
CS 540 Introduction to Artificial Intelligence
Reinforcement Learning and Search Summary

Josiah Hanna

University of Wisconsin-Madison

December 9, 2021
Slides created by Fred Sala; edited by Josiah Hanna

Announcements

• Thank you!

• Homeworks:

– HW10 due Tuesday

• Office Hours: Today, 12:30-1:30pm

• Final Exam Rescheduling

• Course Evaluation Survey

• Class roadmap:

Thursday, December 9 RL + Search Summary

Tuesday, December 14 AI in the Real World

Outline

• Review of reinforcement learning

– MDPs, value functions, value iteration, Q-learning

• Search Review

– Uninformed/informed search, optimization

• Games Review

– Equilibrium, minimax search

Building the Theoretical Model

Basic setup:

• Set of states, S

• Set of actions A

• Information: at time t, observe state st ∈ S. Get reward rt

• Agent makes choice at ∈ A. State changes to st+1, continue

Goal: find a map from states to actions that maximize rewards.

World

Agent

Actions

Observations

(States)

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:

• State set S. Initial state s0. Action set A

• State transition model:

– Markov assumption: transition probability only depends on st and at,

and not previous actions or states.

• Reward function: r(st)

• Policy: action to take at a particular state.

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

 for every
non-terminal state
𝒓(𝑠) = − 0.04

Defining the Optimal Policy

For policy π, expected utility over all possible state
sequences from produced by following that policy:

Called the value function (for π,)

𝑠0

𝑠0

𝑉 𝜋(𝑠0) = ∑sequences

starting from 𝑠0

𝑃(sequence)𝑈(sequence)

Discounting Rewards

One issue: these are infinite series. Convergence?

• One Solution

• Discount factor γ between 0 and 1

– Set according to how important present is vs future

– Note: has to be less than 1 for convergence

Values and Policies

Now that is defined what a should we take?

• First, set V*(s) to be expected utility for optimal policy from s

• What’s the expected utility of an action?

– Specifically, action a in state s?

𝑉 𝜋(𝑠0)

All the states we
could go to

Transition probability Expected rewards
under optimal policy

Obtaining the Optimal Policy

We know the expected utility of an action.

• So, to get the optimal policy, compute

All the states we
could go to

Transition
probability

Expected
rewards under
optimal policy

Credit L. Lazbenik

Bellman Equation

Let’s walk over one step for the value function:

• Bellman: inventor of dynamic programming

Discounted expected
future rewards

Current state
reward

The Value Iteration Algorithm

Q: how do we find V*(s)?

• Why do we want it? Can use it to get the best policy

• Know: reward r(s), transition probability P(s’|s,a)

• Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0. Then, update

Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current state and
“move” to other state. Let r be the reward function such that r(A) = 1, r(B) = 0. Let 𝛾 be

the discounting factor. What is the optimal policy (A) and ? What are 𝑉*(𝐴), 𝑉*(B)?

• A. Stay, Stay, 1/(1-𝛾), 1

• B. Stay, Move, 1/(1-𝛾), 1/(1-𝛾)

• C. Move, Move, 1/(1-𝛾), 1

• D. Stay, Move, 1/(1-𝛾), 𝛾/(1-𝛾)

𝜋 𝜋(𝐵)

Break & Quiz

Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current state and
“move” to other state. Let r be the reward function such that r(A) = 1, r(B) = 0. Let 𝛾 be

the discounting factor. What is the optimal policy (A) and ? What are 𝑉*(𝐴), 𝑉*(B)?

• A. Stay, Stay, 1/(1-𝛾), 1

• B. Stay, Move, 1/(1-𝛾), 1/(1-𝛾)

• C. Move, Move, 1/(1-𝛾), 1

• D. Stay, Move, 1/(1-𝛾), 𝛾/(1-𝛾)

𝜋 𝜋(𝐵)

Break & Quiz

Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current state and “move” to other
state. Let r be the reward function such that r(A) = 1, r(B) = 0. Let 𝛾 be the discounting factor. What is

the optimal policy (A) and ? What are 𝑉*(𝐴), 𝑉*(B)?

• A. Stay, Stay, 1/(1-𝛾), 1

• B. Stay, Move, 1/(1-𝛾), 1/(1-𝛾)

• C. Move, Move, 1/(1-𝛾), 1

• D. Stay, Move, 1/(1-𝛾), 𝛾/(1-𝛾) Note: want to stay at A, if at B, move to A. Starting
at A, sequence A,A,A,… rewards 1, 𝛾, 𝛾2,…. Start at B, sequence B,A,A,… rewards
0, 𝛾, 𝛾2,…. Sums to 1/(1-𝛾), 𝛾/(1-𝛾).

𝜋 𝜋(𝐵)

Break & Quiz

A,
r=1

B,
r=0

Move

Q-Learning

What if we don’t know transition probability P(s’|s,a)?

• Need a way to learn to act without it.

• Q-learning: get an action-utility function Q(s,a) that tells us

the value of doing a in state s

• Note: V*(s) = maxa Q(s,a)

• Now, we can just do

– But need to estimate Q!

𝜋∗(𝑠) = arg max𝑎𝑄(𝑠, 𝑎)

Q-Learning Iteration

How do we get Q(s,a)?

• Similar iterative procedure

• In state s, take action a, observe r(s), and next state:

Idea: combine old value and new estimate of future value.

Note: Policy derived from Q; take action with maximal action-
value.

Learning rate

Exploration Vs. Exploitation
General question!

• Exploration: take an action with unknown consequences

– Pros:

• Get a more accurate Q function

• Discover higher-reward states than the ones found so far

– Cons:

• When exploring, not maximizing your utility

• Something bad might happen

• Exploitation: go with the best strategy found so far

– Pros:

• Maximize reward as reflected in the current utility estimates

• Avoid bad stuff

– Cons:

• Might also prevent you from discovering the true optimal strategy

Q-Learning: Epsilon-Greedy Policy

How to explore?

• With some 0<ε<1 probability, take a random action at each

state, or else the action with highest Q(s,a) value.

SARSA

An alternative:

• Just use the next action, no max over actions:

• Called state–action–reward–state–action (SARSA)

• Can use with epsilon-greedy policy

• Slightly different convergence than Q-learning unless epsilon

reduced over time.

Learning rateLearning rateLearning rate Action actually taken at next step

Q-Learning Details

Note: if we have a terminal state, the process ends

• An episode: a sequence of states ending at a terminal state

• Want to run on many episodes

• Slightly different Q-update for terminal states (see homework!)

Deep Q-Learning

How do we get Q(s,a) with a large number of states?

Mnih et al, "Human-level control through deep reinforcement learning"

Deep Q-Learning

How do we get Q(s,a) with a large number of states?

• Function approximation!

• Deep Q-learning uses a neural network to

approximate Q(s,a)

• Similar to regression using as input and
 as output.

• Loss function:

(s, a)
y = r(s) + γ max

a′￼

Q(s′￼, a′￼)

ℒ(θ) = (y − Qθ(s, a))2

1. Initialize replay memory, D, and action-value neural network, .

2.

3. For episode =1,M do:

1. Initialize s_t = s_0

2. For t=1,T do:

1. Select with epsilon greedy action selection

2. Take action and observe s’ and reward.

3. Add (s_t, , s’, r) to replay memory D

4. Sample minibatch of (s,a,s’,r) tuples from D.

5. For each tuple in minibatch, set

6. Perform gradient descent on

7. Every k steps update target Q network:

Qθ
Q𝚝𝚊𝚛𝚐𝚎𝚝 ← Qθ

at
at

at

y = r(s) + γ max
a′￼

Q𝚝𝚊𝚛𝚐𝚎𝚝(s′￼, a′￼)

ℒ(θ) = (y − Qθ(s, a))2

Q𝚝𝚊𝚛𝚐𝚎𝚝 ← Qθ

DQN Pseudocode

Summary of RL

• Reinforcement learning setup

• Mathematical formulation: MDP

• Value functions & the Bellman equation

• Value iteration

• Q-learning

Search and RL Review

• Search

– Uninformed vs Informed

– Optimization

• Games

– Minimax search

• Reinforcement Learning

– MDPs, value iteration, Q-learning, SARSA

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

• Path cost g(s) from start to node s

• Successors.

Informed search. Know:

• All uninformed search properties, plus

• Heuristic h(s) from s to goal

start s
goal

g(s)

start s
goal

g(s) h(s)

Fractalsaco

Uninformed Search: Iterative Deepening DFS

Repeated limited DFS

• Search like BFS, fringe like DFS

• Properties:

– Complete

– Optimal (if edge cost 1)

– Time O(bd)

– Space O(bd)

A good option!

Informed Search: A* Search

A*: Expand best g(s) + h(s), with one requirement

• Demand that h(s) ≤ h*(s)

• If heuristic has this property, “admissible”

– Optimistic! Never over-estimates

• Still need h(s) ≥ 0

– Negative heuristics can lead to strange behavior

V. Batoćanin

Search vs. Optimization

Before: wanted a path from start state to goal state

• Uninformed search, informed search

New setting: optimization

• States s have values f(s)

• Want: s with optimal value f(s) (i.e, optimize over states)

• Challenging setting: too many states for previous search

approaches, but maybe not a continuous function for SGD.

Wiki TuringFin

Hill Climbing Algorithm

Pseudocode:

What could happen? Local optima!

1. Pick initial state s

2. Pick t in neighbors(s) with the largest f(t)

3. if f(t) ≤ f(s) THEN stop, return s

4. s ← t. goto 2.

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

Done?

state

f

state

f
Where do I go?

Simulated Annealing

A more sophisticated optimization approach.

• Idea: move quickly at first, then slow down

• Pseudocode:

Pick initial state s

For k = 0 through kmax:

T ← temperature((k+1)/kmax)

Pick a random neighbor, t ← neighbor(s)

If f(s) ≤ f(t), then s ← t

Else, with prob. P(f(s), f (t), T) then s ← t

Output: the final state s

The interesting bit

Games Setup

Games setup: multiple agents

– Now: interactions between agents

– Still want to maximize utility

– Strategic decision making.

World

Player 1

Player 2

Player 3

a* is an equilibrium if all the players do not have an
incentive to unilaterally deviate

• All players dominant strategies -> equilibrium

• Converse doesn’t hold (don’t need dominant

strategies to get an equilibrium)

Equilibrium

So far, all our strategies are deterministic: “pure”

• Take a particular action, no randomness

Can also randomize actions: “mixed”

• Assign probabilities xi to each action

• Note: have to now consider expected rewards

Pure and Mixed Strategies

Consider the mixed strategy x* = (x1*, …, xn*)

• This is a Nash equilibrium if

• Intuition: nobody can increase expected reward by
changing only their own strategy. A type of solution!

Nash Equilibrium

Better than doing
anything else,
“best response”

Space of
probability
distributions

Minimax Value

Also called game-theoretic value.

• Score of terminal node if both players play optimally.

• Computed bottom up; basically search

• Let’s see this for example game

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max (- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min (- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max (- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min
+1

(- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

(- -) Min
-1

(- i) Min
+1

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

Game tree for II-Nim

(ii ii) Max

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

(- ii) Min
-1

(i ii) Min
-1

Game tree for II-Nim

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

(- ii) Min
-1

(i ii) Min
-1

(ii ii) Max
-1

Game tree for II-Nim

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

(- ii) Min
-1

(i ii) Min
-1

(ii ii) Max
-1

Game tree for II-Nim

(ii ii) Max
-1

(i ii) Min
-1

(- ii) Min
-1

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- -) Min
-1

(- i) Min
+1

(- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

The first player always loses, if the
second player plays optimally!

Game tree for II-Nim

Minimax Search

Note that long games yield huge computation

• To deal with this: limit d for the search depth

• Q: What to do at depth d, but no termination yet?

– A: Use a heuristic evaluation function e(x)

Credit: Dana Nau

Acknowledgements: Based on slides from Yin Li, Jerry Zhu, Fred Sala, Svetlana
Lazebnik, Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein

