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How to classify 
Cats vs. dogs?

36M floats in a RGB image!
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Cats vs. dogs?

36M elements x 100 = 3.6B parameters!

Output 

Hidden layer 
Input 

100 neurons

Fully Connected Networks
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0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.
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Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3 

channels 
• Have a kernel for each channel, and then sum results over 

channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56
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Output shape

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋

StridePad

Kernel/filter size

Input size



A. 11 x 11 x 16
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B. 6 x 6 x 16


C. 7 x 7 x16


D. 5 x 5 x16

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋

0 because filter not outside of input
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Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato
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Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato



2-D Max Pooling

• Returns the maximal value in the 
sliding window

max(0,1,3,4) = 4
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• Returns the maximal value in the 
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Average Pooling

• Max pooling: the strongest pattern signal in a window 
• Average pooling: replace max with mean in max pooling 

• The average signal strength in a window

Max pooling Average pooling
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How to train a neural network?
Loss function: 1

|D | ∑
i

ℓ(xi, yi)

ℓ(x, y) =
K

∑
j=1

− yj log pj

Per-sample loss:

Also known as cross-entropy loss  
or softmax loss
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How to train a convolutional neural network?



Input

softmax

How to train a convolutional neural network?



Recall Softmax

Turns outputs f into probabilities (sum up to 1 across k classes)

Normalized??
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Cross-Entropy Loss

Convolutional 
layers

softmax True label 

p Y

LCE = ∑
i

− Yi log(pi)

= − log(0.8)

Goal: push p and Y to be identical
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Cross-Entropy Loss

0.8
Convolutional 

layers

softmax

0.2

True label 

1

p Y

LCE = ∑
i

− Yi log(pi)

= − log(0.8)

Goal: push p and Y to be identical
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Evolution of neural net architectures

LeNet AlexNet

Inception 
Net

ResNet
DenseNet



LeNet Architecture 
(first conv nets)

!"#$%&'()*#+&$,-&#"'%'.,#//-%&$,(0,$0123&'(,"&10.'%(%0'4 
by Y. LeCun, L. Bo.ou, Y. Bengio and P. Haffner



Handwritten Digit  
Recognition



MNIST
• Centered and scaled  
• 50,000 training data 
• 10,000 test data 
• 28 x 28 images 
• 10 classes



Y. LeCun, L. 
Bottou, Y. Bengio, 
P. Haffner, 1998 
Gradient-based 
learning applied to 
document 
recognition
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LeNet Architecture

!"#$%&'()*#+&$,-&#"'%'.,#//-%&$,(0,$0123&'(,"&10.'%(%0'4 
by Y. LeCun, L. Bo.ou, Y. Bengio and P. Haffner



LeNet in Pytorch

 https://github.com/bollakarthikeya/LeNet-5-PyTorch/blob/master/lenet5_gpu.py



LeNet in Pytorch



Let’s walk through an example using PyTorch

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html



AlexNet



Deng et al. 2009



AlexNet



AlexNet

• AlexNet won ImageNet 
competition in 2012



AlexNet

• AlexNet won ImageNet 
competition in 2012

• Deeper and bigger LeNet 



AlexNet

• AlexNet won ImageNet 
competition in 2012

• Deeper and bigger LeNet 
• Paradigm shift for 

computer vision



AlexNet

• AlexNet won ImageNet 
competition in 2012

• Deeper and bigger LeNet 
• Paradigm shift for 

computer vision

Features learned 
by a CNN

Softmax 



AlexNet Architecture 
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LeNetAlexNet

Larger pool size



AlexNet Architecture 

LeNetAlexNet

Larger kernel size, stride 
because of the increased 

image size, and more 
output channels.

Larger pool size
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LeNet

AlexNet

3 additional 
convolutional  layers



AlexNet Architecture 

LeNet

AlexNet

More output channels.

3 additional 
convolutional  layers



AlexNet Architecture 

LeNetAlexNet



AlexNet Architecture 

LeNetAlexNet
1000 classes output



AlexNet Architecture 

LeNetAlexNet

Increase hidden size  
from 120 to 4096

1000 classes output



More Differences…

• Change activation function from sigmoid to ReLu 
(no more vanishing gradient)
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• Change activation function from sigmoid to ReLu 
(no more vanishing gradient) 

• Data augmentation

More Differences…



Complexity

#parameters 
AlexNet LeNet

Conv1 35K 150
Conv2 614K 2.4K

Conv3-5 3M
Dense1 26M 0.048M
Dense2 16M 0.01M

Total 46M 0.06M
Increase 11x 1x
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Complexity

#parameters 
AlexNet LeNet

Conv1 35K 150
Conv2 614K 2.4K

Conv3-5 3M
Dense1 26M 0.048M
Dense2 16M 0.01M

Total 46M 0.06M
Increase 11x 1x

11x11x3x96=35k







Which of the following are true about AlexNet? Select all that apply.

A. AlexNet contains 8 layers. The first five are convolutional layers.


B.The last three layers are fully connected layers.


C.some of the convolutional layers are followed by max-pooling (layers).


D. AlexNet achieved excellent performance in the 2012 ImageNet challenge. 


Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing 
systems (pp. 1097–1105).

https://en.wikipedia.org/wiki/Convolutional_neural_network#Pooling_layer


Which of the following are true about AlexNet? Select all that apply.

A. AlexNet contains 8 layers. The first five are convolutional layers.


B. The last three layers are fully connected layers.


C. Some of the convolutional layers are followed by max-pooling (layers).


D. AlexNet achieved excellent performance in the 2012 ImageNet challenge. 


Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing 
systems (pp. 1097–1105).

All options are true!

https://en.wikipedia.org/wiki/Convolutional_neural_network#Pooling_layer




VGG



Progress

• LeNet (1995) 
• 2 convolution + pooling layers  
• 2 hidden dense layers 

• AlexNet 
• Bigger and deeper LeNet 
• ReLu, preprocessing 

• VGG 
• Bigger and deeper AlexNet (repeated VGG blocks)
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What we’ve learned today

• Brief review of convolutional computations

• Convolutional Neural Networks

• LeNet (first conv nets)

• AlexNet 

• PyTorch demo
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