

CS 540 Introduction to Artificial Intelligence Classification - KNN and Naive Bayes Josiah Hanna University of Wisconsin-Madison

October 14, 2021

Slides created by Sharon Li [modified by Josiah Hanna]

Announcement

Homework: HW5 due on Tuesday

Class roadmap

Tuesday, Oct 12	Machine Learning: Linear Regression	Slides	HW 4 Due, HW 5 Released			
Thursday, Oct 14	Machine Learning: K-Nearest Neighbors & Naive Bayes					
Tuesday, Oct 19	Machine Learning: Neural Network I (Perceptron)		HW 5 Due, HW 6 Released			
Thursday, Oct 21	Machine Learning: Neural Network II					
Tuesday, Oct 26	Machine Learning: Neural Network III					
MIDTERM EXAM October 28						
Everything below here is tentative and subject to change.						
Tuesday, Nov 2	Machine Learning: Deep Learning I					

Today's outline

- K-Nearest Neighbors
- Maximum likelihood estimation
- Naive Bayes

Part I: K-nearest neighbors

WikipediA The Free Encyclopedia

Main page

Article

k-nearest neighbors algorithm

From Wikipedia, the free encyclopedia

Not to be confused with k-means clustering.

(source: wiki)

Example 1: Predict whether a user likes a song or not

Example 1: Predict whether a user likes a song or not

User Sharon

Tempo

Example 1: Predict whether a user likes a song or not **1-NN**

User Sharon

Example 1: Predict whether a user likes a song or not **1-NN**

User Sharon

K-nearest neighbors for classification

- Input: Training data $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_2, y_$

$$(x_2, y_2), \ldots, (x_n, y_n)$$

Distance function $d(\mathbf{x}_i, \mathbf{x}_i)$; number of neighbors k; test data \mathbf{x}^* 1. Find the k training instances $\mathbf{x}_{i_1}, \ldots, \mathbf{x}_{i_k}$ closest to \mathbf{x}^* under $d(\mathbf{x}_i, \mathbf{x}_j)$ 2. Output y^* as the majority class of $y_{i_1}, \ldots, y_{i_{\nu}}$. Break ties randomly.

Example 2: 1-NN for little green man

- Predict gender (M,F) from weight, height
- Predict age (adult, juvenile) from weight, height

Decision boundary

The decision regions for 1-NN

Voronoi diagram: each polyhedron indicates the region of feature space that is in the nearest neighborhood of each training instance

K-NN for regression

- What if we want regression?
- Instead of majority vote, take average of neighbors' labels
 - Given test point \mathbf{x}^* , find its k nearest neighbors $\mathbf{X}_{i_1}, \ldots, \mathbf{X}_{i_k}$ - Output the predicted label $\frac{1}{k}(y_{i_1} + \ldots + y_{i_k})$

How can we determine distance?

- suppose all features are discrete
 - Hamming distance: count the number of features for which two instances differ

How can we determine distance?

suppose all features are discrete

• Hamming distance: count the number of features for which two instances differ

suppose all features are continuous

• Euclidean distance: sum of squared differences

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$

Manhattan distance:
$$d(\mathbf{p}, \mathbf{q}) = \sum_{i=1}^{n} |p_i - q_i|$$

- Split data into training and validation sets
 - Dev set, Tuning set
- Classify validation set with different k
- Pick k that produces least validation set error

How to pick the number of neighbors

Effect of k

What's the predicted label for the black dot using 1 neighbor? 3 neighbors?

Q1-1: K-NN algorithms can be used for:

- A Only classification
- B Only regression
- C Both

Q1-1: K-NN algorithms can be used for:

- A Only classification
- B Only regression
- C Both

Q1-2: Which of the following distance measure do we use in case categorical variables in k-NN?

- A Hamming distance
- B Euclidean distance
- C Manhattan distance

Q1-2: Which of the following distance measure do we use in case categorical variables in k-NN?

- A Hamming distance
- B Euclidean distance
- C Manhattan distance

Q1-3: Consider binary classification in 2D where the intended label of a point x = (x1, x2) is positive if x1>x2 and negative otherwise. Let the training set be all points of the form x = [4a, 3b] where a,b are integers. Each training item has the correct label that follows the rule above. With a 1NN classifier (Euclidean distance), which ones of the following points are labeled positive? Multiple answers.

- [5.52, 2.41]
- [8.47, 5.84]
- [7,8.17]
- [6.7,8.88]

Q1-3: Consider binary classification in 2D where the intended label of a point x = (x1, x2) is positive if x1>x2 and negative otherwise. Let the training set be all points of the form x = [4a, 3b] where a,b are integers. Each training item has the correct label that follows the rule above. With a 1NN classifier (Euclidean distance), which ones of the following points are labeled positive? Multiple answers.

- [5.52, 2.41]
- [8.47, 5.84]
- [7,8.17]
- [6.7,8.88]

Nearest neighbors are [4,3] => positive [8,6] => positive [8,9] => negative [8,9] => negative Individually.

Part II: Maximum Likelihood Estimation

Supervised Machine Learning

Non-parametric (e.g., KNN)

Parametric

Supervised Machine Learning

Statistical modeling approach

Labeled training data (n examples)

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$$

drawn **independently** from a fixed underlying distribution (also called the i.i.d. assumption)

Supervised Machine Learning

Statistical modeling approach

Labeled training data (n examples)

 $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$

Drawn independently from a fixed underlying distribution (also called the i.i.d. assumption) $x \sim P(x), y \sim P(y \mid x)$

Select $\hat{f}(\theta)$ from a pool of models \mathcal{F} that best describe the data observed Estimate $\hat{P}(y | x; \theta)$ that **best describe** the data observed

- Maximum likelihood (best fits the data)
- Maximum a posteriori (best fits the data but incorporates prior assumptions) • Optimization of 'loss' criterion (best discriminates the labels)

How to select $\hat{f} \in \mathscr{F}$?

Maximum Likelihood Estimation: An Example

Flip a (biased) coin 10 times, how can you estimate $\theta = p(\text{Head})$?

Intuitively, $\hat{\theta} = 4/10 = 0.4$

How good is $\hat{\theta}$?

It depends on how likely it is to generate the observed data $X_1, X_2, ..., X_n$ Likelihood function $L(\theta) = \prod_i p(\mathbf{x}_i | \theta)$ Under i.i.d assumption

the probabilistic model p_{θ} ?

- (Let's forget about label for a second)

- Interpretation: How probable (or how likely) is the data given

How good is θ ?

- (Let's forget about label for a second)

 $= \frac{\partial}{\partial} \cdot (1 - \theta) \cdot (1 - \theta) \cdot \theta \cdot \theta$

Bernoulli distribution

Log-likelihood function

 $L_{D}(\theta) = \theta \cdot (1 - \theta) \cdot (1 - \theta) \cdot \theta \cdot \theta$ $= \theta^{N_H} \cdot (1 - \theta)^{N_T}$

Log-likelihood function

 $\ell(\theta) = \log L_D(\theta)$ $= N_H \log \theta + N_T \log(1 - \theta)$

Recall: $\log AB = \log A + \log B$ $\log A^x = x \log A$

Maximum Likelihood Estimation (MLE)

Find optimal θ^* to maximize the likelihood function (and log-likelihood)

 $\theta^* = \arg \max N_H \log$

 $\frac{\partial l(\theta)}{\partial \theta} = \frac{N_H}{\theta} - \frac{N_T}{1 - \theta} =$

which confirms your intuition!

$$\theta + N_T \log(1 - \theta)$$

$$0 \quad \bullet \quad \theta^* = \frac{N_H}{N_T + N_H}$$

Maximum Likelihood Estimation: Gaussian Model Fitting a model to heights of females **Observed some data** (in inches): 60, 62, 53, 58,... $\in \mathbb{R}$ $\{x_1, x_2, \ldots, x_n\}$

Model class: Gaussian model

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-x)}{2\sigma^2}\right)$$

So, what's the MLE for the given data?

Estimating the parameters in a Gaussian

Mean

• Variance

courses.d2l.ai/berkeley-stat-157

 $\mu = \mathbf{E}[x] \text{ hence } \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$

 $\sigma^2 = \mathbf{E} \left[(x - \mu)^2 \right]$ hence $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$

Maximum Likelihood Estimation: Gaussian Model

Observe some data (in inches): $x_1, x_2, \ldots, x_n \in \mathbb{R}$

Assume that the data is drawn from a Gaussian

$$L(\mu, \sigma^2 | X) = \prod_{i=1}^n p(x_i; \mu, \sigma^2) =$$

Fitting parameters is maximizing likelihood w.r.t μ, σ^2 (maximize likelihood that data was generated by model)

$$p(x_i; \mu, \sigma^2)$$

Maximum Likelihood

 Estimate parameters by finding ones that explain the data Decompose likelihood

$$\sum_{i=1}^{n} \frac{1}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} (x_i - \mu)^2$$

courses.d2l.ai/berkeley-stat-157

$\underset{\mu,\sigma^2}{\operatorname{arg\,max}} \prod_{i=1}^n p(x_i;\mu,\sigma^2) = \underset{\mu,\sigma^2}{\operatorname{arg\,min}} - \log \prod_{i=1}^n p(x_i;\mu,\sigma^2)$

 $)^{2} = \frac{n}{2} \log(2\pi\sigma^{2}) + \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$ Minimized for $\mu = \frac{1}{n} \sum x_i$ i=1

Maximum Likelihood

Estimating the variance

 $\ell(\mu, \sigma^2) = \frac{n}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$

Maximum Likelihood

Estimating the variance

$$\ell(\mu, \sigma^2) = \frac{n}{2}\log \frac{1}{2}$$

Take derivatives with respect to it

 $\partial_{\sigma^2} \left[\cdot \right] = \frac{n}{2\sigma^2} - \frac{1}{2\sigma^4} \sum_{n=1}^{n} \frac{1}{2\sigma^4} \sum$

n **^**

courses.d2l.ai/berkeley-stat-157

 $og(2\pi\sigma^2) + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$

$$\frac{1}{2\sigma^4} - \frac{1}{2\sigma^4} \sum_{i=1}^{I} (x_i - \mu)^2 = 0$$

$$\sum_{i=1}^{n} (x_i - \mu)^2$$

Classification via MLE

Classification via MLE

 $\hat{y} = \hat{f}(\mathbf{x}) = \arg \max p(y | \mathbf{x})$ (Prediction)

(Posterior)

Classification via MLE

$$\hat{y} = \hat{f}(\mathbf{x}) = \arg \max p(\mathbf{x})$$
(Prediction)
$$= \arg \max \frac{p(\mathbf{x} \mid y) \cdot p}{p(\mathbf{x})}$$

$= \underset{V}{\operatorname{arg\,max}} p(\mathbf{x} | y) p(y)$

Using labelled training data, learn class priors and class conditionals

Q2-2: True or False Maximum likelihood estimation is the same regardless of whether we maximize the likelihood or log-likelihood function.

- A True
- B False

Q2-2: True or False Maximum likelihood estimation is the same regardless of whether we maximize the likelihood or log-likelihood function.

- A True
- B False

160 152 138 149 180. Find a maximum likelihood estimate of μ .

- A 132.2
- B 142.2
- C 152.2
- D 162.2

- Q2-3: Suppose the weights of randomly selected American female
- college students are normally distributed with unknown mean μ and
- standard deviation σ . A random sample of 10 American female college students yielded the following weights in pounds: 115 122 130 127 149

160 152 138 149 180. Find a maximum likelihood estimate of μ .

- A 132.2
- B 142.2
- C 152.2
- D 162.2

- Q2-3: Suppose the weights of randomly selected American female
- college students are normally distributed with unknown mean μ and
- standard deviation σ . A random sample of 10 American female college students yielded the following weights in pounds: 115 122 130 127 149

Part II: Naïve Bayes

- If weather is sunny, would you likely to play outside?
- Posterior probability p(Yes |) vs. p(No |)

- If weather is sunny, would you likely to play outside?
- Posterior probability p(Yes |) vs. p(No |)
- Weather = {Sunny, Rainy, Overcast}
- $Play = {Yes, No}$
- Observed data {Weather, play on day m}, m={1,2,...,N}

- If weather is sunny, would you likely to play outside?
- Posterior probability p(Yes |) vs. p(No |)
- Weather = {Sunny, Rainy, Overcast}
- $Play = {Yes, No}$
- Observed data {Weather, play on day m}, m={1,2,...,N}

p(Play |) =

p(Play) p(Play)

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

Frequency Table				
Weather	No			
Overcast				
Rainy	3			
Sunny	2			
Grand Total	5			

Step 1: Convert the data to a frequency table of Weather and Play

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/

Step 1: Convert the data to a frequency table of Weather and Play

Step 2: Based on the frequency table, calculate likelihoods and priors

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

	Frequency Table				Likelihood table			
	Weather	No	Yes	V	Neather	No	Yes	
	Overcast		4		Overcast		4	=4/14
	Rainy	3	2	F	Rainy	3	2	=5/14
	Sunny	2	3	s	Sunny	2	3	=5/14
	Grand Total	5	9	4	411	5	9	
				_		=5/14	=9/14	
						0.36	0.64	

p(Play = Yes) = 0.64p(**¥es**) = 3/9 = 0.33

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/

Step 3: Based on the likelihoods and priors, calculate posteriors

P(Yes|) =P(┊┊ |Yes)*P(Yes)/P(┊┊)

Step 3: Based on the likelihoods and priors, calculate posteriors

P(Yes) =P(***** |Yes)*P(Yes)/P(*****) =0.33*0.64/0.36 =0.6

P(No|) =P(| | No)*P(No)/P(| |) =0.4*0.36/0.36=0.4

Bayesian classification

$$\hat{y} = \arg \max p(y \mid \mathbf{x}) \quad (P$$
(Prediction)
$$= \arg \max \frac{p(\mathbf{x} \mid y) \cdot p(y)}{p(\mathbf{x})}$$

$= \arg \max p(\mathbf{x} | y)p(y)$

(Posterior)

(by Bayes' rule)

Bayesian classification What if **x** has multiple attributes $\mathbf{x} = \{X_1, \ldots, X_k\}$

$\hat{y} = \underset{v}{\operatorname{arg\,max}} p(y | X_1, \dots, X_k)$ (Posterior) (Prediction)

Bayesian classification What if **x** has multiple attributes $\mathbf{x} = \{X_1, \ldots, X_k\}$ $\hat{y} = \arg\max_{v} p(y | X_1, \dots, X_k) \quad \text{(Posterior)}$ (Prediction) $= \underset{y}{\operatorname{arg\,max}} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$ $= \underset{y}{\operatorname{arg\,max}} p(X_1, \ldots, X_k | y) p(y)$ Class conditional likelihood

Naïve Bayes Assumption

Conditional independence of feature attributes

$p(X_1, \ldots, X_k | y) p(y) = \prod_{i=1}^k p(X_i | y) p(y)$ Easier to estimate (using MLE!)

Q3-1: Which of the following about Naive Bayes is incorrect?

- A Attributes can be nominal or numeric
- B Attributes are equally important
- C Attributes are statistically dependent of one another given the class value • D Attributes are statistically independent of one another given the class value
- E All of above

Quiz break

Q3-1: Which of the following about Naive Bayes is incorrect?

- A Attributes can be nominal or numeric
- B Attributes are equally important
- C Attributes are statistically dependent of one another given the class value • D Attributes are statistically independent of one another given the class value
- E All of above

Quiz break

Q3-2: Consider a classification problem with two binary features, $x_1, x_2 \in \{0, 1\}$. Suppose P(Y = y) = 1/32, $P(x_1 = 1 | Y = y) = y/46$, $P(x_2 = 1 | Y = y) = y/62$. Which class will naive Bayes classifier produce on a test item with $x_1 = 1$ and $x_2 = 0$?

- A 16
- B 26
- C 31
- D 32

Q3-2: Consider a classification problem with two binary features, $x_1, x_2 \in \{0, 1\}$. Suppose P(Y = y) = 1/32, $P(x_1 = 1 | Y = y) = y/46$, $P(x_2 = 1 | Y = y) = y/62$. Which class will naive Bayes classifier produce on a test item with $x_1 = 1$ and $x_2 = 0$?

- A 16
- B 26
- C 31
- D 32

Q3-3: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident	Studied	Sick	R
Yes	No	No	
Yes	No	Yes	F
No	Yes	Yes	
No	Yes	No	F
Yes	Yes	Yes	F

lesult Fail Pass Fail Dass Pass

- A Pass
- B Fail

Q3-3: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident	Studied	Sick	R
Yes	No	No	
Yes	No	Yes	F
No	Yes	Yes	
No	Yes	No	F
Yes	Yes	Yes	F

lesult Fail Pass Fail Dass Pass

- A Pass
- B Fail

What we've learned today...

- K-Nearest Neighbors
- Maximum likelihood estimation
 - Bernoulli model
 - Gaussian model
- Naive Bayes
 - Conditional independence assumption

Thanks!

Based on slides from Xiaojin (Jerry) Zhu and Yingyu Liang (http://pages.cs.wisc.edu/~jerryzhu/cs540.html), and James McInerney

