CS 540 Introductlon to Artificial Intelllgence
Reinforcement Learning and Search Summary

Josiah Hanna
University of Wisconsin-Madison

December 9, 2021
Slides created by Fred Sala; edited by Josiah Hanna

Announcements

Thank you!

Homeworks:
— HW10 due Tuesday
Office Hours: Today, 12:30-1:30pm

Final Exam Rescheduling

Course Evaluation Survey
Class roadmap:

Tuesday, December 14 Al in the Real World

Outline

« Review of reinforcement learning

— MDPs, value functions, value iteration, Q-learning

e Search Review

— Uninformed/informed search, optimization

e Games Review

— Equilibrium, minimax search

Building the Theoretical Model

Basic setup:
@ Actions >
o Set of states, S <
Observations

e Set of actions A Agent (States)

« Information: at time t, observe state s, € S. Get reward r,

« Agent makes choice a, € A. State changes to s,,, continue

Goal: find a map from states to actions that maximize rewards.

A
[

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:

. State set S. Initial state s, Action set A

. State transition model: P(s;.1|s;, a;)

— Markov assumption: transition probability only depends on s, and a,,
and not previous actions or states.

- Reward function: r(s,)

e Policy: 7(s): S — A action to take at a particular state.

ao a1 a9
Sop —>S1 —=> 89 —> ...

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

3 e b e +1 0.8
’ * f - 0.1 0.1
1 f - - -
r(s) = —0.04 for every

1 2 3 4 non-terminal state

Defining the Optimal Policy

For policy i, expected utility over all possible state
sequences from s, produced by following that policy:

V(s))=), P(sequence)U(sequence)

sequences ol

starting from s,

Called the value function (for m, 5

Discounting Rewards

One issue: these are infinite series. Convergence?
e One Solution
U(s0,51--) = 1(s0) +77(s1) + 77 (=) yr(se)
t>0

« Discount factor y between O and 1

— Set according to how important present is vs future
— Note: has to be less than 1 for convergence

Values and Policies

Now that V”(SO) is defined what a should we take?

o First, set V*(s) to be expected utility for optimal policy from s
« What's the expected utility of an action?
— Specifically, action a in state s?

Z P(s'|s,a)V*(s")
s’ A
/7 TN

All the states we Iransition probability Expected rewards
could go to under optimal policy

Obtaining the Optimal Policy

We know the expected utility of an action.

o So, to get the optimal policy, compute

7 (s) = argmax,, Z P(s's,a)V*(s")

S A7
/ y / f
All the stateswe Transition Expected »

.
could go to probability rewards under Creﬁmsbemk
optimal policy

Bellman Equation

Let’s walk over one step for the value function:

V*(s) =1r(s) + va?XZP(S’]s, a)V*(s)
}
| v

Current state Discounted expected .
reward future rewards l’M - W

o Bellman: inventor of dynamic programming

The Value Iteration Algorithm

Q: how do we find V*(s)?

« Why do we want it? Can use it to get the best policy

o Know: reward r(s), transition probability P(s’|s,a)

« Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V,(s)=0. Then, update

Vigi(s) =1 (s) +7m3XZP(3/\SaG)W(3/>

Break & Quiz

Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current state and

“move” to other state. Let r be the reward function such that r(A) = 1, r(B) = 0. Let y be

the discounting factor. What is the optimal policy 7(A) and z(B)? What are V*(A), V*(B)?

A. Stay, Stay, 1/(1-y), 1

B. Stay, Move, 1/(1-y), 1/(1-y)

C. Move, Move, 1/(1-y), 1

D. Stay, Move, 1/(1-y), v/(1-y)

Break & Quiz

Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current state and

“move” to other state. Let r be the reward function such that r(A) = 1, r(B) = 0. Let y be

the discounting factor. What is the optimal policy 7(A) and z(B)? What are V*(A), V*(B)?

A. Stay, Stay, 1/(1-y), 1

B. Stay, Move, 1/(1-y), 1/(1-y)

C. Move, Move, 1/(1-y), 1

D. Stay, Move, 1/(1-y), v/(1-7)

Break & Quiz

Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current state and “move” to other
state. Let r be the reward function such that r(A) = 1, r(B) = 0. Let y be the discounting factor. What is

the optimal policy 7(A) and 7w (B)? What are V*(A), V*(B)?
« A. Stay, Stay, 1/(1-y), 1

Move
« B. Stay, Move, 1/(1-y), 1/(1-y)

« C.Move, Move, 1/(1-y), 1

« D. Stay, Move, 1/(1-y), v/(1-y) Note: want to stay at A, if at B, move to A. Starting
at A, sequence A AA,...rewards 1, y, y2,.... Start at B, sequence B,AA,... rewards
0,7, 72,.... Sums to 1/(1-y), y/(1-y).

Q-Learning

What if we don’t know transition probability P(s’|s,a)?
« Need a way to learn to act without it.

o Q-learning: get an action-utility function Q(s,a) that tells us
the value of doing a in state s

 Note: V*(s) = max, Q(s,a)

. Now, we can just do 77(s) = arg max Q(s, @)

— But need to estimate Q!

Q-Learning Iteration

How do we get Q(s,a)?
o Similar iterative procedure

e In state s, take action a, observe r(s), and next state:

Q(Sta at) — Q(St7 at) + 04[(St) + meC?XQ(St—I—la CL) o Q(Sta at)]

/ g
Learning rate

Idea: combine old value and new estimate of future value.

Note: Policy derived from Q; take action with maximal action-
value.

Exploration Vs. Exploitation

General question!
« Exploration: take an action with unknown consequences

— Pros:
» Get a more accurate Q function
» Discover higher-reward states than the ones found so far
— Cons:
« When exploring, not maximizing your utility
« Something bad might happen
« Exploitation: go with the best strategy found so far

— Pros:

« Maximize reward as reflected in the current utility estimates
« Avoid bad stuff

— Cons:
« Might also prevent you from discovering the true optimal strategy

Q-Learning: Epsilon-Greedy Policy

How to explore?

« With some 0<e<1 probability, take a random action at each
state, or else the action with highest Q(s,a) value.

argmax,c 4 Q(s,a) uniform(0,1) > €
a =
random a € A otherwise

SARSA

An alternative:

Just use the next action, no max over actions:

Q(St, at) — Q(St, at) +v04[(St) + 7Q<St—|—1agt+1) - Q<8t7 @t>]
Learning rate Action actually taken at next step
Called state—action—reward—state—action (SARSA)

Can use with epsilon-greedy policy

Slightly different convergence than Q-learning unless epsilon
reduced over time.

Q-Learning Details

Note: if we have a terminal state, the process ends
« An episode: a sequence of states ending at a terminal state

« Want to run on many episodes
« Slightly different Q-update for terminal states (see homework!)

Deep Q-Learning

How do we get Q(s,a) with a large number of states?

g

Convolution Convolution Fully connected Fully connec t
v v

- v

>

IIII IIII IIII IIII [:::]
SooDooh Coooonn I ooooooo poooooo
o

A Rjee VN] 4 &
+ -0+ 0+1-01+1+ 4 . + >
CELLEEERLEL]]

Mnih et al, "Human-level control through deep reinforcement learning"

Deep Q-Learning

How do we get Q(s,a) with a large number of states?

e Function approximation!

e Deep Q-learning uses a neural network to
approximate Q(s,a)

e Similar to regression using (s, @) as input and
y=r(s)+y max Q(s’, a’) as output.

a

e Loss function: Z£(0) = (y — Qy(s, Cl))z

DQN Pseudocode

1. Initialize replay memory, D, and action-value neural network, Q.

2. Qtarget < Q9

3. For episode =1,M do:
1. Initializes t=s 0
2. Fort=1,T do:
. Select a,with epsilon greedy action selection
. Take action a, and observe s’ and reward.
. Add (s_t, a,, s, r) to replay memory D
. Sample minibatch of (s,a,s’,r) tuples from D.

For each tuple in minibatch, sety = r(s) +y max Oy, ,.4(s", a’)
al

_U'l-l>UJN|—\

o

Perform gradient descent on Z(0) = (y — Qy(s, a))?
7. Every k steps update target Q network: Qtarget «~ Oy

Summary of RL

Reinforcement learning setup
Mathematical formulation: MDP
Value functions & the Bellman equation

Value iteration

Q-learning

Search and RL Review

e Search
— Uninformed vs Informed
— Optimization
« Games
— Minimax search
« Reinforcement Learning
— MDPs, value iteration, Q-learning, SARSA

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

o Path cost g(s) from start to node s

e Successors. y@
@ af(s)

Informed search. Know:

« All uninformed search properties, plus
o Heuristic h(s) from s to goal

Uninformed Search: Iterative Deepening DFS

Repeated limited DFS
« Search like BFS, fringe like DFS

e Properties:
— Complete
— Optimal (if edge cost 1)
— Time O(bd)
— Space O(bd)

A good option!

A BAY

Fractalsaco

Informed Search: A* Search

A*: Expand best g(s) + h(s), with one requirement
« Demand that h(s) = h*(s)

« If heuristic has this property, “admissible”

— Optimistic! Never over-estimates

o Stillneed h(s) =20

— Negative heuristics can lead to strange behavior

V. Batocanin

Search vs. Optimization

Before: wanted a path from start state to goal state

New setting: optimization /1

Uninformed search, informed search

TuringFin

States s have values f{(s)
Want: s with optimal value f{(s) (i.e, optimize over states)

Challenging setting: too many states for previous search
approaches, but maybe not a continuous function for SGD.

Hill Climbing Algorithm

Pseudocode:

Pick initial state s
Pick t in neighbors(s) with the largest f(t)

if f(t) < f(s) THEN stop, return s
s < t. goto 2.

>

h wWNE

What could happen? Local optimal

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

Simulated Annealing

A more sophisticated optimization approach.

o ldea: move quickly at first, then slow down
o Pseudocode:

Pick initial state s
For k =0 through k__.:

T & temperature((k+1)/k
The interesting bit Pick a random neighbor, t & neighbor(s)

), ffls) < f(t), then s & t
Else, with prob. P(f(s), f(t), T) thens & t
Output: the final state s

max)

Games Setup

Games setup: multiple agents

e

Player 3
Player 1 @
— Now: interactions between agents g!
— Still want to maximize utility Player 2

— Strategic decision making.

Equilibrium

a* is an equilibrium if all the players do not have an
incentive to unilaterally deviate

wi(a;,a” ;) > ui(a;,a”;) Ya; € A

—1

« All players dominant strategies -> equilibrium

e Converse doesn’t hold (don’t need dominant
strategies to get an equilibrium)

Pure and Mixed Strategies

So far, all our strategies are deterministic: “pure”

« Take a particular action, no randomness

Can also randomize actions: “mixed”

« Assign probabilities x; to each action

ri(a;), where Z zi(a;) = 1,2;(a;) >0
a; EA;

« Note: have to now consider expected rewards

Nash Equilibrium

Consider the mixed strategy x* = (x.*, ..., x_*)

e Thisis a Nash equilibrium if

wi(xr,xt) > ui(xg,2”;) Vo, € Ag,Vie{l,... ,n}

—1

A R

I \
Better than doing Space of
anything else, probability
“best response” distributions

« Intuition: nobody can increase expected reward by
changing only their own strategy. A type of solution!

Minimax Value

Also called game-theoretic value.

« Score of terminal node if both players play optimally.

« Computed bottom up; basically search

()
&
q®)
o]0]
£
Q.
=
©
x
()]
| -
O
4
2
-
)
()
)
m
IS
i)
Q
-
(

Game tree for lI-Nim

Two players:

Max and Min 1y Max
-Min (_ i Min\
(- ii) Max (i i\ Max (- i}y Max (- i}y Max (. .\ Max
\ '] \" "/ \ "/ \ "/ \]
/ \ »
(—_i\ Min (. .\ Min (—_i\ Min (. .\ Min (. .\ Min
\ v \] \ v \] \]
-1 -1 -1
(_ \ Max (. .\ Max

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim
Two players:

Max and Min 1y Max
-\ Min (_ i) Min\
(- ii) Max (i i\ Max (- i}y Max (- i}y Max (. .\ Max
\ '] \" "/ \ "/ \ "/ \]
\ .\\ +1
Min (= i) IV-IIn/ (. Y\ Min (. Y Min
\ v \] \]

-1 -1

(_ \ Max (. .\ Max
\) 7

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim
Two players:

Max and Min .y Max

Max wants the largest score
Min wants the smallest score

Game tree for lI-Nim

Two players:
Max and Min

(- i} Max
\ "
A

(-)} Min (- -} Min
\ '] \ 7
+1 -1
) Max () Max
+1 +1 Max wants the largest score

Min wants the smallest score

Game tree for lI-Nim

Two players:
Max and Min M)

Min (-ji) Min
1 1] TN
(- ii) Max (i i\ Max (- i}y Max (- i}y Max (. .\ Max
\ '] \" "/ \ "/ \ "/ \]
AN\ +1 1 1 +1
(—_i\ Min (. .\ Min (—_i\ Min (. .\ Min (- Min
\ v \] \ v \] \]
+1 -1 +1 -1 -1
(_ \ Max (. .\ Max

Max wants the largest score
Min wants the smallest score

Game tree for lI-Nim

Two players:

Max and Min oy Max
"y Min (_ i} Min
-1 -1 \
(i1} Max (i i)y Max (- i\ Max (- i\ Max () Max
\ '] \" "/ \ "/ \ "/ \]
AN\ +1 -1 -1 +1
(- i\ Min (- Min (- i\ Min (- Min (. .\ Min
\ v \] \ v \] \]
+1 -1 +1 -1 -1
(. Max (. .\ Max

Max wants the largest score
Min wants the smallest score

Game tree for lI-Nim

Two players:
Max and Min

(- i} Max
\ "
A
(-)} Min (- -} Min
\ '] \ 7
+1 -1
_HMAL (-) Max
+1 +1 Max wants the largest score

Min wants the smallest score

Minimax Search

Note that long games yield huge computation

o To deal with this: limit d for the search depth
« Q: What to do at depth d, but no termination yet?

— A: Use a heuristic evaluation function e(x)

function MINIMAX(x, d) returns an estimate of x’s utility value
inputs: x, current state in game
d, an upper bound on the search depth

if 7 is a terminal state then return Max’s payoff at
else if ¢ = 0 then return ¢(x)
else if it is Max’s move at x then

return max{MINIMAX(y,d—1) : y is a child of x}
else return min{ MINIMAX(y,d—1) : y is a child of x}

Credit: Dana Nau

A P T S SR Ry R AT e
wy U, S i B ey (1 Py P AR o et % WO QR A N

Acknowledgements: Based on slides from Yin Li, Jerry Zhu, Fred Sala, Svetlana
Lazebnik, Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein

