

CS 540 Introduction to Artificial Intelligence Reinforcement Learning and Search Summary

Josiah Hanna University of Wisconsin-Madison

December 9, 2021

Slides created by Fred Sala; edited by Josiah Hanna

Announcements

- Thank you!
- Homeworks:
 - HW10 due Tuesday
- Office Hours: Today, 12:30-1:30pm
- Final Exam Rescheduling
- Course Evaluation Survey
- Class roadmap:

Thursday, December 9	RL + Search Summary
Tuesday, December 14	AI in the Real World

Outline

- Review of reinforcement learning
 - MDPs, value functions, value iteration, Q-learning
- Search Review

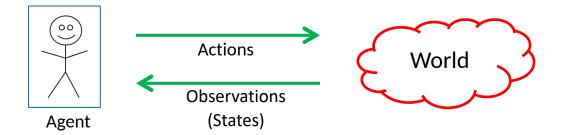
Uninformed/informed search, optimization

- Games Review
 - Equilibrium, minimax search

Building the Theoretical Model

Basic setup:

- Set of states, S
- Set of actions A



- Information: at time *t*, observe state $s_t \in S$. Get reward r_t
- Agent makes choice $a_t \in A$. State changes to s_{t+1} continue

Goal: find a map from states to actions that maximize rewards.

Markov Decision Process (MDP)

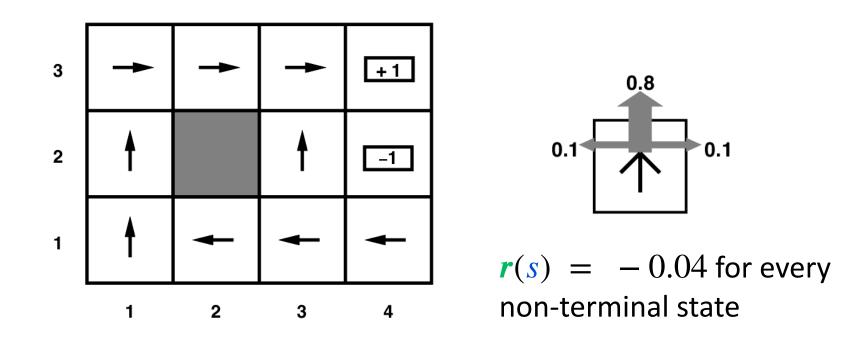
The formal mathematical model:

- State set S. Initial state s_{0.} Action set A
- State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not previous actions or states.
- Reward function: **r**(**s**_t)
- **Policy**: $\pi(s) : S \to A$ action to take at a particular state.

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast



Defining the Optimal Policy

For policy π , **expected utility** over all possible state sequences from s_0 produced by following that policy:

$$V^{\pi}(s_0) = \sum_{\substack{\text{sequences} \\ \text{starting from } s_0}} P(\text{sequence}) U(\text{sequence})$$

Called the value function (for π , s_0)

Discounting Rewards

One issue: these are infinite series. **Convergence**?

• One Solution

$$U(s_0, s_1...) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + ... = \sum_{t \ge 0} \gamma^t r(s_t)$$

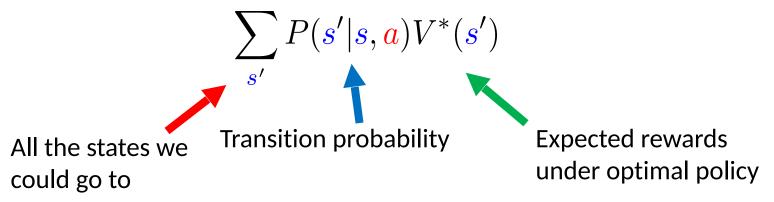
- Discount factor γ between 0 and 1
 - Set according to how important present is vs future
 - Note: has to be less than 1 for convergence

Values and Policies

Now that $V^{\pi}(s_0)$ is defined what *a* should we take?

- First, set V*(s) to be expected utility for **optimal** policy from s
- What's the expected utility of an action?

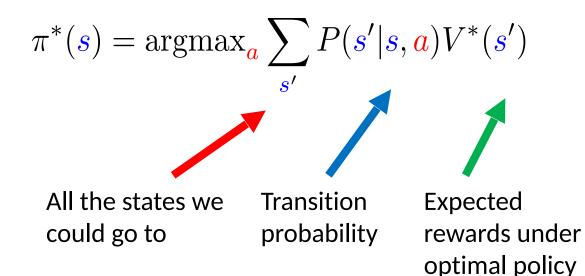
– Specifically, action a in state s?

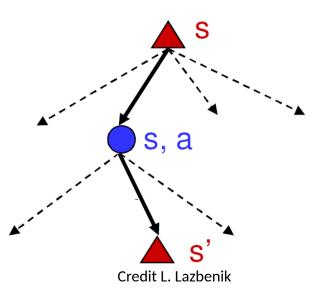


Obtaining the Optimal Policy

We know the expected utility of an action.

• So, to get the optimal policy, compute





Bellman Equation

Let's walk over one step for the value function:

$$V^{*}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V^{*}(s')$$
Current state reward Discounted expected future rewards

• Bellman: inventor of dynamic programming

The Value Iteration Algorithm

Q: how do we find $V^*(s)$?

- Why do we want it? Can use it to get the best policy
- Know: reward **r**(**s**), transition probability P(**s**' | **s**,**a**)
- Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with $V_0(s)=0$. Then, update

$$V_{i+1}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V_i(s')$$

Break & Quiz

Q 1.1 Consider an MDP with 2 states $\{A, B\}$ and 2 actions: "stay" at current state and "move" to other state. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. What is the optimal policy $\pi(A)$ and $\pi(B)$? What are $V^*(A)$, $V^*(B)$?

- A. Stay, Stay, 1/(1-γ), 1
- B. Stay, Move, 1/(1-γ), 1/(1-γ)
- C. Move, Move, 1/(1-γ), 1
- D. Stay, Move, 1/(1-γ), γ/(1-γ)

Break & Quiz

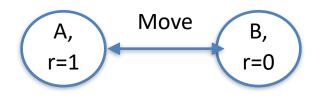
Q 1.1 Consider an MDP with 2 states $\{A, B\}$ and 2 actions: "stay" at current state and "move" to other state. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. What is the optimal policy $\pi(A)$ and $\pi(B)$? What are $V^*(A)$, $V^*(B)$?

- A. Stay, Stay, 1/(1-γ), 1
- B. Stay, Move, 1/(1-γ), 1/(1-γ)
- C. Move, Move, 1/(1-γ), 1
- D. Stay, Move, 1/(1-γ), γ/(1-γ)

Break & Quiz

Q 1.1 Consider an MDP with 2 states {*A*, *B*} and 2 actions: "stay" at current state and "move" to other state. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. What is the optimal policy $\pi(A)$ and $\pi(B)$? What are $V^*(A)$, $V^*(B)$?

- A. Stay, Stay, 1/(1-γ), 1
- B. Stay, Move, 1/(1-γ), 1/(1-γ)
- C. Move, Move, 1/(1-γ), 1



D. Stay, Move, 1/(1-γ), γ/(1-γ) Note: want to stay at A, if at B, move to A. Starting at A, sequence A,A,A,... rewards 1, γ, γ²,.... Start at B, sequence B,A,A,... rewards 0, γ, γ²,.... Sums to 1/(1-γ), γ/(1-γ).

Q-Learning

What if we don't know transition probability P(s'|s,a)?

- Need a way to learn to act without it.
- Q-learning: get an action-utility function Q(s,a) that tells us the value of doing a in state s
- Note: $V^*(s) = \max_a Q(s,a)$
- Now, we can just do $\pi^*(s) = \arg \max_a Q(s, a)$

– But need to estimate Q!

Q-Learning Iteration

How do we get Q(*s*,*a*)?

- Similar iterative procedure
- In state s, take action a, observe r(s), and next state:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r(s_t) + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

Learning rate

Idea: combine old value and new estimate of future value. Note: Policy derived from Q; take action with maximal action-value.

Exploration Vs. Exploitation

General question!

• **Exploration:** take an action with unknown consequences

– Pros:

- Get a more accurate Q function
- Discover higher-reward states than the ones found so far
- Cons:
 - When exploring, not maximizing your utility
 - Something bad might happen
- **Exploitation:** go with the best strategy found so far

– Pros:

- Maximize reward as reflected in the current utility estimates
- Avoid bad stuff
- Cons:
 - Might also prevent you from discovering the true optimal strategy

Q-Learning: Epsilon-Greedy Policy

How to **explore**?

With some 0<ε<1 probability, take a random action at each state, or else the action with highest Q(s,a) value.

$$a = \begin{cases} \operatorname{argmax}_{a \in A} Q(s, a) & \operatorname{uniform}(0, 1) > \epsilon \\ \operatorname{random} a \in A & \operatorname{otherwise} \end{cases}$$

SARSA

An alternative:

• Just use the next action, no max over actions:

 $Q(\mathbf{s}_t, \mathbf{a}_t) \leftarrow Q(\mathbf{s}_t, \mathbf{a}_t) + \alpha[r(\mathbf{s}_t) + \gamma Q(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) - Q(\mathbf{s}_t, \mathbf{a}_t)]$

Learning rate Action actually taken at next step

- Called state-action-reward-state-action (SARSA)
- Can use with epsilon-greedy policy
- Slightly different convergence than Q-learning unless epsilon reduced over time.

Q-Learning Details

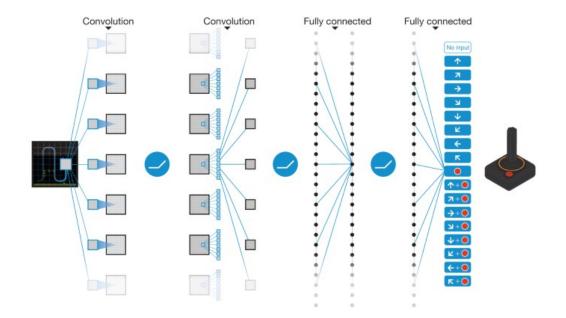
Note: if we have a **terminal** state, the process ends

- An **episode**: a sequence of states ending at a terminal state
- Want to run on many episodes
- Slightly different Q-update for terminal states (see homework!)



Deep Q-Learning

How do we get Q(*s*,*a*) with a large number of states?



Mnih et al, "Human-level control through deep reinforcement learning"

Deep Q-Learning

How do we get Q(*s*,*a*) with a large number of states?

- Function approximation!
- Deep Q-learning uses a neural network to approximate Q(s,a)
- Similar to regression using (s, a) as input and $y = r(s) + \gamma \max_{a'} Q(s', a')$ as output.
- Loss function: $\mathscr{L}(\theta) = (y Q_{\theta}(s, a))^2$

DQN Pseudocode

1. Initialize replay memory, D, and action-value neural network, $Q_{ heta}$.

- 2. $Q_{\text{target}} \leftarrow Q_{\theta}$
- 3. For episode =1,M do:
 - 1. Initialize s_t = s_0
 - 2. For t=1,T do:
 - 1. Select a_t with epsilon greedy action selection
 - 2. Take action a_t and observe s' and reward.
 - 3. Add (s_t, a_t , s', r) to replay memory D
 - 4. Sample minibatch of (s,a,s',r) tuples from D.
 - 5. For each tuple in minibatch, set $y = r(s) + \gamma \max_{a'} Q_{target}(s', a')$
 - 6. Perform gradient descent on $\mathscr{L}(\theta) = (y Q_{\theta}(s, a))^2$
 - 7. Every k steps update target Q network: $Q_{\text{target}} \leftarrow Q_{\theta}$

Summary of RL

- Reinforcement learning setup
- Mathematical formulation: MDP
- Value functions & the Bellman equation
- Value iteration
- Q-learning

Search and RL Review

- Search
 - Uninformed vs Informed
 - Optimization
- Games
 - Minimax search
- Reinforcement Learning
 - MDPs, value iteration, Q-learning, SARSA

Uninformed vs Informed Search

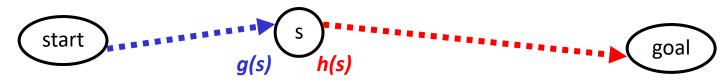
Uninformed search (all of what we saw). Know:

- Path cost *g*(*s*) from start to node *s*
- Successors.

goal

Informed search. Know:

- All uninformed search properties, plus
- Heuristic h(s) from s to goal

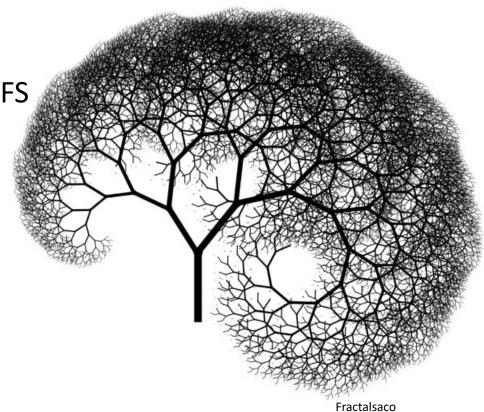


Uninformed Search: Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS
- Properties:
 - Complete
 - Optimal (if edge cost 1)
 - Time O(b^d)
 - Space O(bd)

A good option!

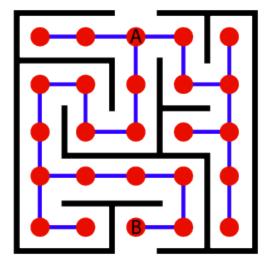


Informed Search: A* Search

- A*: Expand best *g(s)* + *h(s)*, with one requirement
- Demand that $h(s) \le h^*(s)$

- If heuristic has this property, "admissible"
 - Optimistic! Never over-estimates

- Still need $h(s) \ge 0$
 - Negative heuristics can lead to strange behavior



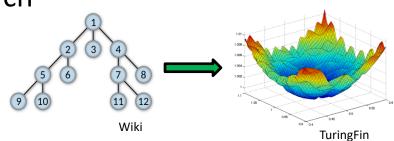
Search vs. Optimization

Before: wanted a path from start state to goal state

• Uninformed search, informed search

New setting: optimization

• States *s* have values *f*(*s*)



- Want: s with optimal value f(s) (i.e, optimize over states)
- Challenging setting: too many states for previous search approaches, but maybe not a continuous function for SGD.

Hill Climbing Algorithm

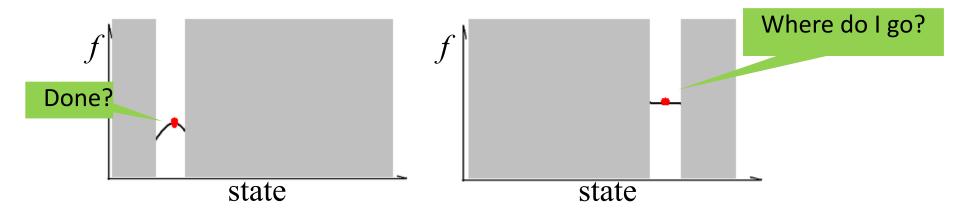
Pseudocode:

- 1. Pick initial state *s*
- 2. Pick t in **neighbors**(s) with the largest f(t)
- 3. if $f(t) \le f(s)$ THEN stop, return s
- 4. $s \leftarrow t$. goto 2.

What could happen? Local optima!

Hill Climbing: Local Optima

Note the **local optima**. How do we handle them?



Simulated Annealing

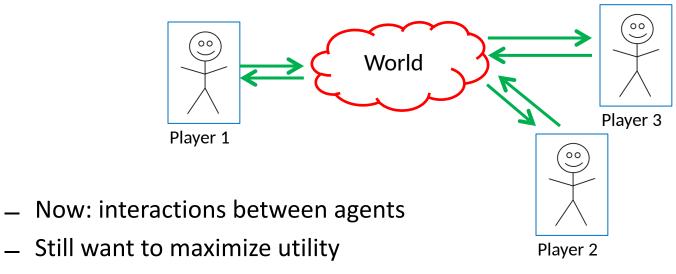
A more sophisticated optimization approach.

- Idea: move quickly at first, then slow down
- Pseudocode:

Pick initial state s For k = 0 through k_{max} : $T \leftarrow temperature((k+1)/k_{max})$ The interesting bit Pick a random neighbor, $t \leftarrow neighbor(s)$ If $f(s) \leq f(t)$, then $s \leftarrow t$ Else, with prob. P(f(s), f(t), T) then $s \leftarrow t$ **Output**: the final state s

Games Setup

Games setup: multiple agents



– **Strategic** decision making.

Equilibrium

*a** is an equilibrium if all the players do not have an incentive to **unilaterally deviate**

$$u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*) \quad \forall a_i \in A_i$$

- All players dominant strategies -> equilibrium
- Converse doesn't hold (don't need dominant strategies to get an equilibrium)

Pure and Mixed Strategies

So far, all our strategies are deterministic: "pure"

• Take a particular action, no randomness

Can also randomize actions: "mixed"

• Assign probabilities x_i to each action

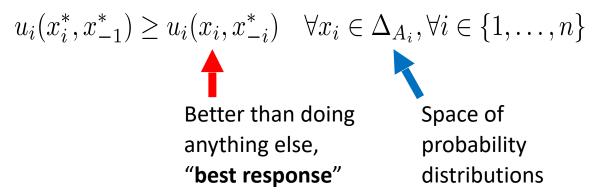
$$x_i(a_i)$$
, where $\sum_{a_i \in A_i} x_i(a_i) = 1, x_i(a_i) \ge 0$

• Note: have to now consider **expected rewards**

Nash Equilibrium

Consider the mixed strategy $x^* = (x_1^*, ..., x_n^*)$

• This is a Nash equilibrium if



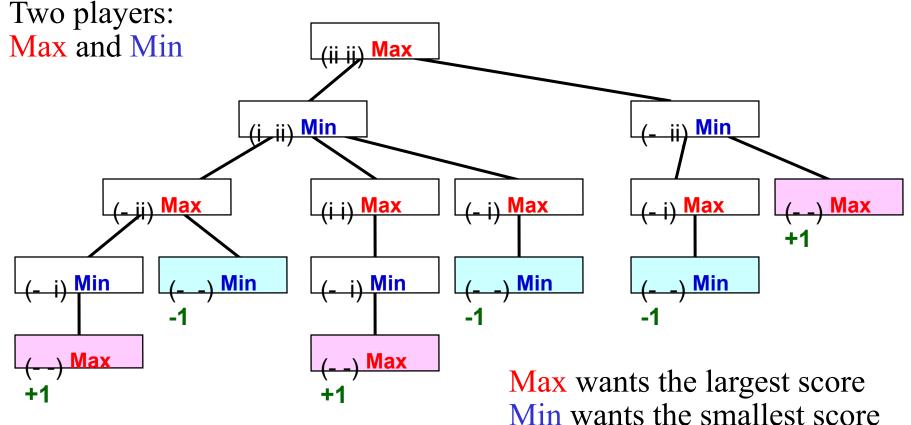
 Intuition: nobody can increase expected reward by changing only their own strategy. A type of solution!

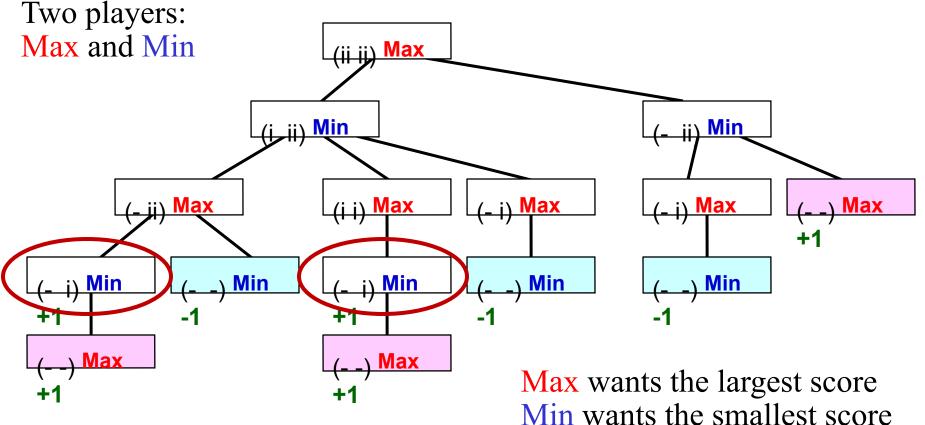
Minimax Value

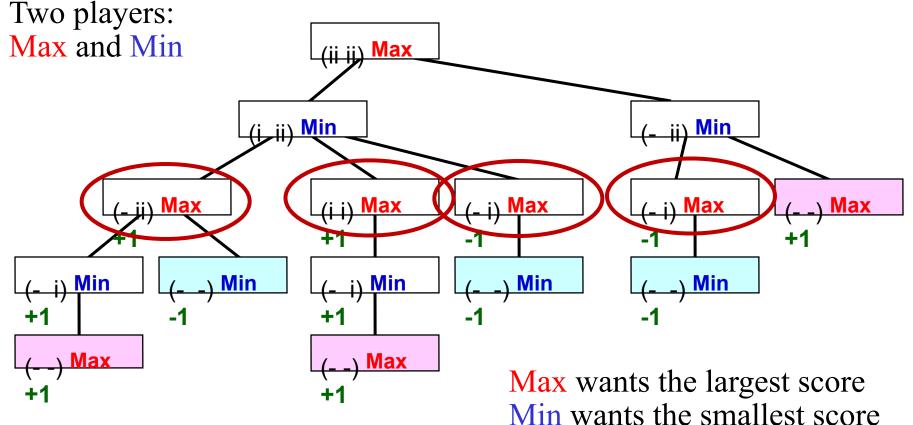
Also called game-theoretic value.

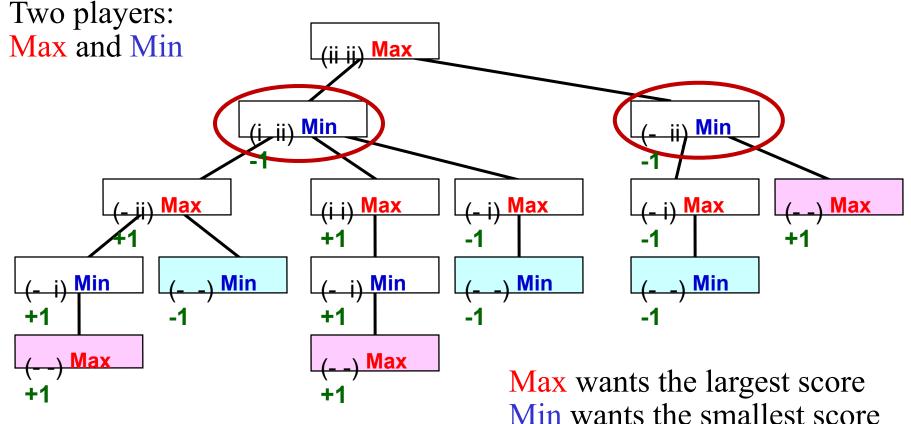
- Score of terminal node if both players play optimally.
- Computed bottom up; basically search

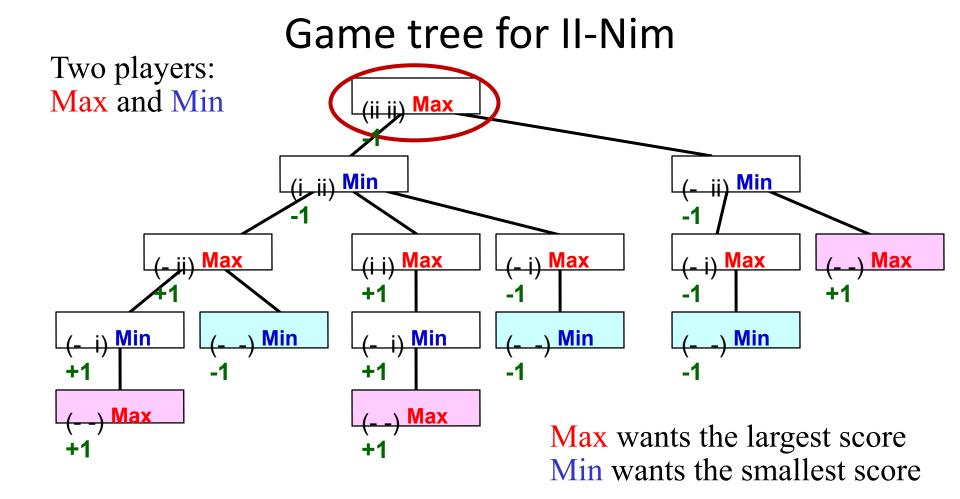
• Let's see this for example game

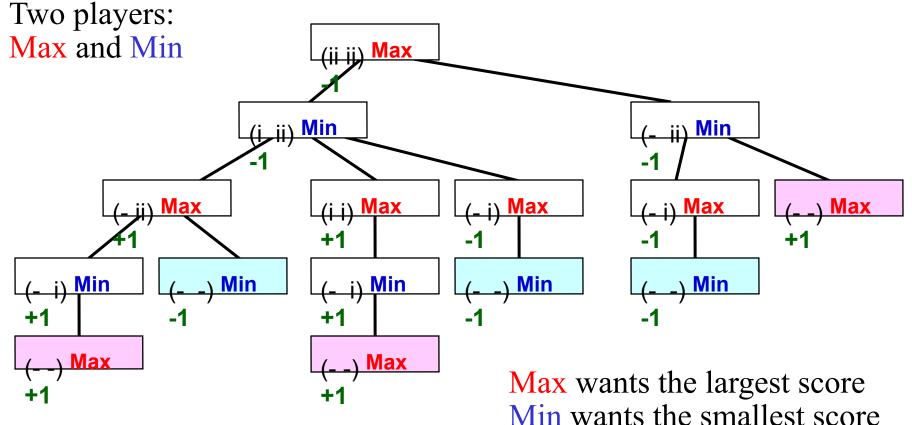


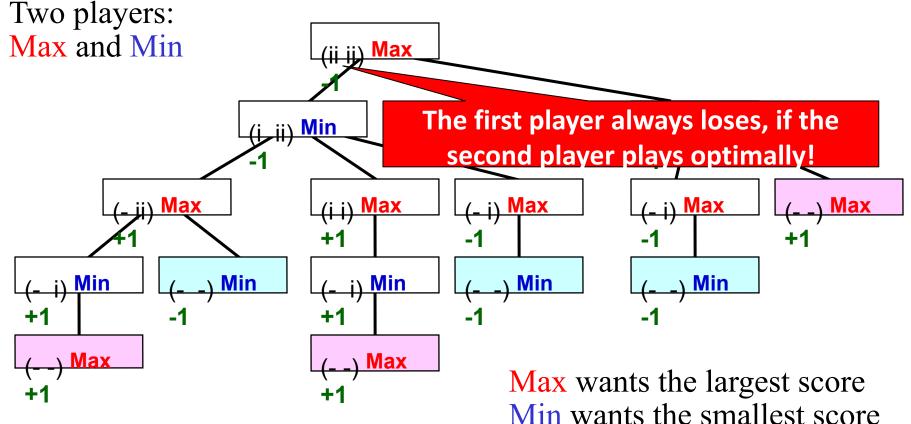












Minimax Search

Note that long games yield huge computation

- To deal with this: limit *d* for the search depth
- **Q**: What to do at depth *d*, but no termination yet?
 - A: Use a heuristic evaluation function *e(x)*

Acknowledgements: Based on slides from Yin Li, Jerry Zhu, Fred Sala, Svetlana Lazebnik, Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein