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Announcements

• Homeworks:  
– HW1 due Tuesday (9/21) 

• Class roadmap:

Fundam
entals



From Last Time

• Conditional Prob. & Bayes:  

• Has more evidence.  
– Likelihood is hard---but conditional independence 

assumption

P(A,B) = P(A)P(B)
P(A,B|C) = P(A|C)P(B|C)



Classification

• Expression  

• H: some class we’d like to infer from evidence 
– We know prior P(H) 
– Estimate P(Ei|H) from data! (“training”) 
– Very similar to envelopes problem. Part of HW2



Linear Algebra: What is it good for?

• Everything is a function 
– Multiple inputs and outputs 

• Linear functions 
– y = mx + b 

– Simple, tractable 

• Study of linear functions



In AI/ML Context

Building blocks for all models 
- E.g., linear regression; part of neural networks 

Stanford CS231nHieu Tran

P(Output | Input)



Outline

• Basics: vectors, matrices, operations 

• Dimensionality reduction 

• Principal Components Analysis (PCA)
Lior Pachter



Basics: Vectors

Vectors 
• Many interpretations  
– Physics: magnitude + direction 

– Point in a space 

– List of values (represents information)

“Features” or “Components”



• Dimension 
– Number of values 
– Higher dimensions: richer but more complex 

• AI/ML: often use very high dimensions:  
– Ex: images!

Basics: Vectors

Cezanne Camacho



Basics: Matrices

• Again, many interpretations 
– Represent linear transformations 
– Apply to a vector, get another vector: Ax = y 
– Also, list of vectors 

• Not necessarily square 
– Indexing! 
– Dimensions: #rows x #columns



Basics: Transposition

• Transposes: flip rows and columns 
– Vector: standard is a column. Transpose: row 
– Matrix: go from m x n to n x m



Matrix & Vector Operations

• Vectors 
– Addition: component-wise 

• Commutative 
• Associative 

– Scalar Multiplication 
• Uniform stretch / scaling



Matrix & Vector Operations

• Vector products 
– Inner product (i.e., dot product) 

– Outer product

(1x3)-vector x (3x1)-vector —> Scalar

(3x1)-vector x (1x3)-vector —> (3x3)-matrix



• Inner product defines “orthogonality” 
– If  

• Vector norms: “size”

Matrix & Vector Operations



Matrix & Vector Operations

• Matrices: 
– Addition: Component-wise 
– Commutative! + Associative 

– Scalar Multiplication 
– “Stretching” the linear transformation 



Matrix & Vector Operations

• Matrix-Vector multiply 
– I.e., linear transformation; plug in vector, get another 

vector 
– Each entry in Ax is the inner product of a row of A with x



Matrix & Vector Operations

Ex: feedforward neural networks. Input x.  
• Output of layer k is 

Output of layer k-1: vector

Weight matrix for layer k:  
Note: linear transformation!

Output of layer k: vector

nonlinearity

Wikipedia



Matrix & Vector Operations

• Matrix multiplication 
– “Composition” of linear transformations 
– Not commutative (in general)! 

– Lots of interpretations

Wikipedia



More on Matrix Operations

Identity matrix: 
– Like “1” 
– Multiplying by it gets back the 

same matrix or vector 

– Rows & columns are the 
“standard basis vectors” 



Break & Quiz

• Q 1.1: What is                               ?  

• A. [-1 1 1]T 

• B. [2 1 1]T 
• C. [1 3 1]T 
• D. [1.5 2 1]T
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Break & Quiz

• Q 1.2: Given matrices 
What are the dimensions of  

• A. n x p 
• B. d x p 
• C. d x n 
• D. Undefined
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Break & Quiz

• Q 1.3: A and B are matrices, neither of which is the 
identity. Is AB = BA? 

• A. Never 
• B. Always 
• C. Sometimes
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More on Matrices: Inverses

• If for A there is a B such that 
– Then A is invertible/nonsingular, B is its inverse 
– Some matrices are not invertible! 

– Usual notation: 



Eigenvalues & Eigenvectors

• For a square matrix A, solutions to  
– v (nonzero) is a vector: eigenvector 
–    is a scalar: eigenvalue 

– Intuition: A is a linear transformation; 
– Can stretch/rotate vectors; 
– E-vectors: only stretched (by e-vals)

Wikipedia



Dimensionality Reduction

• Vectors used to store features 
– Lots of data -> lots of features! 

• Document classification 
– Each doc: thousands of words/millions of bigrams, etc 

• Netflix surveys: 480189 users x 17770 movies



Dimensionality Reduction

Ex: MEG Brain Imaging: 120 locations x 500 time points 
x 20 objects 

• Or any image



Dimensionality Reduction

Reduce dimensions 
• Why?  
– Lots of features redundant  
– Storage & computation costs 

• Goal: take                                          for    
– But, minimize information loss

CreativeBloq



Compression

Examples: 3D to 2D

Andrew Ng



Break & Quiz
Q 2.1: What is the inverse of  

A. : 

B. : 

C. Undefined / A is not invertible
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Break & Quiz
Q 2.2: What are the eigenvalues of  

A. -1, 2, 4 
B. 0.5, 0.2, 1.0 
C. 0, 2, 5 
D. 2, 5, 1
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Break & Quiz
Q 2.3: Suppose we are given a dataset with n=10000 
samples with 100-dimensional binary feature vectors. Our 
storage device has a capacity of 50000 bits. What’s the lower 
compression ratio we can use? 
A. 20X 
B. 100X 
C. 5X 
D. 1X
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Principal Components Analysis (PCA)

• A type of dimensionality reduction approach 
– For when data is approximately lower dimensional



Principal Components Analysis (PCA)

• Goal: find axes of a subspace 
– Will project to this subspace; want to preserve data



Principal Components Analysis (PCA)

• From 2D to 1D: 
– Find a                       so that we maximize “variability” 
– IE,  

– New representations are along this vector (1D!)



Principal Components Analysis (PCA)

• From d dimensions to r dimensions: 
– Sequentially get 
– Orthogonal! 
– Still minimize the projection error 

• Equivalent to “maximizing variability” 

– The vectors are the principal 
components

Victor Powell



PCA Setup

• Inputs 
– Data:  
– Can arrange into  

– Centered! 
• Outputs 
– Principal components  
– Orthogonal!

Victor Powell



PCA Goals

• Want directions/components (unit vectors) so that 
– Projecting data maximizes variance 
– What’s projection?  

• Do this recursively 
– Get orthogonal directions



PCA First Step

• First component, 

• Same as getting



PCA Recursion

• Once we have k-1 components, next? 

• Then do the same thing Deflation



PCA Interpretations

• The v’s are eigenvectors of XTX (Gram matrix) 
– Show via Rayleigh quotient 

• XTX (proportional to) sample covariance matrix 
– When data is 0 mean! 
– I.e., PCA is eigendecomposition of sample covariance 

• Nested subspaces span(v1), span(v1,v2),…,



Lots of Variations

• PCA, Kernel PCA, ICA, CCA 
– Unsupervised techniques to extract structure from high 

dimensional dataset 
• Uses: 
– Visualization 
– Efficiency 
– Noise removal 
– Downstream machine learning use

STHDA



Application: Image Compression

• Start with image; divide into 12x12 patches 

– I.E., 144-D vector 

– Original image:



Application: Image Compression

• 6 most important components (as an image)
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Application: Image Compression

• Project to 6D, 

Compressed Original



Break & Quiz

Q 1.1: What is the projection of [1 2]T onto [0 1]T ?                       

• A. [1 2]T 

• B. [-1 1]T 
• C. [0 0]T 
• D. [0 2]T
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Break & Quiz
Q 1.2: We wish to run PCA on 10-dimensional data in order to 
produce r-dimensional representations. Which is the most 
accurate? 

• A. r ≤ 3 
• B. r < 10 
• C. r ≤ 10 
• D. r ≤ 20
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