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Announcements

« Homeworks:
— HW 5 due next Tuesday

e Midterm coming up on October 28

— Via Canvas, 24 hours to start.

Tuesday, Oct 12 Machine Learning: Linear Regression Slide HW 4 Due, HW 5 Released

Thursday, Oct 14 = Machine Learning: K-Nearest Neighbors & Naive Bayes

Tuesday, Oct 19 Machine Learning: Neural Network I (Perceptron) HW 5 Due, HW 6 Released
Thursday, Oct 21 = Machine Learning: Neural Network IT
Tuesday, Oct 26 Machine Learning: Neural Network III
MIDTERM EXAM October 28
Everything below here is tentative and subject to change.

Tuesday, Nov 2 Machine Learning: Deep Learning I



Outline

« Supervised Learning & Linear Models

— Parameterized model, model classes, linear models, train vs. test

e Linear Regression

— Least squares, normal equations, residuals, logistic
regression

— Gradient descent



Back to Supervised Learning

Supervised learning:

« Make predictions, classify data, perform regression

e Dataset: (leyl),(XQ,yz ,---,(men)

Features / Covariates / Input Labels / Outputs

o Goal: find function f: X — Y to predict label on new data




Back to Supervised Learning

How do we know a function fis good?

o Intuitively: “matches” the dataset f(zi) = y;
« More concrete: pick a loss function to measure this: /(f(z),y)

« Training loss/empirical loss/empirical risk f
1 - Loss / Cost / Objective
ﬁ Zg(f(xz)’ yz) Function
i=1

o Find a fthat minimizes the loss on the training data
o Empirical Risk Minimization (ERM)



Loss Functions

What should the loss look like?

e If f(z:;)=y ,should be small (0if equall!)

e For classification: 0/1 loss £(f(x),y) =1{f(x;) # v:}
. For regression, square loss  £(f(z),y) = (f(z;) — y;)’

Others too! We’ll see more.



Functions/Models

The function fis usually called a model

« Which possible functions should we consider?

e One option: all functions
— Not a good choice. Consider f(z) = Zl{x = x; }y;

n
— Training loss: zero. Can’t do better! =1
— How will it do on x not in the training set?




Functions/Models

Don’t want all functions

 Instead, pick a specific class
« Parametrize it by weights/parameters

« Example: linear models

f(£13>:90+91£E1—|-(92332-|-...—|—9d$d:6’0—|—£ET6’

p =

Weights/ Parameters



Training The Model

« Parametrize it by weights/parameters
« Minimize the Ioss

Best mm— E €

parameters = Linear model
best function f 4~ class f
= = § (00 + 0, y;)
1=1

Square loss

] — -~

1=1



How Do We Minimize?

« Need to solve something that looks like meiﬂ g(0)

e Generic optimization problem; many algorithms
— A popular choice: stochastic gradient descent (SGD)

Most algorithms iterative:

find some sequence of

points heading towards the

optimum
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Train vs Test

Now we’ve trained, have some f parametrized by g

— Train loss is small - f predicts most x, correctly

— How does f do on points not in training set? “Generalizes!”
— To evaluate this, create a test set. Do not train on it!

<X17 yl)a (X27 yQ)a U (Xm yn) (Xn-l—la yn—|-1>7 vy <Xn—|-pa yn—l-p)
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Do NOT train on
yvour test set!!!



Train vs Test

Use the test set to evaluate f

— Why? Back to our “perfect” train function
— Training loss: 0. Every point matched perfectly

— How does it do on test set? Fails completely!

« Test set helps detect overfitting

— Overfitting: too focused on train points te S t X
— “Bigger” class: more prone to overfit ;‘ X X ;x X
. . . X X XXX X X% X X
Need to consider model capacity Xx XX Xx X%
Appropriate Fittiné Overfitting i

GFG



Break & Quiz

Q 1.1: When we train a model, we are

A. Optimizing the parameters and keeping the features fixed.

B. Optimizing the features and keeping the parameters fixed.

C. Optimizing the parameters and the features.

D. Keeping parameters and features fixed and changing the predictions.
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Break & Quiz

Q 1.1: When we train a model, we are

A. Optimizing the parameters and keeping the features fixed.

B. Optimizing the features and keeping the parameters fixed) (Feature
vectors xi don’t change during training).

C. Optimizing the parameters and the features. (Same as B)

D. Keeping parameters and features fixed and changing the predictions.
(We can’t train if we don’t change the parameters)



Break & Quiz

Q 1.2: You have trained a classifier, and you find there is significantly
higher loss on the test set than the training set. What is likely the case?

A. You have accidentally trained your classifier on the test set.
B. Your classifier is generalizing well.

C. Your classifier is generalizing poorly.

D. Your classifier is ready for use.
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Break & Quiz

Q 1.2: You have trained a classifier, and you find there is significantly
higher loss on the test set than the training set. What is likely the case?

A. You have accidentally trained your classifier on the test set. (No, this would make test
loss lower)

B. Your classifier is generalizing well. (No, test loss is high means poor generalization)
C. Your classifier is generalizing poorly.
D. Your classifier is ready for use. (No, will perform poorly on new data)



Break & Quiz

Q 1.3: You have trained a classifier, and you find there is significantly
lower loss on the test set than the training set. What is likely the case?

A. You have accidentally trained your classifier on the test set.
B. Your classifier is generalizing well.

C. Your classifier is generalizing poorly.

D. Your classifier needs further training.



Break & Quiz

Q 1.3: You have trained a classifier, and you find there is significantly
lower loss on the test set than the training set. What is likely the case?

A. You have accidentally trained your classifier on the test set. (This is very
likely, loss will usually be the lowest on the data set on which a model has been
trained)

B. Your classifier is generalizing well.
C. Your classifier is generalizing poorly.

D. Your classifier needs further training.



Linear Regression

e Training data

Simplest type of regression problem.

o Inputs: (Xlayl),<X2792)7---7<Xm@/n)

— x's are vectors, y’s are scalars.

— “Linear”: predict a linear combination

of x components + intercept C. Hansen

f(:E):90+91x1+92$2+...+94xd:90+xT9

« Want: parameters @



Linear Regression Setup

Problem Setup
o Goal: figure out how to minimize square loss

- Let’s organize it. Train set (x1,41), (X2,¥2),- - -, (Xn, Yn)
_since f(z) =0y +2'0, wrapintercept: f(z) =20

L1
— Take train data and make it a matrix/vector: v |7
— Then, square loss is .

1 — 1
=) (@0 —y)? == X7 -y
n 1 n




Finding The Optimal Parameters

Have our loss: lHXTH —y|?
n

o Could optimize it with SGD, etc...
« No need: minimum has a solution (easy with vector calculus)
— Ty \—1vT
Hat: indicates an 0 = (X X) X Y
estimate A “Normal

I Equations”
Not always

invertible...



How Good are the Optimal Parameters?

Now we have parameters g — <XTX>_1XTy

« How good are they?

Predictions are  f(z;) = 0Ty, = (XTX) ' XxTy) e,
Errors (“residuals”)

i — f(@)| = |y — 07 2| = i — (XT X)X y) Ty

If data is linear, residuals are 0. Almost never the case!



Train/Test for Linear Regression?

So far, residuals measure error on train set

« Sometimes that’s all we care about (Fixed Design LR)

— Data is deterministic.
— Goal: find best linear relationship on dataset

o Or, create a test set and check (Random Design LR)

— Common: assume datais y = 0z +¢

— The more noise, the less linear V\ 0-mean
Gaussian noise



Solving With Gradient Descent

What if we don’t know the exact solution?

« Use one of the iterative algorithms to do m@in {(6)

« Among the most popular: gradient descent

« Basicidea: startat ¢(0) _ Gradient of the
— Nextstep:do @Ui+1l) — gU) _ ~vp(gld) y, loss, evaluated
4 v ( ) at current sol.
f b %

Next Current

. Learning Rate
solution solution

(a constant)

— Run till convergence. (You'll implement this in HW5!)



Linear Regression - Classification?

What if we want the same idea, but yisOor 1?
« Need to convert the g1, to a probability in [0,1]

1
p— 1 — - Logistic function
ply =1lz) = 1= (0T 4

Why does this work?
e If 611 is really big, eXp(—HTa:) is really small - p closeto 1
o If really negative exp is huge - p close to O
“Logistic Regression”



Break & Quiz

Q 2.1: You have a regression dataset created from a quadratic process

(i.e., ¥i = az; + bz; + ), Predict what might happen if you run linear
regression on this data set.

A. Linear regression will overfit the data.

B. Linear regression will under-fit the data.

C. Linear regression will neither overfit nor under-fit the data.
D. Not enough information to say.
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Break & Quiz

Q 2.1: You have a regression dataset created from a quadratic process

(i.e., ¥i = az; + bz; + ), Predict what might happen if you run linear
regression on this data set.

A. Linear regression will overfit the data.

B. Linear regression will under-fit the data. (Cannot represent non-linear
relationship)

C. Linear regression will neither overfit nor under-fit the data.
D. Not enough information to say.



Causal Interpretation

Linear regression captures associations between features
and outputs.
Require causal assumptions to draw causal conclusions.
2021 Nobel Prize in Economics
o Joshua Angrist and Guido Imbens
“for their methodological contributions to the analysis of
causal relationships”



