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Announcements

• Homeworks: 

– HW1 due Tuesday (9/21)


• Class roadmap:

Fundam
entals



From Last Time

• Conditional Prob. & Bayes: 


• Has more evidence. 

– Likelihood is hard---but conditional independence 

assumption

P(A,B) = P(A)P(B)
P(A,B|C) = P(A|C)P(B|C)



Classification

• Expression 


• H: some class we’d like to infer from evidence

– We know prior P(H)

– Estimate P(Ei|H) from data! (“training”)

– Very similar to envelopes problem. Part of HW2



Linear Algebra: What is it good for?

• Everything is a function

– Multiple inputs and outputs


• Linear functions

– y = mx + b


– Simple, tractable


• Study of linear functions



In AI/ML Context

Building blocks for all models

- E.g., linear regression; part of neural networks 

Stanford CS231nHieu Tran

P(Output | Input)



Outline

• Basics: vectors, matrices, operations


• Dimensionality reduction


• Principal Components Analysis (PCA)
Lior Pachter



Basics: Vectors

Vectors

• Many interpretations 

– Physics: magnitude + direction


– Point in a space


– List of values (represents information)

“Features” or “Components”



• Dimension

– Number of values

– Higher dimensions: richer but more complex


• AI/ML: often use very high dimensions: 

– Ex: images!

Basics: Vectors

Cezanne Camacho



Basics: Matrices

• Again, many interpretations

– Represent linear transformations

– Apply to a vector, get another vector: Ax = y

– Also, list of vectors


• Not necessarily square

– Indexing!

– Dimensions: #rows x #columns



Basics: Transposition

• Transposes: flip rows and columns

– Vector: standard is a column. Transpose: row

– Matrix: go from m x n to n x m



Matrix & Vector Operations

• Vectors

– Addition: component-wise


• Commutative

• Associative


– Scalar Multiplication

• Uniform stretch / scaling



Matrix & Vector Operations

• Vector products

– Inner product (i.e., dot product)


– Outer product

(1x3)-vector x (3x1)-vector —> Scalar

(3x1)-vector x (1x3)-vector —> (3x3)-matrix



• Inner product defines “orthogonality”

– If 


• Vector norms: “size”

Matrix & Vector Operations



Matrix & Vector Operations

• Matrices:

– Addition: Component-wise

– Commutative! + Associative


– Scalar Multiplication

– “Stretching” the linear transformation 



Matrix & Vector Operations

• Matrix-Vector multiply

– I.e., linear transformation; plug in vector, get another 

vector

– Each entry in Ax is the inner product of a row of A with x



Matrix & Vector Operations

Ex: feedforward neural networks. Input x. 

• Output of layer k is 

Output of layer k-1: vector

Weight matrix for layer k: 

Note: linear transformation!

Output of layer k: vector

nonlinearity

Wikipedia



Matrix & Vector Operations

• Matrix multiplication

– “Composition” of linear transformations

– Not commutative (in general)!


– Lots of interpretations

Wikipedia



More on Matrix Operations

Identity matrix:

– Like “1”

– Multiplying by it gets back the 

same matrix or vector


– Rows & columns are the 
“standard basis vectors” 



Break & Quiz

• Q 1.1: What is                               ? 


• A. [-1 1 1]T


• B. [2 1 1]T

• C. [1 3 1]T

• D. [1.5 2 1]T
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Break & Quiz

• Q 1.2: Given matrices

What are the dimensions of 


• A. n x p

• B. d x p

• C. d x n

• D. Undefined
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Break & Quiz

• Q 1.3: A and B are matrices, neither of which is the 
identity. Is AB = BA?


• A. Never

• B. Always

• C. Sometimes
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More on Matrices: Inverses

• If for A there is a B such that

– Then A is invertible/nonsingular, B is its inverse

– Some matrices are not invertible!


– Usual notation: 



Eigenvalues & Eigenvectors

• For a square matrix A, solutions to 

– v (nonzero) is a vector: eigenvector

–    is a scalar: eigenvalue


– Intuition: A is a linear transformation;

– Can stretch/rotate vectors;

– E-vectors: only stretched (by e-vals)

Wikipedia



Dimensionality Reduction

• Vectors used to store features

– Lots of data -> lots of features!


• Document classification

– Each doc: thousands of words/millions of bigrams, etc


• Netflix surveys: 480189 users x 17770 movies



Dimensionality Reduction

Ex: MEG Brain Imaging: 120 locations x 500 time points 
x 20 objects


• Or any image



Dimensionality Reduction

Reduce dimensions

• Why? 

– Lots of features redundant 

– Storage & computation costs


• Goal: take                                          for   

– But, minimize information loss

CreativeBloq



Compression

Examples: 3D to 2D

Andrew Ng



Break & Quiz
Q 2.1: What is the inverse of 


A. :


B. :


C. Undefined / A is not invertible
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Break & Quiz
Q 2.2: What are the eigenvalues of 


A. -1, 2, 4

B. 0.5, 0.2, 1.0

C. 0, 2, 5

D. 2, 5, 1
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Break & Quiz
Q 2.3: Suppose we are given a dataset with n=10000 
samples with 100-dimensional binary feature vectors. Our 
storage device has a capacity of 50000 bits. What’s the lower 
compression ratio we can use?

A. 20X

B. 100X

C. 5X

D. 1X
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Principal Components Analysis (PCA)

• A type of dimensionality reduction approach

– For when data is approximately lower dimensional



Principal Components Analysis (PCA)

• Goal: find axes of a subspace

– Will project to this subspace; want to preserve data



Principal Components Analysis (PCA)

• From 2D to 1D:

– Find a                       so that we maximize “variability”

– IE, 


– New representations are along this vector (1D!)



Principal Components Analysis (PCA)

• From d dimensions to r dimensions:

– Sequentially get

– Orthogonal!

– Still minimize the projection error


• Equivalent to “maximizing variability”


– The vectors are the principal 
components

Victor Powell



PCA Setup

• Inputs

– Data: 

– Can arrange into 


– Centered!

• Outputs

– Principal components 

– Orthogonal!

Victor Powell



PCA Goals

• Want directions/components (unit vectors) so that

– Projecting data maximizes variance

– What’s projection? 


• Do this recursively

– Get orthogonal directions



PCA First Step

• First component,


• Same as getting



PCA Recursion

• Once we have k-1 components, next?


• Then do the same thing Deflation



PCA Interpretations

• The v’s are eigenvectors of XTX (Gram matrix)

– Show via Rayleigh quotient


• XTX (proportional to) sample covariance matrix

– When data is 0 mean!

– I.e., PCA is eigendecomposition of sample covariance


• Nested subspaces span(v1), span(v1,v2),…,



Lots of Variations

• PCA, Kernel PCA, ICA, CCA

– Unsupervised techniques to extract structure from high 

dimensional dataset

• Uses:

– Visualization

– Efficiency

– Noise removal

– Downstream machine learning use

STHDA



Application: Image Compression

• Start with image; divide into 12x12 patches


– I.E., 144-D vector


– Original image:



Application: Image Compression

• 6 most important components (as an image)
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Application: Image Compression

• Project to 6D, 

Compressed Original



Break & Quiz

Q 1.1: What is the projection of [1 2]T onto [0 1]T ?                      


• A. [1 2]T


• B. [-1 1]T

• C. [0 0]T

• D. [0 2]T
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Break & Quiz
Q 1.2: We wish to run PCA on 10-dimensional data in order to 
produce r-dimensional representations. Which is the most 
accurate?


• A. r ≤ 3

• B. r < 10

• C. r ≤ 10

• D. r ≤ 20
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