

CS 540 Introduction to Artificial Intelligence Perceptron

October 19, 2021

Slides created by Sharon Li [modified by Josiah Hanna]

Josiah Hanna University of Wisconsin-Madison

Announcement

Homework: HW6 due on 11/2 (after Midterm) Midterm Evaluation: Received in email; complete by Saturday **Class roadmap**

Tuesday, Oct 12	Machine Learning: Linear Regression	Slides	HW 4 Due, HW 5 Released		
Thursday, Oct 14	Machine Learning: K-Nearest Neighbors & Naive Bayes				
Tuesday, Oct 19	Machine Learning: Neural Network I (Perceptron)		HW 5 Due, HW 6 Released		
Thursday, Oct 21	Machine Learning: Neural Network II				
Tuesday, Oct 26	Machine Learning: Neural Network III				
MIDTERM EXAM October 28					
Everything below here is tentative and subject to change.					
Tuesday, Nov 2	Machine Learning: Deep Learning I				

Today's outline

- Naive Bayes (cont.)
- Single-layer Neural Network (Perceptron)

Part I: Naïve Bayes (cont.)

- If weather is sunny, would you likely to play outside?
- Posterior probability p(Yes |) vs. p(No |)

- If weather is sunny, would you likely to play outside?
- Posterior probability p(Yes |) vs. p(No |)
- Weather = {Sunny, Rainy, Overcast}
- $Play = {Yes, No}$
- Observed data {Weather, play on day m}, m={1,2,...,N}

- If weather is sunny, would you likely to play outside?
- Posterior probability p(Yes |) vs. p(No |)
- Weather = {Sunny, Rainy, Overcast}
- $Play = {Yes, No}$
- Observed data {Weather, play on day m}, m={1,2,...,N}

p(Play |) =

p(| Play) p(Play)

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

Frequency Table			
Weather	No		
Overcast			
Rainy	3		
Sunny	2		
Grand Total	5		

Step 1: Convert the data to a frequency table of Weather and Play

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/

Step 1: Convert the data to a frequency table of Weather and Play

Step 2: Based on the frequency table, calculate likelihoods and priors

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

	Frequency Table]	Likelihood table					
	Weather	No	Yes		Weather	No	Yes		
	Overcast		4		Overcast		4	=4/14	0
	Rainy	3	2		Rainy	3	2	=5/14	0
	Sunny	2	3		Sunny	2	3	=5/14	0
	Grand Total	5	9		All	5	9		
						=5/14	=9/14		
						0.36	0.64		

p(Play = Yes) = 0.64p(**¥es**) = 3/9 = 0.33

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/

Step 3: Based on the likelihoods and priors, calculate posteriors

Step 3: Based on the likelihoods and priors, calculate posteriors

P(Yes =P(***** |Yes)*P(Yes)/P(*****) =0.33*0.64/0.36 =0.6

P(No|) =P(| | No)*P(No)/P(| |) =0.4*0.36/0.36=0.4

Bayesian classification

 $= \arg \max p(\mathbf{x} | y) p(y)$

(Posterior)

Bayesian classification What if **x** has multiple attributes $\mathbf{x} = \{X_1, \ldots, X_k\}$

$\hat{y} = \underset{v}{\operatorname{arg\,max}} p(y | X_1, \dots, X_k)$ (Posterior) (Prediction)

Bayesian classification What if **x** has multiple attributes $\mathbf{x} = \{X_1, \ldots, X_k\}$ $\hat{y} = \arg\max_{v} p(y | X_1, \dots, X_k) \quad \text{(Posterior)}$ (Prediction) $= \underset{y}{\operatorname{arg\,max}} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$ $= \underset{y}{\operatorname{arg\,max}} p(X_1, \ldots, X_k | y) p(y)$ Class conditional likelihood

Naïve Bayes Assumption

Conditional independence of feature attributes

$p(X_1, \ldots, X_k | y) p(y) = \prod_{i=1}^k p(X_i | y) p(y)$ Easier to estimate (using MLE!)

Q1-1: Which of the following about Naive Bayes is incorrect?

- A Attributes can be nominal or numeric
- B Attributes are equally important
- C Attributes are statistically dependent of one another given the class value • D Attributes are statistically independent of one another given the class value
- E All of above

Quiz break

Q1-1: Which of the following about Naive Bayes is incorrect?

- A Attributes can be nominal or numeric
- B Attributes are equally important
- C Attributes are statistically dependent of one another given the class value • D Attributes are statistically independent of one another given the class value
- E All of above

Quiz break

Q1-2: Consider a classification problem with two binary features, $x_1, x_2 \in \{0, 1\}$. Suppose P(Y = y) = 1/32, $P(x_1 = 1 | Y = y) = y/46$, $P(x_2 = 1 | Y = y) = y/62$. Which class will naive Bayes classifier produce on a test item with $x_1 = 1$ and $x_2 = 0$?

- A 16
- B 26
- C 31
- D 32

Q1-2: Consider a classification problem with two binary features, $x_1, x_2 \in \{0, 1\}$. Suppose P(Y = y) = 1/32, $P(x_1 = 1 | Y = y) = y/46$, $P(x_2 = 1 | Y = y) = y/62$. Which class will naive Bayes classifier produce on a test item with $x_1 = 1$ and $x_2 = 0$?

- A 16
- B 26
- C 31
- D 32

Q1-3: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident	Studied	Sick	R
Yes	No	No	F
Yes	No	Yes	P
No	Yes	Yes	F
No	Yes	No	F
Yes	Yes	Yes	P

lesult Fail Pass Fail Dass Pass

- A Pass
- B Fail

Q1-3: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident	Studied	Sick	R
Yes	No	No	F
Yes	No	Yes	P
No	Yes	Yes	F
No	Yes	No	F
Yes	Yes	Yes	P

lesult Fail Pass Fail Dass Pass

- A Pass
- B Fail

Part I: Single-layer Neural Network

How to classify Cats vs. dogs?

Inspiration from neuroscience

- Inspirations from human brains - Networks of simple and homogenous units

(soma)

(wikipedia)

Cats vs. dogs?

Linear Perceptron

$f = \langle \mathbf{w}, \mathbf{x} \rangle + b$

Cats vs. dogs?

• Given input x, weight w and bias b, perceptron outputs:

Cats vs. dogs?

• Given input x, weight w and bias b, perceptron outputs: $o = \sigma \left(\langle \mathbf{w}, \mathbf{x} \rangle + b \right) \qquad \sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$ Activation function

• Goal: learn parameters $\mathbf{W} = \{w_1, w_2, \dots, w_d\}$ and b to minimize the classification error

Cats vs. dogs?

Input

Output

Training the Perceptron

Perceptron Algorithm

Initialize $\vec{w} = \vec{0}$ while TRUE do m = 0for $(x_i, y_i) \in D$ do if $y_i(\vec{w}^T \cdot \vec{x_i}) \leq 0$ then $\vec{w} \leftarrow \vec{w} + y\vec{x}$ $m \leftarrow m + 1$ end if end for if m = 0 then break end if end while

- Initialize \vec{w} . $\vec{w} = \vec{0}$ misclassifies everything.
- Keep looping
- Count the number of misclassifications, m
- Loop over each (data, label) pair in the dataset, D
- // If the pair $(\vec{x_i}, y_i)$ is misclassified
- // Update the weight vector \vec{w}
- // Counter the number of misclassification
- If the most recent \vec{w} gave 0 misclassifications Break out of the while-loop
- Otherwise, keep looping!

Example 2: Predict whether a user likes a song or not

Example 2: Predict whether a user likes a song or not Using Perceptron Intensity **User Sharon** DisLike Like Fast Relaxed Tempo

Learning AND function using perceptron

The perceptron can learn an AND function

 $x_{1} = 1, x_{2} = 1, y = 1$ $x_{1} = 1, x_{2} = 0, y = 0$ $x_{1} = 0, x_{2} = 1, y = 0$ $x_{1} = 0, x_{2} = 0, y = 0$

Learning AND function using perceptron The perceptron can learn an AND function

Learning AND function using perceptron The perceptron can learn an AND function

 W_1

Output $\sigma(x_1w_1 + x_2w_2 + b)$ $\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$

What's w and b?

Learning AND function using perceptron The perceptron can learn an AND function

 $w_1 = 1, w_2 = 1, b = -1.5$

Learning OR function using perceptron The perceptron can learn an OR function $x_1 = 1, x_2 = 1, y = 1$ $x_1 = 1, x_2 = 0, y = 1$ $x_1 = 0, x_2 = 1, y = 1$ $x_1 = 0, x_2 = 0, y = 0$

Learning OR function using perceptron The perceptron can learn an OR function

 W_1

Output $\sigma(x_1w_1 + x_2w_2 + b)$ $\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$

What's w and b?

Learning OR function using perceptron The perceptron can learn an OR function

 $w_1 = 1, w_2 = 1, b = -0.5$

Learning NOT function using perceptron The perceptron can learn NOT function (single input)

XOR Problem (Minsky & Papert, 1969)

The perceptron cannot learn an XOR function (neurons can only generate linear separators)

This contributed to the first AI winter

Consider the linear perceptron with x as the input. Which function can the linear perceptron compute?

(1) y = ax + b(2) $y = ax^2 + bx + c$

A. (1) B. (2) C. (1)(2) D. None of the above

compute?

- (1) y = ax + b(2) $y = ax^2 + bx + c$
- A. (1) B. (2) C. (1)(2)
- D. None of the above

Answer: A. All units in a linear perceptron are linear. Thus, the model can not present non-linear functions.

Consider the linear perceptron with x as the input. Which function can the linear perceptron

Perceptron can be used for representing:

- A. AND function
- B. OR function
- C. XOR function
- Both AND and OR function

Perceptron can be used for representing:

- A. AND function
- B. OR function
- C. XOR function
- **Both AND and OR function**

Step Function activation

Step function is discontinuous, which cannot be used for gradient descent

0.5

$\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$

Sigmoid/Logistic Activation

Map input into [0, 1], a **soft** version of $\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$ sigmoid(x) = $\frac{1}{1 + \exp(-x)}$ 6 8 2 4 Х

Logistic regression $\mathbf{x} \in \mathbb{R}^{d}, y = \{-1, +1\}$

Logistic regression Given: $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$

Training: maximize likelihood estimate (on the conditional probability)

Logistic regression Given: $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$

Training: maximize likelihood estimate (on the conditional probability)

When training data is linearly separable, many solutions

Logistic regression Given: $\{(\mathbf{X}_{i}, y_{i})\}_{i=1}^{n}$

- **Convex** optimization
- Solve via (stochastic) gradient descent

Tanh Activation

Map inputs into (-1, 1)

ReLU Activation

ReLU: rectified linear unit (commonly used in modern neural networks) $\operatorname{ReLU}(x) = \max(x,0)$

Which one of the following is a valid activation function?

a)Step function b) Sigmoid function C) ReLU function D) all of above

Which one of the following is a valid activation function?

a)Step function b) Sigmoid function C) ReLU function D) all of above

Let $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Which of the following functions is NOT an element-wise operation that can be used as an activation function? A $f(x) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ B $f(x) = \begin{bmatrix} \max(0, x_1) \\ \max(0, x_2) \end{bmatrix}$ C $f(x) = \begin{bmatrix} \exp(x_1) \\ \exp(x_2) \end{bmatrix}$ D $f(x) = \begin{bmatrix} \exp(x_1 + x_2) \\ \exp(x_2) \end{bmatrix}$ $\exp(x_2)$

Let $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Which of the following functions is NOT an element-wise operation that can be used as an activation function? A f(x) = $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $B f(x) = \begin{bmatrix} x_2 \\ max(0, x_1) \\ max(0, x_2) \end{bmatrix}$ $C f(x) = \begin{bmatrix} exp(x_1) \\ exp(x_2) \end{bmatrix}$ $D f(x) = \begin{bmatrix} exp(x_1 + x_2) \\ exp(x_2) \end{bmatrix}$ $exp(x_2)$

Multilayer Perceptron

Input

How to classify Cats vs. dogs?

Hidden layer m neurons

Input

How to classify Cats vs. dogs?

- Input $\mathbf{x} \in \mathbb{R}^d$
- Hidden $\mathbf{W} \in \mathbb{R}^{m \times d}, \mathbf{b} \in \mathbb{R}^m$
- Intermediate output

 $\mathbf{h} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$

 σ is an element-wise activation function

Input

Hidden layer m neurons

Input

• Output $\mathbf{f} = \mathbf{w}_2^{\mathsf{T}}\mathbf{h} + b_2$

Why do we need an a nonlinear activation?

Output

Why do we need an a nonlinear activation?

Output

$\mathbf{h} = \mathbf{W}\mathbf{x} + \mathbf{b}$ $f = \mathbf{w}_2^T \mathbf{h} + b_2$ hence $f = \mathbf{w}_2^\mathsf{T} \mathbf{W} \mathbf{x} + b'$

Why multiple layers?

Brief history of neural networks

What we've learned today...

- Single-layer Perceptron
 - Motivation
 - Activation function
 - Representing AND, OR, NOT
- Brief history of neural networks

Thanks!

Based on slides from Xiaojin (Jerry) Zhu and Yingyu Liang (http://pages.cs.wisc.edu/~jerryzhu/cs540.html), and Alex Smola: https://courses.d2l.ai/berkeley-stat-157/units/mlp.html

