σ2(s11, a)

T
(2),K
L (s11, a)

]
E[TK

L (s11, a)I{ξZ,K} ∩ I{ξc,K}]

+ γ2
∑
a

π2(a|s11)
L∑

ℓ=2

∑
sℓj

P (sℓj |s11, a)
∑
a′

π2(a′|sℓj)
[

σ2(sℓj , a
′)

T
(2),K
L (sℓj , a

′)

]
E[TK

L (sℓj , a
′)I{ξZ,K} ∩ I{ξc,K}]
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which implies that the oracle does not need to know the reward means µ(a). Hence, Using the definition of MSE we can
show that the MSE of oracle is bounded by

Ln(π) ≤ ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξZ,K} ∩ I{ξc,K}

]
︸ ︷︷ ︸

Part A, Ẑn ≥ 0, safety event holds

+ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξCZ,K}

]
︸ ︷︷ ︸

Part B, Ẑn < 0, constraint violation

+ ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξCc,K}]︸ ︷︷ ︸

Part C, Safety event does not hold

≤
∑
a

π2(a|s11)
[

σ2(s11, a)

T
(2),K
L (s11, a)

]
E[TK

L (s11, a)I{ξZ,K} ∩ I{ξc,K}]

+ γ2
∑
a

π2(a|s11)
L∑

ℓ=2

∑
sℓj

P (sℓj |s11, a)
∑
a′

π2(a′|sℓj)
[

σ2(sℓj , a
′)

T
(2),K
L (sℓj , a

′)

]
E[TK

L (sℓj , a
′)I{ξZ,K} ∩ I{ξc,K}]

+ ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξCZ,K}

]
︸ ︷︷ ︸

Part B, Ẑn < 0, constraint violation

+ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξCc,K}]︸ ︷︷ ︸

Part C, Safety event does not hold

Divide the total budget n into two parts, nf when
∑k

j=1 I{Ẑj ≥ 0} is true, then b∗ is run. Hence define

nf :=

K∑
k=1

L∑
ℓ=1

∑
sℓj

A∑
a′=1

E[T k
ℓ (s

ℓ
j , a

′)I{ξZ,K} ∩ I{ξc,K}].

The other part consist of nu = n− nf number of samples when
∑k

j=1 I{Ẑk < 0} and only π0 is run. Hence we define,

nu =

K∑
k=1

L∑
ℓ=1

∑
sℓj

A∑
a′=1

E[T k
ℓ (s

ℓ
j , a

′)I{ξCZ,K}].

Step 3 (Sampling of oracle for an episode k when Ẑk ≥ 0): First note that when Ẑk ≥ 0 the oracle samples at episode k
according to the policy b∗. The following the same steps as in step 3 of Theorem 2 we can show that. At episode k, time
ℓ+ 1, the b∗ samples the state-action tuple, action argmaxa U

k
ℓ+1(s

ℓ+1
i , a) where

Uk
ℓ (s

ℓ
i , a) :=

b∗,ℓ(a|sℓi)
T k
ℓ (s

ℓ
i , a)

(41)

Let ℓ+1 > 2SA be the time at which a given state-action (sℓi , p
′) is visited for the last time, i.e., T k

ℓ (p
′) = TK

L (p′)− 1 and
T k
ℓ+1(p

′) = TK
L (p′). Note that as n = KL ≥ 4SA, there is at least one state-action pair (sℓi , p

′) such that this happens, i.e.
such that it is visited after the initialization phase. Since the oracle chooses to pull visit (sℓi , p

′) at time ℓ+ 1, we have for
any state-action pair (sℓi , p

′)

Uk
ℓ+1(s

ℓ+1
i , p) ≤ Uk

ℓ+1(s
ℓ+1
i , p′). (42)

From (41) and using the fact that T k
ℓ (s

ℓ
i , p

′) = TK
L (sℓi , p

′)− 1, we can show that

Uk
ℓ+1(s

ℓ+1
i , p′) ≤ b∗(p

′|sℓ+1
i )

T k
t (s

ℓ+1
i , p′)

=
b∗(p

′|sℓ+1
i )

TK
L (sℓ+1

i , p′)− 1
(43)

Also note that

Uk
ℓ+1(s

ℓ+1
i , p) =

b∗(p|sℓ+1
i )

T k
t (s

ℓ+1
i , p)

(a)

≥ b∗(p|sℓ+1
i )

TK
L (sℓ+1

i , p)
. (44)
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where, (a) follows as Tt(p) ≤ TK
L (p, sℓ+1

i ) (i.e., the number of times p has been sampled can only increase after time ℓ).
Combining (42), (43), (44) we can show that for any action p:

b∗(p|sℓ+1
i )

TK
L (p, sℓ+1

i )
≤ b∗(p

′|sℓ+1
i )

TK
L (p′, sℓ+1

i )− 1
(45)

Note that in the above equation, there is no dependency on ℓ, and thus, the probability that (45) holds for any (sℓ+1
i , p) and

for any (sℓ+1
i , p′) such that state-action (sℓ+1

i , p′) is visited after the initialization phase, i.e., such that TK
L (sℓ+1

i , p′) > 2
depends on the probability of event ξZ,n.

Step 4. (Lower bound on TK
L (sℓi , p) for Ẑk ≥ 0): If a state-action tuple sℓi , p, p is under-pulled compared to its optimal

allocation without taking into account the initialization phase, i.e., TK
L (sℓi , p)−2 < b(p|sℓi)(n−2A), then from the constraint∑

p′

(
TK
L (s, p′)− 2

)
= n− 2SA and the definition of the optimal allocation, we deduce that there exists at least another

state-action tuple sℓi , p
′ that is over-visited compared to its optimal allocation without taking into account the initialization

phase, i.e., TK
L (sℓi , p

′)− 2 > b(sℓi , p
′)(n− 2SA). Note that for this action, TK

L (sℓi , p
′)− 2 > b∗(p

′|sℓi)(n− 2SA) ≥ 0, so
we know that this specific action is pulled at least once after the initialization phase and that it satisfies (45). Recall that we
have defined M(sℓi) =

∑
a π(a|sℓi)σ(sℓi , a). Further define M =

∑L
ℓ=1

∑
sℓi
M(sℓi). Using the definition of the optimal

allocation T ∗,K
L (sℓi , p

′) = nf
b∗(p

′|sℓi)
M(sℓi)

, and the fact that TK
L (sℓi , p

′) ≥ b∗(p
′|sℓi)(nf − 2SA) + 2, (45) may be written as for

any state-action tuple (sℓi , p)

b∗(p|sℓi)
TK
L (sℓi , p)

≤ b∗(p
′|sℓi)

T ∗,K
L (p′, sℓi)

nf

(nf − 2SA)
≤ M(sℓi)

nf
+

4AM(sℓi)

n2
f

(46)

because nf ≥ 4SA. By rearranging (46), we obtain the lower bound on TK
L (sℓi , p) :

TK
L (sℓi , p) ≥

b∗(p|sℓi)
M(sℓi)

nf
+

4AM(sℓi)

n2
f

=
b∗(p|sℓi)

M(sℓi)

nf

(
1 + 4A

nf

) (a)

≥ T ∗,K
L (sℓi , p)− 4Ab∗(p|sℓi), (47)

where in (a) we use 1/(1 + x) ≥ 1− x (for x > −1 ). Note that the lower bound holds on ξc,K for any action p.

Step 5. (Upper bound on TK
L (sℓi , p) for Ẑk ≥ 0): Now using (47) and the fact that nf is given by∑L

ℓ=1

∑
sℓj

∑A
a′=1 E[TK

L (sℓj , a
′)I{ξZ,K} ∩ I{ξc,K}] = nf , we obtain

TK
L (sℓi , p) = nf −

∑
p′ ̸=p

TK
L (sℓi , p

′) ≤
(
nf −

∑
p′ ̸=p

T ∗,K
L (sℓi , p

′)

)
+
∑
p′ ̸=p

4Ab∗(p
′|sℓi).

Now since
∑

p′ ̸=p b∗(p
′|sℓi) ≤ 1 we can show that

TK
L (sℓi , p) ≤ T ∗,K

L (sℓi , p) + 4A. (48)

Step 6 (Bound part A): We now bound the part A using (46)∑
a

π2(a|s11)
[

σ2(s11, a)

T
(2),K
L (s11, a)

]
E[TK

L (s11, a)I{ξZ,K} ∩ I{ξc,K}]

+ γ2
∑
a

π2(a|s11)
L∑

ℓ=2

∑
sℓj

P (sℓj |s11, a)
∑
a′

π2(a′|sℓj)
[

σ2(sℓj , a
′)

T
(2),K
L (sℓj , a

′)

]
E[TK

L (sℓj , a
′)I{ξZ,K} ∩ I{ξc,K}]

(a)

≤

(
M(s11)

nf
+

4AM(s11)

n2
f

)2

nf + γ2
∑
a

π2(a|s11)
L∑

ℓ=2

∑
sℓj

P (sℓj |s11, a)

(
M(sℓj)

nf
+

4AM(sℓj)

n2
f

)2

nf

=
M2(s11)

nf
+

8AM2(s11)

n2
f

+
16A2M2(s11)

n3
f

+ γ2
∑
a

π2(a|s11)
L∑

ℓ=2

∑
sℓj

P (sℓj |s11, a)

(
M2(sℓj)

nf
+

8AM2(sℓj)

n2
f

+
16A2M2(sℓj)

n3
f

)
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where, in (a) follows from the definition of M(s) and nf .

Step 7 (Upper bound to Constraint violation): In this step we bound the quantity C∗n(π) =
∑k

j=1 I{Ẑj < 0,bj ∈
{b∗, π0}}. Define the number of times the policy b∗ is played till episode k is T k(b∗) and the number of times the baseline
policy is played is given by T k(π0). Observe that C∗n(π) =

∑k
j=1 I{Ẑj < 0,bj ∈ {b∗, π0}} = TK(π0)I{ξCZ,K} as when

the constraint are violated and policy π0 is played. Let τ = max
{
k ≤ K and nf ≥ log(SAn(n+1)/δ)

mins,a b∗(a|s)∆c,α,(2)(s,a)
| bk = π0

}
be the last episode in which the baseline policy is played. We will define formally the gap ∆c,α,(2)(s, a) later. Observe that
the constraint violation can be re-stated as follows:

τ∑
k=1

Y c
bk(s

1
1) :=

τ∑
k=1

∑
a

bk(a|s11)

µ̂c,k
L (s1, a) +

∑
s2j

P (s2j |s11, a)Y c
bk(s

2
j )

 < (1− α)τV c
π0
(s11)

=⇒
τ∑

k=1

∑
a

bk(a|s11)

µ̂c,k

L
(s11, a) +

∑
s2j

P (s2j |s11, a)Y
c
bk(s2j )

 < (1− α)τV c
π0
(s11)

(a)
=⇒

τ∑
k=1

∑
a

bk(a|s11)

µ̂c,k

L
(s11, a) +

∑
s2j

P (s2j |s11, a)Y
c
bk(s2j )


< (1− α)

τ∑
k=1

π0(0|s11)

µc(s11, 0) +
∑
s2j

P (s2j |s11, 0)V c
π0
(s2j )


=⇒

τ∑
k=1

∑
a

T k
L(s

1
1, a)

µ̂c,k

L
(s11, a)+

∑
s2j

P (s2j |s11, a)Y
c
bk(s2j )


< (1− α)

τ∑
k=1

T k
L(s

1
1, a)

µc(s11, 0)+
∑
s2j

P (s2j |s11, 0)V c
π0
(s2j )


(b)
=⇒

∑
a

T τ
L(s

1
1, a)µ̂

c,τ

L
(s11, a)︸ ︷︷ ︸

Part A

+
∑
a

T τ
L(s

1
1, a)

∑
s2j

P (s2j |s11, a)Y
c
bk(s2j )

< (1− α)
∑
a

T τ
L(s

1
1, 0)µ

c(s11, 0)︸ ︷︷ ︸
Part B

+(1− α)T τ
L(s

1
1, 0)

∑
s2j

P (s2j |s11, 0)V c
π0
(s2j ) (49)

where (a) follows as π0 samples baseline action 0 for each state s ∈ [S], and in (b) the T τ
L(s

1
1, a) denotes the total samples

of state-action tuple till episode τ . Comparing Part A and Part B for level ℓ = 1 we observe that the constraint violation
must satisfy ∑

a

T τ
L(s

1
1, a)µ̂

c,τ

L
(s11, a) < (1− α)T τ

L(s
1
1, 0)µ

c(s11, 0)

which can be reduced by following the same way as step 7 as Theorem 2

T τ−1
L (s11, 0) ≤

1

αµc(s11, 0)

(
1 +

A∑
a=1

N(s11, a)

)
.

where ∆c,α(s11, a) := (1− α)µc(s11, 0)− µc(s11, a) and

N(s11, a) := T τ−1
L (s11, a) ·

(
(1− α)µc(s11, 0)− µc(s11, a) + c1

√
log(An(n+ 1)/δ)/T τ−1

L (s11, a)

)
= ∆c,α(s11, a)T

τ−1
L (s11, a) + c1

√
log(An(n+ 1)/δ)T τ−1

L (s11, a) (50)
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is a bound on the decrease in Ẑτ in the first τ − 1 rounds due to choosing action a in s11. We will now bound N(s11, a) for
each a. Now observe

∆c,α(s11, a) = (1− α)µc(s11, 0)− µc(s11, a) = µc(s11, 0)− αµc(s11, 0)− µc(s11, a)

= −(µ∗,c(s11)− µc(s11, 0))− αµc(s11, 0) + (µ∗,c(s11)− µc(s11, a))

= −∆c(s11, 0)− αµc(s11, 0) + ∆c(s11, a).

where, µ∗,c(s11) = maxa µ
c(s11, a). It follows then that using step 7 as Theorem 2 for the state s11

nu(s
1
1) ≤

1

αµc(s11, 0)

(
1 +

A∑
a=1

N(s11, a)

)
≤

H∗,(2)(s
1
1)

2

n

M(s11)

where

H∗,(2)(s
ℓ
i) :=

∑
a

b∗(a|sℓi)
+

min{∆c(sℓi , a),∆
c(sℓi , 0)−∆c(sℓi , a)},

M(sℓi) :=
∑
a

√√√√√√π2(a|sℓi)

σ2(sℓi , a)+
∑
sℓ+1
j

P (sℓ+1
j |sℓi , a)M2(sℓ+1

j )

 (51)

Similarly, for an arbitrary level ℓ ∈ [L], we can show using (49) that the constraint violation must satisfy

ℓ∑
ℓ′=1

∑
sℓ

′
i

∑
a

T τ
L(s

ℓ′

i , a)µ̂
c,τ

L
(sℓ

′

i , a) < (1− α)

ℓ∑
ℓ′=1

∑
sℓ

′
i

T τ
L(s

ℓ′

i , 0)µ
c(sℓ

′

i , 0)

(a)
=⇒

ℓ∑
ℓ′=1

∑
sℓ

′
i

∑
a

(
T ∗,K
L (sℓ

′

i , a)− 4Ab∗(a|sℓ
′

i )
)
µ̂c,τ

L
(sℓ

′

i , a) < (1− α)

ℓ∑
ℓ′=1

∑
sℓ

′
i

(
T ∗,K
L (sℓ

′

i , 0) + 4A
)
µc(sℓ

′

i , 0)

=⇒
ℓ∑

ℓ′=1

∑
sℓ

′
i

∑
a

(
T ∗,K
L (sℓ

′

i , a)
)
µ̂c,τ

L
(sℓ

′

i , a)

< (1− α)

ℓ∑
ℓ′=1

∑
sℓ

′
i

(
T ∗,K
L (sℓ

′

i , 0)
)
µc(sℓ

′

i , 0) + 8LSA2(µc(sℓ
′

i , 0) + µ̂c,τ

L
(sℓ

′

i , a))

=⇒
ℓ∑

ℓ′=1

∑
sℓ

′
i

∑
a

(
T ∗,K
L (sℓ

′

i , a)
)
µ̂c,τ

L
(sℓ

′

i , a)

< (1− α)

ℓ∑
ℓ′=1

∑
sℓ

′
i

(
T ∗,K
L (sℓ

′

i , 0)
)
µc(sℓ

′

i , 0) + 8LSA2(µc(sℓ
′

i , 0) + µ̂c,τ
L (sℓ

′

i , a)−

√
log((SAn(n+ 1)/δ)

2T τ
L(s

ℓ′
i , a)

)

(b)
=⇒

ℓ∑
ℓ′=1

∑
sℓ

′
i

∑
a

(
T ∗,K
L (sℓ

′

i , a)
)
µ̂c,τ

L
(sℓ

′

i , a) < (1− α)max
s,a

µc
0(s, a)

ℓ∑
ℓ′=1

∑
sℓ

′
i

(
T ∗,K
L (sℓ

′

i , 0)
)
+ 16LSA2 (52)

where, (a) follows from (48) and (b) follows as µ(s, a) ∈ (0, 1] for all s, a. It follows then that using step 7 of Theorem 2
and definition of N(sℓj) from (50)

ℓ∑
ℓ′=1

∑
sℓ

′
i

T ∗,K
L (sℓ

′

i , 0) ≤
1

αmaxs µc(s, 0)

1 +

ℓ∑
ℓ′=1

∑
sℓ

′
i

∑
a

N(sℓj , a)

 ≤ n

2

ℓ∑
ℓ′=1

∑
sℓ

′
i

∑
a

H∗,(2)(s
ℓ′

i )

M(sℓ
′
i )

+ 16LSA2
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which gives a bound on how many times action {0} is sampled across different states till level ℓ. Summing over all states sℓj
till level L we can show that

nu =

L∑
ℓ=1

∑
sℓj

T ∗,K
L (sℓj , 0) ≤

n

2

L∑
ℓ=1

∑
sℓj

H∗,(2)(s
ℓ
j)

M(sℓj)
+ 16LSA2

(a)

≤
H∗,(2)

2

n

Mmin
+ 16LSA2 (53)

where, in (a) we define Mmin = mins M(s), and H∗,(2) =
∑L

ℓ=1

∑
sℓj
H∗,(2)(s

ℓ
j). Finally, observe that 16LSA2 does not

depend on the episode K.

Step 8 (Lower bound to Constraint violation): For the lower bound to the constraint we equate Equation (49) to 0 and
show that ∑

a

T τ
L(s

1
1, a)µ̂

c,τ

L
(s11, a)︸ ︷︷ ︸

Part A

+
∑
a

T τ
L(s

1
1, a)

∑
s2j

P (s2j |s11, a)Y
c
bk(s2j )

= (1− α)
∑
a

T τ
L(s

1
1, 0)µ

c(s11, 0)︸ ︷︷ ︸
Part B

+(1− α)T τ
L(s

1
1, 0)

∑
s2j

P (s2j |s11, 0)V c
π0
(s2j )

Again comparing Part A and Part B for level ℓ = 1 we observe that the lower bound to constraint violation must satisfy∑
a

T τ
L(s

1
1, a)µ̂

c,τ

L
(s11, a) = (1− α)T τ

L(s
1
1, 0)µ

c,(s11, 0)

which can be reduced by following the same way as step 8 as Theorem 2

∑
a

T τ−1
L (s11, 0) ≥

1

αµc(s11, 0)

(
1 +

A∑
a=1

N(s11, a)

)
.

where ∆c,α(s11, a) := (1− α)µc(s11, 0)− µc(s11, a) and

N(s11, a) := T τ−1
L (s11, a) ·

(
(1− α)µc(s11, 0)− µc(s11, a) + c1

√
log(An(n+ 1)/δ)/T τ−1

L (s11, a)

)
= ∆c,α(s11, a)T

τ−1
L (s11, a) + c1

√
log(An(n+ 1)/δ)T τ−1

L (s11, a)

(a)

≥ ∆c,α(s11, a)
(
T ∗,K
L (s11, a)− 4Ab∗(a|s11)

)
+ c1

√
log(An(n+ 1)/δ)

(
T ∗,K
L (s11, a)− 4Ab∗(a|s11)

)
where, (a) follows from (47). Then following the same way as step 8 of Theorem 2 we can show that

T τ−1
L (s11, 0) ≥

1

αµc(s11, 0)

(
1 +

A∑
a=1

N(s11, a)

)
≥ nf

M(s11)

(
H∗,(2)(s

1
1)

8
− A

2

H∗,(2)(s
1
1)

M(s11)

)
− 16SA

Similarly for any arbitrary level ℓ ∈ [L] following the same way as step 7 above it can be shown that

ℓ∑
ℓ′=1

∑
sℓ

′
i

∑
a

(
T ∗,K
L (sℓ

′

i , a) + 4A
)
µ̂c,τ

L
(sℓ

′

i , a) ≥ (1− α)

ℓ∑
ℓ′=1

∑
sℓ

′
i

(
T ∗,K
L (sℓ

′

i , 0)− 4Ab∗(0|sℓ
′

i )
)
µc(sℓ

′

i , 0)

=⇒
ℓ∑

ℓ′=1

∑
sℓ

′
i

∑
a

T ∗,K
L (sℓj , a)µ̂

c,τ

L
(sℓj , a) ≥ (1− α)

ℓ∑
ℓ′=1

∑
sℓ

′
i

T ∗,K
L (sℓi , 0)µ

c(sℓi , 0)− 16LSA2

Again following the same way as step 8 of Theorem 2 for the state sℓj , the lower bound to the total number of times the
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baseline actions are sampled across states till level ℓ is given by we can show that

ℓ∑
ℓ′=1

∑
sℓ

′
j

T ∗,K
L (sℓ

′

j , 0) ≥
1

αmaxsℓj µ
c(sℓj , 0)

1 +

ℓ∑
ℓ′=1

∑
sℓ

′
j

A∑
a=1

N(sℓ
′

j , a)


≥

L∑
ℓ=1

∑
sℓj

nf

M(sℓj)

(
H∗,(2)(s

ℓ
j)

8
− A

2

H∗,(2)(s
ℓ
j)

M(sℓj)

)
− 16LSA2

Finally summing over all states sℓj and level L we can show that

L∑
ℓ=1

∑
sℓj

T ∗,K
L (sℓj , 0) ≥

L∑
ℓ=1

∑
sℓj

nf

M(sℓj)

(
H∗,(2)(s

ℓ
j)

8
− A

2

H∗,(2)(s
ℓ
j)

M(sℓj)

)
− 16LSA2 (54)

Again, observe that 16LSA2 does not depend on the episode K.

Step 9 (Bound Part B): Then from (54) we can show that

M(s11)∑L
ℓ=1

∑
sℓj
T ∗,K
L (sℓj , 0)

≤ M(s11)∑L
ℓ=1

∑
sℓj

nf

M(sℓj)

(
H∗,(2)(s

ℓ
j)

8
− A

2

H∗,(2)(s
ℓ
j)

M(sℓj)

)
− 16LSA2

(a)

≤ (M(s11) + 16LSA2)

L∑
ℓ=1

∑
sℓj

M(sℓj)

nf

(
H∗,(2)(s

ℓ
j)

8
+

A

2

H∗,(2)(s
ℓ
j)

M(sℓj)

)

≤ (M(s11) + 16LSA2)

L∑
ℓ=1

∑
sℓj

M(sℓj)

nf

(
2 +H∗,(2)(s

ℓ
j)
)

(b)

≤ (M(s11) + 16LSA2)
M

nf

(
2 +H∗,(2)

)
where, (a) follows for 1/(x − c) ≤ x + c for x2 ≥ 1 + c2 and c > 0. The (b) follows for M =

∑L
ℓ=1

∑
sℓj
M(sℓj), and

H∗,(2) =
∑L

ℓ=1

∑
sℓj
H∗,(2)(s

ℓ
j). It follows then by setting nf = n− nu that

ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξCZ,K}

] (a)

≤

(
(M(s11) + 16LSA2)M

(
2 +H∗,(2)

)
nf

)2

nu

(b)
=

(M(s11) + 16LSA2)2nu

(n− nu)2
(
2 +H∗,(2)

)2
(c)

≤
(M(s11) + 16LSA2)2H∗,(2)n

(n−H∗,(2)n)2
(
2 +H∗,(2)

)2
≤ M2(s11)

n

(
32MLSA2 +H∗,(2)

)2
where, (a) follows from Lemma A.1, (b) follows from the definition of H∗,(2), and (c) follows from (53).

Step 10 (Combine everything): Combining everything from step 5, step 8 and setting δ = 1/n2 we can show that the MSE
of oracle scales as

Ln(π,b
k
∗)≤

M2(s11)

n
+
8AM2(s11)

n2
+
16A2M2(s11)

n3
+

M2(s11)

n

(
32MLSA2+H∗,(2)

)2
+ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξCc,K}]︸ ︷︷ ︸

Part C, Safety event does not hold

(a)

≤ M2(s11)

n
+

8AM2(s11)

n2
+

16A2M2(s11)

n3
+

M2(s11)

n

(
32MLSA2 +H∗,(2)

)2
+ 2

n∑
t=1

2η + 4η2

n2
(55)
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where, (a) follows as ED

[(
Yn(s

1
1)− Vπ(s

1
1)
)2 I{ξCc,K}] ≤ 2η + 4η2 and using the low error probability of the constraint

event from Lemma F.4. The claim of the proposition follows.

E.1. Tree Regret Corollary

Corollary 1. Under Assumption 3.2 the constraint regret in the Tree MDP is given byRc

n ≤ O

(
log(n)

b
3/2
∗,minn

3/2

)
and the regret

is given byRn ≤ O

(
log(n)

b
3/2
∗,minn

3/2

)
.

Proof. The upper bound to the safe oracle constraint is given by (53) as follows

C∗n(π,bk
∗) ≤

H∗,(2)

2

n

Mmin
+ 16LSA2.

The upper bound to the constraint violation of SaVeR is given by (36)

Cn(π, b̂k) ≤
H∗,(2)

2

n

Mmin
+ 16LSA2 +O

(
(2η + 4η2)L2S2A4H2

∗,(2)M
2
√

log(SAn(n+ 1)/δ)

mins b∗,k,(3/2)(s)n3/2

)
.

Hence, from the constraint regret definition, we can show that

Rc

n = Cn(π, b̂k)− C∗n(π,b∗) ≤ O

(
log n

b
3/2
∗,minn

3/2

)
.

Observe that the loss of the agnostic algorithm SaVeR is given by (38) and the upper bound to the oracle loss is given by
(55). Comparing these two losses directly leads to the regret as follows:

Rn = Ln(π, b̂
k)− L∗

n(π,b
k
∗) = O

(
log(n)

b
3/2
∗,minn

3/2

)
.

The claim of the corollary follows.

Corollary 2. Under Assumption 3.2 the constraint regret in the bandit setting is given byRc

n ≤ O

(
log(n)

b
3/2
∗,minn

3/2

)
and the

regret is given byRn ≤ O

(
log(n)

b
3/2
∗,minn

3/2

)
.

Proof. The bandit setting consists of a single state, and so we can define the quantity H∗,(2) =
1

αµ(0)

∑
a∈A\{0} π(a)σ(a)min+{∆c(a),∆c(0) − ∆c(a)} The upper bound to the oracle constraint is given by (53) as

follows

C∗n(π,bk
∗) ≤

H∗,(2)

2

n

Mmin
+ 16A2.

The upper bound to the constraint violation of SaVeR is given by (36)

Cn(π, b̂k) ≤
H∗,(2)

2

n

Mmin
+ 16A2 +O

(
(2η + 4η2)A4H2

∗,(2)M
2
√
log(An(n+ 1)/δ)

mins b∗,k,(3/2)(s)n3/2

)
.

Hence, from the constraint regret definition, we can show that

Rc

n = Cn(π, b̂k)− C∗n(π,bk
∗) ≤ O

(
log n

b
3/2
∗,minn

3/2

)
.
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Observe that the loss of the agnostic algorithm SaVeR is given by (38) and the upper bound to the oracle loss is given by
(55). Comparing these two losses directly leads to the regret as follows:

Rn = Ln(π, b̂
k)− L∗

n(π,b
k
∗) = O

(
log(n)

b
3/2
∗,minn

3/2

)
.

The claim of the corollary follows.

F. Support Lemmas
Lemma F.1. (Hoeffding’s Lemma)(Massart, 2007) Let Y be a real-valued random variable with expected value E[Y ] = µ,
such that a ≤ Y ≤ b with probability one. Then, for all λ ∈ R

E
[
eλY

]
≤ exp

(
λµ+

λ2(b− a)2

8

)
Lemma F.2. (Concentration lemma 1) Let Vt = Rt(s, a)− E[Rt(s, a)] and be bounded such that Vt ∈ [−η, η]. Let the
total number of times the state-action (s, a) is sampled be T . Then we can show that for an ϵ > 0

P

(∣∣∣∣∣ 1T
T∑

t=1

Rt(s, a)− E[Rt(s, a)]

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−2ϵ2T

η2

)
.

Proof. Let Vt = Rt(s, a) − E[Rt(s, a)]. Note that E[Vt] = 0. Hence, for the bounded random variable Vt ∈ [−η, η] we
can show from Hoeffding’s lemma in Lemma F.1 that

E[exp (λVt)] ≤ exp

(
λ2

8
(η − (−η))2

)
≤ exp

(
2λ4η2

)
Let st−1 denote the last time the state s is visited and action a is sampled. Observe that the reward Rt(s, a) is conditionally
independent and η2-sub-Gaussian. Next we can bound the probability of deviation as follows:

P

(
T∑

t=1

(Rt(s, a)− E[Rt(s, a)]) ≥ ϵ

)
= P

(
T∑

t=1

Vt ≥ ϵ

)
(a)
= P

(
eλ

∑T
t=1 Vt ≥ eλϵ

)
(b)

≤ e−λϵE
[
e−λ

∑T
t=1 Vt

]
= e−λϵE

[
E
[
e−λ

∑T
t=1 Vt

∣∣sT−1

]]
(c)
= e−λϵE

[
E
[
e−λVT |ST−1

]
E
[
e−λ

∑T−1
t=1 Vt

∣∣sT−1

]]
≤ e−λϵE

[
exp

(
2λ4η2

)
E
[
e−λ

∑T−1
t=1 Vt

∣∣sT−1

]]
= e−λϵe2λ

2η2

E
[
e−λ

∑T−1
t=1 Vt

]
...
(d)

≤ e−λϵe2λ
2Tη2

(e)

≤ exp

(
− 2ϵ2

Tη2

)
(56)

where (a) follows by introducing λ ∈ R and exponentiating both sides, (b) follows by Markov’s inequality, (c) follows
as Vt is conditionally independent given sT−1, (d) follows by unpacking the term for T times and (e) follows by taking
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λ = ϵ/4Tη2. Hence, it follows that

P

(∣∣∣∣∣ 1T
T∑

t=1

Rt(s, a)− E[Rt(s, a)]

∣∣∣∣∣ ≥ ϵ

)
= P

(
T∑

t=1

(Rt(s, a)− E[Rt(s, a)]) ≥ Tϵ

)
(a)

≤ 2 exp

(
−2ϵ2T

η2

)
.

where, (a) follows by (56) by replacing ϵ with ϵT , and accounting for deviations in either direction.

Lemma F.3. (Concentration lemma 2) Let µ2(s, a) = E
[
R2

t (s, a)
]
. Let Rt(s, a) be η2 sub-Gaussian. Let n = KL be

the total budget of state-action samples. Define the event

ξδ =

⋂
s∈S

⋂
1≤a≤A,Tn(s,a)≥1


∣∣∣∣∣∣ 1

Tn(s, a)

Tn(s,a)∑
t=1

R2
t (s, a)− µ2(s, a)

∣∣∣∣∣∣ ≤ (2η + 4η2)

√
log(SAn(n+ 1)/δ)

2Tn(s, a)


⋂

⋂
s∈S

⋂
1≤a≤A,Tn(s,a)≥1


∣∣∣∣∣∣ 1

Tn(s, a)

Tn(s,a)∑
t=1

Rt(s, a)− µ(s, a)

∣∣∣∣∣∣ ≤ (2η + 4η2)

√
log(SAn(n+ 1)/δ)

2Tn(s, a)


 (57)

Then we can show that P (ξδ) ≥ 1− 2δ.

Proof. First note that the total budget n = KL. Observe that the random variable Rk
t (s, a) and R

(2),k
t (s, a) are conditionally

independent given the previous state Sk
t−1. Also observe that for any η > 0 we have that Rk

t (s, a), R
(2),k
t (s, a) ≤ 2η + 4η2,

where R
(2),k
t (s, a) = (Rk

t (s, a))
2. Hence we can show that

P

⋂
s∈S

⋂
1≤a≤A,Tn(s,a)≥1


∣∣∣∣∣∣ 1

Tn(s, a)

Tn(s,a)∑
t=1

R2
t (s, a)− µ2(s, a)

∣∣∣∣∣∣ ≥ (2η + 4η2)

√
log(SAn(n+ 1)/δ)

2Tn(s, a)




≤ P

⋃
s∈S

⋃
1≤a≤A,Tn(s,a)≥1


∣∣∣∣∣∣ 1

Tn(s, a)

Tn(s,a)∑
t=1

R2
t (s, a)− µ2(s, a)

∣∣∣∣∣∣ ≥ (2η + 4η2)

√
log(SAn(n+ 1)/δ)

2Tn(s, a)




(a)

≤
S∑

s=1

A∑
a=1

n∑
t=1

t∑
Tn(s,a)=1

2 exp

(
− 2Tn

4(η2 + η)2
· 4(η

2 + η)2 log(SAn(n+ 1)/δ)

2Tn(s, a)

)
= δ.

where, (a) follows from Lemma F.2. Note that in (a) we have to take a double union bound summing up over all possible
pulls Tn from 1 to n as Tn is a random variable. Similarly we can show that

P

⋂
s∈S

⋂
1≤a≤A,Tn(s,a)≥1


∣∣∣∣∣∣ 1

Tn(s, a)

Tn(s,a)∑
t=1

Rt(s, a)− µ(s, a)

∣∣∣∣∣∣ ≥ (2η + 4η2)

√
log(SAn(n+ 1)/δ)

2Tn(s, a)




(a)

≤
S∑

s=1

A∑
a=1

n∑
t=1

t∑
Tn(s,a)=1

2 exp

(
− 2Tn

4(η2 + η)2
· 4(η

2 + η)2 log(SAn(n+ 1)/δ)

2Tn(s, a)

)
= δ.

where, (a) follows from Lemma F.2. Hence, combining the two events above we have the following bound

P (ξδ) ≥ 1− 2δ.

Corollary 3. Under the event ξδ in (57) we have for any state-action pair in an episode k the following relation with
probability greater than 1− δ

|σ̂k
t (s, a)− σ(s, a)| ≤ (2η + 4η2)

√
log(SAn(n+ 1)/δ)

2TK
L (s, a)

.

where, TK
L (s, a) is the total number of samples of the state-action pair (s, a) till episode k.
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Proof. Observe that the event ξδ bounds the sum of rewards Rk
t (s, a) and squared rewards Rk,(2)

t (s, a) for any TK
L (s, a) ≥ 1.

Hence we can directly apply the Lemma F.3 to get the bound.

Lemma F.4. Let µc(s, a) = E [Ct(s, a)] and Ct(s, a) ≤ 2η. Define the event

ξδ =
⋂
s∈S

⋂
1≤a≤A,Tn(s,a)≥1


∣∣∣∣∣∣ 1

Tn(s, a)

Tn(s,a)∑
t=1

Ct(s, a)− µc(s, a)

∣∣∣∣∣∣ ≤ (2η + 4η2)

√
log(SAn(n+ 1)/δ)

2Tn(s, a)

 . (58)

Then we can show that P(ξδ) ≥ 1− δ.

Proof. We can show that

P

⋂
s∈S

⋂
1≤a≤A,Tn(s,a)≥1


∣∣∣∣∣∣ 1

Tn(s, a)

Tn(s,a)∑
t=1

Ct(s, a)− µc(s, a)

∣∣∣∣∣∣ ≥ (2η + 4η2)

√
log(SAn(n+ 1)/δ)

2Tn(s, a)




(a)

≤
S∑

s=1

A∑
a=1

n∑
t=1

t∑
Tn(s,a)=1

2 exp

(
− 2Tn(s, a)

4(η2 + η)2
· 4(η

2 + η)2 log(SAn(n+ 1)/δ)

2Tn(s, a)

)
= δ.

where, (a) follows from Lemma F.2 when applied for cost. The claim of the lemma follows.

Corollary 4. Let the total exploration budget be nx = SA log(SAn(n+1)/δ)
mins,a ∆c,(2)(s,a)

. Define the event ξδ as in (58). Then using the

exploration policy πx it can be shown that P(ξδ) ≥ 1− δ.

Proof. Let nx = SA log(SAn(n+1)/δ)
mins,a ∆c,(2)(s,a)

be the total samples taken for exploration. Let πe sample each action according to
uniform random policy in each state s ∈ [S]. Then the result follows directly from Lemma F.4 in

P

⋂
s∈S

⋂
1≤a≤A,Tnx (s,a)≥1


∣∣∣∣∣∣ 1

Tnx
(s, a)

Tnx (s,a)∑
t=1

Ct(s, a)− µc(s, a)

∣∣∣∣∣∣ ≥ (2η + 4η2)

√
log(SAn(n+ 1)/δ)

2Tnx


 (a)

≤ δ,

where, (a) follows as by noting Tnx
≥ log(SAn(n+1)/δ)

mins,a ∆c,(2)(s,a)
.

G. Additional Experimental Details
In this section we state additional experimental details.

Experiment 1 (Bandit): We implement a bandit environment for A = 11 and show that our proposed solution outperforms
the safe on-policy and SEPEC (Wan et al., 2022) algorithm. In this experiment we have the µ(0) = 0.5, σ2(0) = 10−4,
µ(1) = 0.9, σ2(1) = 10−4 (optimal action), and the sub-optimal actions a ∈ {2, 3, . . . , 11} have means µ(a) ∈ [0.02, 0.03]
and high variance σ2(a) = 40. Moreover, we set the constraint-value means µc(a) the same as the reward means. The
target policy is initialized as π(0) = π(1) = 0.4 while the remaining arms have the 0.2 density evenly distributed among
them. So in this environment, the safe on-policy will select the sub-optimal actions less and so reduces MSE at a slower rate.
Whereas the SaVeR, complies with the safety constraint and reduces MSE maximally as the number of rounds increases.
The performance is shown in Figure 1 (left). Again observe that in Figure 2 (top-left), the oracle keeps the safety budget
around 0 and uses all the remaining samples to explore optimally. The SaVeR has a safety budget of almost around 0 as
they sample the high cost maximizing action 1 a sufficient number of times to offset the unsafe action pulls. However, safe
on-policy and SEPEC again explores the high variance (sub-optimal and unsafe) actions less and has a very high safety
budget.

Experiment 2 (Movielens): We conduct this experiment on Movielens dataset for A = 30 actions and show that our
proposed solution outperforms safe on-policy and SEPEC algorithm. The Movielens dataset from February 2003 consist
of 6k users who give 1M ratings to 4k movies. We obtain a rank-4 approximation of the dataset over 128 users and 128
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movies such that all users prefer either movies 7, 13, 16, or 20 (4 user groups). The movies are the actions and we choose
30 movies that have been rated by all the users. Hence, this testbed consists of 30 actions and the mean values µ(a) are the
rating of the movies given by the users. and is run over T = 8000. The target policy is initialized as π(0) = π(1) = 0.4
while the remaining arms has the 0.2 density evenly distributed among them. We set the cost means µc(a) such that high
variance actions have high-cost means. So in this environment, the safe on-policy will select the sub-optimal cost actions
less and so reduces MSE at a slower rate as the number of rounds increases. The SEPEC MSE also reduces slower than
SaVeR as the number of rounds increases. This is because SEPEC uses an IPW estimator instead of tracking the optimal
behavior policy like SaVeR. The SaVeR, complies with the safety constraint and reduces MSE maximally as the number of
rounds increases. The performance is shown in Figure 1 (middle-left). Again observe that in Figure 2 (top-right), the oracle
keeps the safety budget around 0 and uses all the remaining samples to explore optimally. The SaVeR has a safety budget of
almost around 0 as they sample the high reward maximizing action 1 a sufficient number of times to offset the unsafe action
pulls. However, safe on-policy and SEPEC again explores the high variance (sub-optimal and unsafe) actions less and has a
very high safety budget.

Experiment 3 (Tree): We experiment with a 4-depth 2-action deterministic tree MDP T consisting of 15 states. In this
setting, we have a 4-depth 2-action deterministic tree MDP T consisting of 15 states. Each state has a low variance arm with
σ2(s, 1) = 0.01 and high target probability π(1|s) = 0.95 and a high variance arm with σ2(s, 1) = 20.0 and low target
probability π(2|s) = 0.05. Again we set the cost means µc(a) such that high variance actions have high-cost means. Hence,
the safe on-policy sampling which samples according to π will sample the second (high variance) arms less and suffer a
high MSE. We set α = 0.25. We assume that the learner can directly access the V π0(s11) (without any noise) when its safety
budget is negative. It can observe V π0(s11) without running any episodic interaction (like Yang et al. (2021). The oracle has
access to the model and variances and performs the best. SaVeR lowers MSE comparable to safe onpolicy as the number of
episodes increases and eventually matches the oracle’s MSE in Figure 1 (middle-right). The SaVeR, oracle, and on-policy
have an almost equal safety budget as shown in Figure 2 (bottom-left). Note that we do not run SEPEC in this experiment as
it is a bandit algorithm, and the optimization problem of SEPEC do not have a closed form solution in the MDP setting.

Experiment 4 (Gridworld): In this setting we have a 4× 4 stochastic gridworld consisting of 16 grid cells. Considering
the current episode time-step as part of the state, this MDP is a DAG MDP in which there is multiple paths to a single
state. There is a single starting location at the top-left corner and a single terminal state at the bottom-right corner. Let
L,R,D,U denote the left, right, down, and up actions in every state. Then in each state, the right and down actions
have low variance arms with σ2(s,R) = σ2(s,D) = 0.01 and high target policy probability π(R|s) = π(D|s) = 0.45.
The left and top actions have high variance arms with σ2(s,L) = σ2(s,U) = 0.01 and low target policy probability
π(L|s) = π(U|s) = 0.05. We set the cost means µc(a) such that high variance actions have high-cost means. Hence, safe
onpolicy which goes right and down with high probability (to reach the terminal state) will sample the low variance arms
more and suffer a high MSE. We set α = 0.25. Again we assume that the learner can directly access the V π0(s1) (without
any noise) when it’s safety budget is negative. It can observe V π0(s1) without running any episodic interaction (like Yang
et al. (2021). SaVeR lowers MSE faster compared to safe onpolicy and actually matches MSE compared to the oracle as
well as maintains the safety constraint with increasing number of episodes. We point out that the DAG structure of the
Gridworld violates the tree structure under which the oracle and SaVeRbounds were derived. Nevertheless, both methods
lower MSE compared to safe onpolicy. Again observe that in Figure 2 (bottom-right), the oracle keeps the safety budget
around 0 and uses all the remaining samples to explore optimally. The SaVeRhas a safety budget of almost around 0 as they
sample the high reward maximizing action a sufficient number of times to offset the unsafe action pulls. However, safe
on-policy again explores the high variance (sub-optimal and unsafe) actions less and has a very high safety budget.
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H. Table of Notations

Notations Definition
sℓi State s in level ℓ indexed by i
π(a|sℓi) Target policy probability for action a in sℓi
b(a|sℓi) Behavior policy probability for action a in sℓi
σ2(sℓi , a) Variance of action a in sℓi
σ̂
(2),k
t (sℓi , a) Empirical variance of action a in sℓi at time t in episode k

σ̂u
(2),k

t (sℓi , a) UCB on variance of action a in sℓi at time t in episode k
µ(sℓi , a) Mean of action a in sℓi
µ̂k
t (s

ℓ
i , a) Empirical mean of action a in sℓi at time t in episode k

µ2(sℓi , a) Square of mean of action a in sℓi
µ̂
(2),k
t (sℓi , a) Square of empirical mean of action a in sℓi at time t in episode k

Tn(s
ℓ
i , a) Total Samples of action a in sℓi after n timesteps

Tn(s
ℓ
i) Total samples of actions in sℓi as

∑
a Tn(s

ℓ
i , a) after n timesteps (State count)

T k
t (s

ℓ
i , a) Total samples of action a taken till episode k time t in sℓi

T k
t (s

ℓ
i , a, s

ℓ+1
j ) Total samples of action a taken till episode k time t in sℓi to transition to sℓ+1

j

P (sℓ+1
j |sℓi , a) Transition probability of taking action a in state sℓi and transition to state sℓ+1

j∑
a

√
π2(a|sℓi)σ2(sℓi , a), if ℓ = L

M(sℓi) :=

 ∑
a

√∑
sℓ+1
j

π2(a|sℓi)
(
σ2(sℓi , a) + P (sℓ+1

j |sℓi , a)B2(sℓ+1
j )

)
, if ℓ̸=L

∑
a

√
π2(a|sℓi)σ̂

(2),k
t (sℓi , a), if ℓ = L

M̂(sℓi) :=

 ∑
a

√∑
sℓ+1
j

π2(a|sℓi)
(
σ̂
(2),k
t (sℓi , a) + P (sℓ+1

j |sℓi , a)B̂
(2),k
t (sℓ+1

j )
)
, if ℓ̸=L

Table 1. Table of Notations
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