

CS540 Introduction to Artificial Intelligence **Convolutional Neural Networks (II)** Josiah Hanna University of Wisconsin-Madison

November 4, 2021

Slides created by Sharon Li [modified by Josiah Hanna]

Announcements

Tuesday, Nov 2	Machine Learning: Deep Learning I	Slides	
Thursday, Nov 4	Machine Learning: Deep Learning II	Slides	HW 6 Due, HW 7 Released
	Everything below here is tentative and subject to change.		
Tuesday, Nov 9	Machine Learning: Deep Learning III		
Thursday, Nov 11	Machine Learning: Deep Learning and Neural Network's Summary		
Tuesday, Nov 16	Search I: Un-Informed search		HW 7 Due; HW 8 Released
Thursday, Nov 18	Search II: Informed search		
Tuesday, Nov 23	Games - Part I		HW 8 Due; HW 9 Released
Thursday, Nov 25	Happy Thanksgiving!		

Brief review of convolutional computations

- Brief review of convolutional computations
- Convolutional Neural Networks

- Brief review of convolutional computations
- Convolutional Neural Networks
 - LeNet (first conv nets)

- Brief review of convolutional computations
- Convolutional Neural Networks
 - LeNet (first conv nets)
 - AlexNet

Dual **12NP**

wide-angle and telephoto cameras

Dual 1210P wide-angle and

telephoto cameras

36M floats in a RGB image!

Fully Connected Networks

Cats vs. dogs?

Fully Connected Networks

Cats vs. dogs?

Fully Connected Networks

Cats vs. dogs?

36M elements x 100 = **3.6B** parameters!

*

Input

Kernel

0	1	2
3	4	5
6	7	8

Output

19	25
37	43

*

Kernel

0	1	2
3	4	5
6	7	8

 $0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19$, $1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25$, $3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37$, $4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43.$

Output

19	25
37	43

*

Kernel

0	1	2
3	4	5
6	7	8

 $0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19$, $1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25$, $3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37$, $4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43.$

(vdumoulin@ Github)

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

Input

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

Input

Kernel

*

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

Input

Kernel

Input

*

*

Have a kernel for each channel, and then sum results over

Kernel

+

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

Have a kernel for each channel, and then sum results over

Kernel

╋

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

Have a kernel for each channel, and then sum results over

$(1 \times 1 + 2 \times 2 + 4 \times 3 + 5 \times 4)$ $+(0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3)$ = 56

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

Output shape

 $[(n_h - k_h + p_h + s_h)/s_h] \times [(n_w - k_w + p_w + s_w)/s_w]$

Consider a convolution layer with 16 filters. Each filter has a size of 11x11x3, a stride of 2x2. Given an input image of size 22x22x3, if we don't allow a filter to fall outside of the input, what is the output size?

- A. 11 x 11 x 16
- B. 6 x 6 x 16
- C. 7 x 7 x16
- D. 5 x 5 x 16

Consider a convolution layer with 16 filters. Each filter has a size of 11x11x3, a stride of 2x2. Given filter to fall outside of the input, what is the output size?

- A. 11 x 11 x 16
- B. 6 x 6 x 16
- C. 7 x 7 x 16
- D. 5 x 5 x 16

an input image of size 22x22x3, if we don't allow a $[(n_h - k_h + p_h + s_h)/s_h] \times [(n_w - k_w + p_w + s_w)/s_w]$

0 because filter not outside of input

Pooling Layer

Pooling

Let us assume filter is an "eye" detector.

Q.: how can we make the detection robust to the exact location of the eye?

Slides Credit: Deep Learning Tutorial by Marc'Aurelio Ranzato

Pooling

By "pooling" (e.g., taking max) filter responses at different locations we gain robustness to the exact spatial location of features.

Slides Credit: Deep Learning Tutorial by Marc'Aurelio Ranzato

2-D Max Pooling

 Returns the maximal value in the sliding window

Input

4
7

max(0,1,3,4) = 4

Output

2-D Max Pooling

 Returns the maximal value in the sliding window

Input

4
7

max(0,1,3,4) = 4

Output

Average Pooling

- Max pooling: the strongest pattern signal in a window
- Average pooling: replace max with mean in max pooling
 - The average signal strength in a window

Max pooling

Average pooling

How to train a neural network? **Loss function:** $\frac{1}{|D|} \sum_{i} \mathscr{C}(\mathbf{x}_{i}, y_{i})$ Input

Hidden layer 100 neurons

Output

How to train a neural network? **Loss function:** $\frac{1}{|D|} \sum_{i} \mathscr{C}(\mathbf{x}_{i}, y_{i})$ Input Hidden layer **Per-sample loss:** 100 neurons

K $\ell(\mathbf{x}, y) = \sum_{j=1}^{j} -y_j \log p_j$ j=1

Output

How to train a neural network? **Loss function:** $\frac{1}{|D|} \sum_{i} \ell(\mathbf{x}_{i}, y_{i})$ Input Hidden layer **Per-sample loss:** 100 neurons $\ell(\mathbf{x}, y) = \sum_{i=1}^{n} -y_i \log p_i$ *j*=1 Also known as cross-entropy loss

or softmax loss

Output

How to train a convolutional neural network?

Input

How to train a convolutional neural network?

Input

Recall Softmax

Turns outputs f into probabilities (sum up to 1 across k classes)

Recall Softmax

Turns outputs f into probabilities (sum up to 1 across k classes)

$L_{CE} = \sum - Y_i \log(p_i)$ $= -\log(0.8)$

$L_{CE} = \sum - Y_i \log(p_i)$ $= -\log(0.8)$

$L_{CE} = \sum - Y_i \log(p_i)$ $= -\log(0.8)$

$L_{CE} = \sum - Y_i \log(p_i)$ $= -\log(0.8)$

Convolutional Neural Networks

Evolution of neural net architectures

Evolution of neural net architectures

LeNet Architecture (first conv nets)

Gradient-based learning applied to document recognition, by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

Handwritten Digit Recognition

Philip Marlow PORTLAND OR 970 638 Hollywood Blia # 615 Los Angeles, CA 15479 2019 EM3 L Dave Fennice vletter, in 509 lasiade Ave, Suite H Hood River, OR 97031 alleligen and and and and any first of a state of the sta 9703i206080 CARROLL O'CONNOR **BUSINESS ACCOUNT** % NANAS, STERN, BIERS AND CO. march 10 19 9454 WILSHIRE BLVD., STE. 405 273-2501 BEVERLY HILLS, CALIF. 90212 PAY TO THE WILSHIRE-DOHENY OFFICE WELLS FARGO BANK 201007 9101 WILSHIRE BOULEVARD BEVERLY HILLS, CALIFORNIA 90211 "000050000." 0635 111875 NUMBER OF STREET, STRE DELUTE CHECK PRINTERS - 1H

MNIST

- Centered and scaled
- 50,000 training data
- 10,000 test data
- 28 x 28 images
- 10 classes

000000000000 1 222222222222 3333333333 66666666666 777777777 888888888888 999999999999999

LeNet 5

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 1998 Gradient-based learning applied to document recognition

LeNet 5

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 1998 Gradient-based learning applied to document recognition

LeNet Architecture

Gradient-based learning applied to document recognition, by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

LeNet in Pytorch

```
def ___init__(self):
super(LeNet5, self).__init__()
# Convolution (In LeNet-5, 32x32 images are given as input. Hence padding of 2 is done below)
# Max-pooling
self.max_pool_1 = torch.nn.MaxPool2d(kernel_size=2)
# Convolution
# Max-pooling
self.max_pool_2 = torch.nn.MaxPool2d(kernel_size=2)
# Fully connected layer
self.fc2 = torch.nn.Linear(120, 84)
self.fc3 = torch.nn.Linear(84, 10)
```

https://github.com/bollakarthikeya/LeNet-5-PyTorch/blob/master/lenet5_gpu.py

self.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2, bias=True)

self.conv2 = torch.nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0, bias=True)

self.fc1 = torch.nn.Linear(16*5*5, 120) # convert matrix with 16*5*5 (= 400) features to a matrix of 120 features (col # convert matrix with 120 features to a matrix of 84 features (columns) # convert matrix with 84 features to a matrix of 10 features (columns)

def forward(self, x):

- # convolve, then perform ReLU non-linearity
- x = torch.nn.functional.relu(self.conv1(x))
- # max-pooling with 2x2 grid
- $x = self.max_pool_1(x)$
- # convolve, then perform ReLU non-linearity
- x = torch.nn.functional.relu(self.conv2(x))
- # max-pooling with 2x2 grid
- $x = self.max_pool_2(x)$
- # first flatten 'max_pool_2_out' to contain 16*5*5 columns
- # read through https://stackoverflow.com/a/42482819/7551231
- x = x.view(-1, 16*5*5)
- # FC-1, then perform ReLU non-linearity
- x = torch.nn.functional.relu(self.fc1(x))
- # FC-2, then perform ReLU non-linearity
- x = torch.nn.functional.relu(self.fc2(x))
- # FC-3
- x = self.fc3(x)

return x

LeNet in Pytorch

Let's walk through an example using PyTorch

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

Deng et al. 2009

 AlexNet won ImageNet competition in 2012

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet
- Paradigm shift for computer vision

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet
- Paradigm shift for computer vision

Softmax

Larger kernel size, stride because of the increased image size, and more output channels.

AlexNet Architecture

AlexNet Architecture

1000 classes output

AlexNet Architecture

1000 classes output

Increase hidden size from 120 to 4096

 Change activation function from sigmoid to ReLu (no more vanishing gradient)

 Change activation function from sigmoid to ReLu (no more vanishing gradient)

 Change activation function from sigmoid to ReLu (no more vanishing gradient)

- Change activation function from sigmoid to ReLu (no more vanishing gradient)
- Data augmentation

Complexity

	#parameters	
	AlexNet	LeNet
Conv1	35K	150
Conv2	614K	2.4K
Conv3-5	3M	
Dense1	26M	0.048M
Dense2	16M	0.01M
Total	46M	0.06M
Increase	11 x	1 x

Complexity

	#parameters	
	AlexNet	LeNet
Conv1	35K	150
Conv2	614K	2.4K
Conv3-5	3M	
Dense1	26M	0.048M
Dense2	16M	0.01M
Total	46M	0.06M
Increase	11 x	1 x

Complexity

	#parameters	
	AlexNet	LeNet
Conv1	35K	150
Conv2	614K	2.4K
Conv3-5	3M	
Dense1	26M	0.048M
Dense2	16M	0.01M
Total	46M	0.06M
Increase	11 x	1 x

11x11x3x96=35k

ImageNet Top-5 Classification Accuracy (%)

Which of the following are true about AlexNet? Select all that apply.

A. AlexNet contains 8 layers. The first five are convolutional layers. B.The last three layers are fully connected layers. C.some of the convolutional layers are followed by max-pooling (layers). D. AlexNet achieved excellent performance in the 2012 ImageNet challenge.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems (pp. 1097–1105).

Which of the following are true about AlexNet? Select all that apply.

- A. AlexNet contains 8 layers. The first five are convolutional layers.
- B. The last three layers are fully connected layers.
- C. Some of the convolutional layers are followed by max-pooling (layers).
- D. AlexNet achieved excellent performance in the 2012 ImageNet challenge.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing *systems* (pp. 1097–1105).

All options are true!

VGG

- softmax

Progress

- LeNet (1995)
 - 2 convolution + pooling layers
 - 2 hidden dense layers
- AlexNet
 - Bigger and deeper LeNet
 - ReLu, preprocessing
- VGG
 - Bigger and deeper AlexNet (repeated VGG blocks)

Which of the following statement is True for the success of deep models?

- Better design of the neural networks
- Large scale training dataset
- Available computing power
- All of the above

Which of the following statement is True for the success of deep models?

- Better design of the neural networks
- Large scale training dataset
- Available computing power
- All of the above

Brief review of convolutional computations

- Brief review of convolutional computations
- Convolutional Neural Networks

- Brief review of convolutional computations
- Convolutional Neural Networks
 - LeNet (first conv nets)

- Brief review of convolutional computations
- Convolutional Neural Networks
 - LeNet (first conv nets)
 - AlexNet

- Brief review of convolutional computations
- Convolutional Neural Networks
 - LeNet (first conv nets)
 - AlexNet
- PyTorch demo

Acknowledgement:

Some of the slides in these lectures have been adapted/borrowed from materials developed by Yin Li (https://happyharrycn.github.io/CS540-Fall20/schedule/), Alex Smola and Mu Li:

https://courses.d2l.ai/berkeley-stat-157/index.html

