

CS 540 Introduction to Artificial Intelligence Statistics & Math Review

Josiah Hanna University of Wisconsin-Madison

September 21, 2021

Announcements

- Homeworks:
 - HW2 released after class; due next Tuesday
- Class roadmap:

Date	Topic	Reading materials	Assignments
Thursday, Sept 9	Welcome and Course Overview	Slides	
Tuesday, Sept 14	Probability	Slides	HW 1 Released
Thursday, Sept 16	Linear Algebra and PCA	Slides	
Tuesday, Sept 21	Statistics and Math Review		HW 1 Due, HW 2 Released
Thursday, Sept 23	Introduction to Logic		
Everything below here is tentative and subject to change.			
Tuesday, Sept 28	Natural Language Processing		HW 2 Due, HW 3 Released
Thursday, Sept 30	Machine Learning: Introduction		

Outline

• Finish last lecture: PCA

• Review of probability

• Statistics: sampling & estimation

- A type of dimensionality reduction approach
 - For when data is approximately lower dimensional

- Goal: find **axes** of a subspace
 - Will project to this subspace; want to preserve data

• From 2D to 1D:

- New representations are along this vector (1D!)

- From *d* dimensions to *r* dimensions:
 - Sequentially get $v_1, v_2, \ldots, v_r \in \mathbb{R}^d$
 - Orthogonal!
 - Still minimize the projection error
 - Equivalent to "maximizing variability"
 - The vectors are the principal components

Victor Powell

PCA Setup

- Inputs
 - Data: $x_1, x_2, \ldots, x_n, x_i \in \mathbb{R}^d$
 - Can arrange into $X \in \mathbb{R}^{n \times d}$

– Centered!

$$\frac{1}{n}\sum_{i=1}^{n}x_i = 0$$

Victor Powell

- Outputs
 - Principal components $v_1, v_2, \ldots, v_r \in \mathbb{R}^d$
 - Orthogonal!

PCA Goals

n

i=1

- Want directions/components (unit vectors) so that
 - Projecting data maximizes variance
 - What's projection?

To project *a* onto unit vector *b*,

$$\langle a,b\rangle b \longleftarrow$$
 Direction
Length

$$\langle x_i, v \rangle^2 = \|Xv\|^2$$

PCA Goals

- Want directions/components (unit vectors) so that
 - Projecting data maximizes variance
 - What's projection?

$$\sum_{i=1}^{n} \langle x_i, v \rangle^2 = \|Xv\|^2$$

• Do this **recursively**

– Get orthogonal directions v_1

$$v_1, v_2, \ldots, v_r \in \mathbb{R}^d$$

PCA First Step

• First component,

$$v_1 = \arg \max_{\|v\|=1} \sum_{i=1}^n \langle v, x_i \rangle^2$$
etting

• Same as getting

$$v_1 = \arg \max_{\|v\|=1} \|Xv\|^2$$

PCA Recursion

• Once we have *k*-1 components, next?

$$\hat{X}_k = X - \sum_{i=1}^{k-1} X v_i v_i^T$$
 • Then do the same thing Deflation

$$v_k = \arg \max_{||v||=1} ||\widehat{X}_k v||^2$$

PCA Interpretations

- The v's are eigenvectors of X^TX (Gram matrix)
 - Show via Rayleigh quotient
- *X^TX* (proportional to) sample covariance matrix
 - When data is 0 mean!
 - I.e., PCA is eigendecomposition of sample covariance

Nested subspaces span(v1), span(v1,v2),...,

Lots of Variations

- PCA, Kernel PCA, ICA, CCA
 - Unsupervised techniques to extract structure from high dimensional dataset
- Uses:
 - Visualization
 - Efficiency
 - Noise removal
 - Downstream machine learning use

Application: Image Compression

• Start with image; divide into 12x12 patches

- I.E., 144-D vector

– Original image:

Application: Image Compression

• 6 most important components (as an image)

Application: Image Compression

• Project to 6D,

Compressed

Original

Q 1.1: What is the projection of $[1 2]^{T}$ onto $[0 1]^{T}$?

- A. [1 2][⊤]
- B. [-1 1][⊤]
- C. [0 0][⊤]
- D. [0 2][⊤]

Q 1.1: What is the projection of $[1 2]^{T}$ onto $[0 1]^{T}$?

- A. [1 2][⊤]
- B. [-1 1][⊤]
- C. [0 0][⊤]
- D. [0 2]^T

Q 1.2: We wish to run PCA on 10-dimensional data in order to produce *r*-dimensional representations. Which is the most accurate?

- A. *r* ≤ 3
- B. *r* < 10
- C. *r* ≤ 10
- D. *r* ≤ 20

Q 1.2: We wish to run PCA on 10-dimensional data in order to produce *r*-dimensional representations. Which is the most accurate?

- A. *r* ≤ 3
- B. *r* < 10
- C. *r* ≤ 10
- D. *r* ≤ 20

Probability Review: Outcomes & Events

- Outcomes: possible results of an **experiment**
- Events: subsets of outcomes we're interested in

Ex:
$$\Omega = \{\underbrace{1, 2, 3, 4, 5, 6}_{\text{outcomes}}$$

 $\mathcal{F} = \{\emptyset, \{1\}, \{2\}, \dots, \{1, 2\}, \dots, \Omega\}$
events

Review: Probability Distribution

- We have outcomes and events.
- Now assign probabilities For $E \in \mathcal{F}$, $P(E) \in [0, 1]$

Back to our example: $\mathcal{F} = \underbrace{\{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\}}_{\text{events}}$ $P(\{1, 3, 5\}) = 0.2, P(\{2, 4, 6\}) = 0.8$

Review: Random Variables

- Map outcomes to real values $X: \Omega \to \mathbb{R}$
- Can still work with probabilities:

$$P(X = 3) := P(\{\omega : X(\omega) = 3\})$$

• Cumulative Distribution Function (CDF)

$$F_X(x) := P(X \le x)$$

Review: Expectation & Variance

- Another advantage of RVs are ``summaries''
- Expectation: $E[X] = \sum_{a} a \times P(x = a)$ - The "average"
- Variance: $Var[X] = E[(X E[X])^2]$
 - A measure of spread
- Higher moments: other parametrizations

Review: Conditional Probability

• For when we know something,

Temperature

$$P(X = a | Y = b) = \frac{P(X = a, Y = b)}{P(Y = b)}$$
• Leads to conditional independence
$$P(X, Y | Z) = P(X | Z) P(Y | Z)$$

$$V$$

$$Crime Rate$$

Review: Bayesian Inference

• Conditional Prob. & Bayes:

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1, \dots, E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

- Has more evidence.
 - Likelihood is hard---but conditional independence assumption

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1|H)P(E_2|H)\cdots, P(E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

Review: Classification

• Expression

 $P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1|H)P(E_2|H)\cdots, P(E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$

- *H*: some class we'd like to infer from evidence
 - Estimate prior P(H)
 - _ Estimate $P(E_i|H)$ from data!
 - How?

Samples and Estimation

- Usually, we don't know the distribution (P(X))
 - Instead, we see a bunch of samples

 x_1, x_2, \ldots, x_n

- Typical statistics problem: estimate parameters from samples
 - Estimate probability P(X)
 - Estimate the mean E[X]
 - Estimate parameters $P_{\theta}(X)$

Samples and Estimation

- Typical statistics problem: estimate parameters from samples
 - Estimate probability P(X)
 - Estimate the mean E[X]
 - Estimate parameters $P_{\theta}(X)$
- Example: Bernoulli with parameter *p*
 - Mean E[X] is p

Samples and Estimation

- Typical statistics problem: estimate parameters from samples
 - Estimate probability P(X)
 - Estimate the mean E[X]
 - Estimate parameters $P_{\theta}(X)$

- Example: Neural network
 - Model of $P_{\theta}(X)$ with connection weights as parameters

Examples: Sample Mean

- Bernoulli with parameter *p*
- See samples x_1, x_2, \ldots, x_n
 - Estimate mean with sample mean

$$\hat{\mathbb{E}}[X] = \frac{1}{n} \sum_{i=1}^{n} x_i$$

No different from counting heads

Q 2.1: You see samples of X given by [0,1,1,2,2,0,1,2]. Empirically estimate $E[X^2]$

- A. 9/8
- B. 15/8
- C. 1.5
- D. There aren't enough samples to estimate $E[X^2]$

Q 2.1: You see samples of X given by [0,1,1,2,2,0,1,2]. Empirically estimate $E[X^2]$

- A. 9/8
- B. 15/8
- C. 1.5
- D. There aren't enough samples to estimate $E[X^2]$

Q 2.2: You are empirically estimating P(X) for some random variable X that takes on 100 values. You see 50 samples. How many of your P(X=a) estimates might be 0?

A. None.

- B. Between 5 and 50, exclusive.
- C. Between 50 and 100, inclusive.
- D. Between 50 and 99, inclusive.

Q 2.2: You are empirically estimating P(X) for some random variable X that takes on 100 values. You see 50 samples. How many of your P(X=a) estimates might be 0?

A. None.

- B. Between 5 and 50, exclusive.
- C. Between 50 and 100, inclusive.
- D. Between 50 and 99, inclusive.

Estimation Theory

- How do we know that the sample mean is a good estimate of the true mean?
 - Concentration inequalities

$$P(|\mathbb{E}[X] - \hat{\mathbb{E}}[X]| \ge t) \le \exp(-2nt^2)$$

Frue Mean Estimate # Sa

- Law of large numbers
- Central limit theorems, etc.

Wolfram Demo

Estimation Error

- With finite samples, likely error in estimate.
- Mean Squared Error

$$MSE[\hat{\theta}] = E[(\hat{\theta} - \theta)^2]$$
 Estimate True Value

• Bias / Variance Decomposition

$$MSE[\hat{\theta}] = E[(\hat{\theta} - E[\hat{\theta}])^2] + (E[\hat{\theta}] - \theta)^2$$

Variance Bias Squared

Wikipedia: Bias-variance tradeoff

Association vs Causation

- Conditional distributions give associational relationships
 - P(Y|X) is not necessarily the causal effect of X on Y

Total revenue generated by arcades

correlates with

Computer science doctorates awarded in the US

Correlation: 98.51% (r=0.985065)

