
CS540 Introduction to Artificial Intelligence
Convolutional Neural Networks (II)

Josiah Hanna
University of Wisconsin-Madison

November 4, 2021

Slides created by Sharon Li [modified by Josiah Hanna]

Announcements

Outline

Outline

• Brief review of convolutional computations

Outline

• Brief review of convolutional computations

• Convolutional Neural Networks

Outline

• Brief review of convolutional computations

• Convolutional Neural Networks

• LeNet (first conv nets)

Outline

• Brief review of convolutional computations

• Convolutional Neural Networks

• LeNet (first conv nets)

• AlexNet

How to classify
Cats vs. dogs?

How to classify
Cats vs. dogs?

How to classify
Cats vs. dogs?

How to classify
Cats vs. dogs?

36M floats in a RGB image!

Cats vs. dogs?

Fully Connected Networks

Cats vs. dogs?

Output

Hidden layer
Input

100 neurons

Fully Connected Networks

Cats vs. dogs?

36M elements x 100 = 3.6B parameters!

Output

Hidden layer
Input

100 neurons

Fully Connected Networks

Review: 2-D Convolution

Review: 2-D Convolution

Review: 2-D Convolution

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.

Review: 2-D Convolution

(vdumoulin@ Github)

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.

Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56

Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56

Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56

Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56

Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56

Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56

Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels

*

Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels

*

Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels

*

Output shape

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋

StridePad

Kernel/filter size

Input size

A. 11 x 11 x 16

B. 6 x 6 x 16

C. 7 x 7 x16

D. 5 x 5 x16

A. 11 x 11 x 16

B. 6 x 6 x 16

C. 7 x 7 x16

D. 5 x 5 x16

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋

0 because filter not outside of input

Pooling Layer

Pooling

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

Pooling

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

2-D Max Pooling

• Returns the maximal value in the
sliding window

max(0,1,3,4) = 4

2-D Max Pooling

• Returns the maximal value in the
sliding window

max(0,1,3,4) = 4

Average Pooling

• Max pooling: the strongest pattern signal in a window
• Average pooling: replace max with mean in max pooling

• The average signal strength in a window

Max pooling Average pooling

Output

Hidden layer
Input

100 neurons

How to train a neural network?
Loss function: 1

|D | ∑
i

ℓ(xi, yi)

Output

Hidden layer
Input

100 neurons

How to train a neural network?
Loss function: 1

|D | ∑
i

ℓ(xi, yi)

ℓ(x, y) =
K

∑
j=1

− yj log pj

Per-sample loss:

Output

Hidden layer
Input

100 neurons

How to train a neural network?
Loss function: 1

|D | ∑
i

ℓ(xi, yi)

ℓ(x, y) =
K

∑
j=1

− yj log pj

Per-sample loss:

Also known as cross-entropy loss
or softmax loss

Input

How to train a convolutional neural network?

Input

softmax

How to train a convolutional neural network?

Recall Softmax

Turns outputs f into probabilities (sum up to 1 across k classes)

Normalized??

Recall Softmax

Turns outputs f into probabilities (sum up to 1 across k classes)

Normalized

Cross-Entropy Loss

Convolutional
layers

softmax True label

p Y

LCE = ∑
i

− Yi log(pi)

= − log(0.8)

Goal: push p and Y to be identical

Cross-Entropy Loss

0.8
Convolutional

layers

softmax True label

p Y

LCE = ∑
i

− Yi log(pi)

= − log(0.8)

Goal: push p and Y to be identical

Cross-Entropy Loss

0.8
Convolutional

layers

softmax

0.2

True label

p Y

LCE = ∑
i

− Yi log(pi)

= − log(0.8)

Goal: push p and Y to be identical

Cross-Entropy Loss

0.8
Convolutional

layers

softmax

0.2

True label

1

p Y

LCE = ∑
i

− Yi log(pi)

= − log(0.8)

Goal: push p and Y to be identical

Convolutional Neural Networks

Evolution of neural net architectures

Evolution of neural net architectures

LeNet AlexNet

Inception
Net

ResNet
DenseNet

LeNet Architecture
(first conv nets)

!"#$%&'()*#+&$,-&#"'%'.,#//-%&$,(0,$0123&'(,"&10.'%(%0'4
by Y. LeCun, L. Bo.ou, Y. Bengio and P. Haffner

Handwritten Digit
Recognition

MNIST
• Centered and scaled
• 50,000 training data
• 10,000 test data
• 28 x 28 images
• 10 classes

Y. LeCun, L.
Bottou, Y. Bengio,
P. Haffner, 1998
Gradient-based
learning applied to
document
recognition

Y. LeCun, L.
Bottou, Y. Bengio,
P. Haffner, 1998
Gradient-based
learning applied to
document
recognition

LeNet Architecture

!"#$%&'()*#+&$,-&#"'%'.,#//-%&$,(0,$0123&'(,"&10.'%(%0'4
by Y. LeCun, L. Bo.ou, Y. Bengio and P. Haffner

LeNet in Pytorch

 https://github.com/bollakarthikeya/LeNet-5-PyTorch/blob/master/lenet5_gpu.py

LeNet in Pytorch

Let’s walk through an example using PyTorch

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

AlexNet

Deng et al. 2009

AlexNet

AlexNet

• AlexNet won ImageNet
competition in 2012

AlexNet

• AlexNet won ImageNet
competition in 2012

• Deeper and bigger LeNet

AlexNet

• AlexNet won ImageNet
competition in 2012

• Deeper and bigger LeNet
• Paradigm shift for

computer vision

AlexNet

• AlexNet won ImageNet
competition in 2012

• Deeper and bigger LeNet
• Paradigm shift for

computer vision

Features learned
by a CNN

Softmax

AlexNet Architecture

LeNetAlexNet

AlexNet Architecture

LeNetAlexNet

Larger pool size

AlexNet Architecture

LeNetAlexNet

Larger kernel size, stride
because of the increased

image size, and more
output channels.

Larger pool size

AlexNet Architecture

LeNet

AlexNet

AlexNet Architecture

LeNet

AlexNet

3 additional
convolutional layers

AlexNet Architecture

LeNet

AlexNet

More output channels.

3 additional
convolutional layers

AlexNet Architecture

LeNetAlexNet

AlexNet Architecture

LeNetAlexNet
1000 classes output

AlexNet Architecture

LeNetAlexNet

Increase hidden size
from 120 to 4096

1000 classes output

More Differences…

• Change activation function from sigmoid to ReLu
(no more vanishing gradient)

More Differences…

• Change activation function from sigmoid to ReLu
(no more vanishing gradient)

Saturating gradients

More Differences…

• Change activation function from sigmoid to ReLu
(no more vanishing gradient)

Saturating gradients

• Change activation function from sigmoid to ReLu
(no more vanishing gradient)

• Data augmentation

More Differences…

Complexity

#parameters
AlexNet LeNet

Conv1 35K 150
Conv2 614K 2.4K

Conv3-5 3M
Dense1 26M 0.048M
Dense2 16M 0.01M

Total 46M 0.06M
Increase 11x 1x

Complexity

#parameters
AlexNet LeNet

Conv1 35K 150
Conv2 614K 2.4K

Conv3-5 3M
Dense1 26M 0.048M
Dense2 16M 0.01M

Total 46M 0.06M
Increase 11x 1x

Complexity

#parameters
AlexNet LeNet

Conv1 35K 150
Conv2 614K 2.4K

Conv3-5 3M
Dense1 26M 0.048M
Dense2 16M 0.01M

Total 46M 0.06M
Increase 11x 1x

11x11x3x96=35k

Which of the following are true about AlexNet? Select all that apply.

A. AlexNet contains 8 layers. The first five are convolutional layers.

B.The last three layers are fully connected layers.

C.some of the convolutional layers are followed by max-pooling (layers).

D. AlexNet achieved excellent performance in the 2012 ImageNet challenge.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing
systems (pp. 1097–1105).

https://en.wikipedia.org/wiki/Convolutional_neural_network#Pooling_layer

Which of the following are true about AlexNet? Select all that apply.

A. AlexNet contains 8 layers. The first five are convolutional layers.

B. The last three layers are fully connected layers.

C. Some of the convolutional layers are followed by max-pooling (layers).

D. AlexNet achieved excellent performance in the 2012 ImageNet challenge.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing
systems (pp. 1097–1105).

All options are true!

https://en.wikipedia.org/wiki/Convolutional_neural_network#Pooling_layer

VGG

Progress

• LeNet (1995)
• 2 convolution + pooling layers
• 2 hidden dense layers

• AlexNet
• Bigger and deeper LeNet
• ReLu, preprocessing

• VGG
• Bigger and deeper AlexNet (repeated VGG blocks)

What we’ve learned today

What we’ve learned today

• Brief review of convolutional computations

What we’ve learned today

• Brief review of convolutional computations

• Convolutional Neural Networks

What we’ve learned today

• Brief review of convolutional computations

• Convolutional Neural Networks

• LeNet (first conv nets)

What we’ve learned today

• Brief review of convolutional computations

• Convolutional Neural Networks

• LeNet (first conv nets)

• AlexNet

What we’ve learned today

• Brief review of convolutional computations

• Convolutional Neural Networks

• LeNet (first conv nets)

• AlexNet

• PyTorch demo

Acknowledgement:
Some of the slides in these lectures have been adapted/borrowed from materials developed by Yin Li (https://happyharrycn.github.io/CS540-Fall20/schedule/), Alex
Smola and Mu Li:
https://courses.d2l.ai/berkeley-stat-157/index.html

https://happyharrycn.github.io/CS540-Fall20/schedule/
https://courses.d2l.ai/berkeley-stat-157/index.html

