

CS 540 Introduction to Artificial Intelligence Logic

Josiah Hanna University of Wisconsin-Madison

September 23, 2021

Announcements

• Homeworks:

HW2 due Tuesday before class

• Roadmap

Date	Торіс	Reading materials	Assignments
Thursday, Sept 9	Welcome and Course Overview	Slides	
Tuesday, Sept 14	Probability	Slides	HW 1 Released
Thursday, Sept 16	Linear Algebra and PCA	Slides	
Tuesday, Sept 21	Statistics and Math Review	Slides	HW 1 Due, HW 2 Released
Thursday, Sept 23	Introduction to Logic	Slides	
Tuesday, Sept 28	Natural Language Processing		HW 2 Due, HW 3 Released
Thursday, Sept 30	Machine Learning: Introduction		

Homework Review: Classification

• Expression

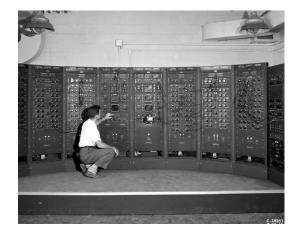
 $P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1|H)P(E_2|H)\cdots, P(E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$

- *H*: some class we'd like to infer from evidence
 - Estimate prior P(H)
 - _ Estimate $P(E_i|H)$ from data!
 - Empirical count-based estimates

Logic & Al

Why are we studying logic?

- Traditional approach to AI ('50s-'80s)
 - "Symbolic AI"
 - The Logic Theorist 1956
 - Proved a bunch of theorems!
- Logic also the language of:
 - Knowledge rep., databases, etc.



Symbolic Techniques in Al

Lots of systems based on symbolic approach:

- Ex: expert systems, planning, more
- Playing great chess

- Less popular recently!
- "Good old fashioned AI"

J. Gardner

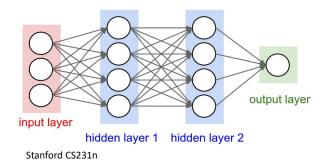
Symbolic vs Subsymbolic

Rival approach: subsymbolic

- Probabilistic models
- Neural networks

years

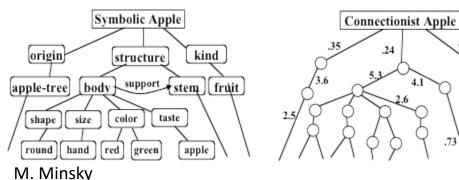
• Extremely popular last 20



.24

.63

.73



Symbolic vs Subsymbolic

- Easier to debug
- Easier to explain
- No need for big data
- Better for abstract problems
 - Symbol grounding problem

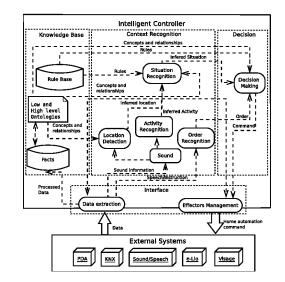
Credit: Henry Lieberman

- Robust to noise
- Less built-in knowledge
- Easier to scale
- Better for perceptual problems

Symbolic vs Subsymbolic

Analogy: Logic versus probability

- Which is better?
- Future: combination; best-of-bothworlds
 - Actually been worked on:
 - Example: Markov Logic Networks



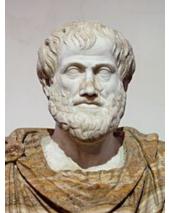
Symbolic and Connectionist

Outline

- Introduction to logic
 - Arguments, validity, soundness
- Propositional logic
 - Sentences, semantics, inference
- First order logic (FOL)
 - Predicates, objects, formulas, quantifiers

Basic Logic

- Arguments, premises, conclusions
 - Argument: a set of sentences (premises) + a sentence (a conclusion)
 - Validity: argument is valid iff it's necessary that if all premises are true, the conclusion is true
 - Soundness: argument is sound iff valid & premises true
 - Entailment: when valid arg., premises entail conclusion



Propositional Logic Basics

Logic Vocabulary:

- Sentences, symbols, connectives, parentheses
 - Symbols: P, Q, R, ... (atomic sentences)
 - Connectives:

∧ and
∨ or
⇒ implies
⇔ is equivalent
¬ not

[conjunction] [disjunction] [implication] [biconditional] [negation]

- Literal: P or negation \neg P

Propositional Logic Basics

Examples:

- $(P \lor Q) \Rightarrow S$
 - "If it is cold or it is raining, then I need a jacket"
- $Q \Rightarrow P$
 - "If it is raining, then it is cold"
- ¬R
 - "It is not hot"

Propositional Logic Basics

Several rules in place

- Precedence: \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- Use parentheses when needed
- Sentences: well-formed or not well-formed:

Sentences & Semantics

- Think of symbols as defined by user
- Sentences: built up from symbols with connectives
 - Interpretation: assigning True / False to symbols
 - Semantics: interpretations for which sentence evaluates to True
 - Model: (of a set of sentences)
 interpretation for which all sentences
 are True

Evaluating a Sentence

• Example:

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Note:
 - If P is false, P⇒Q is true regardless of Q ("5 is even implies 6 is odd" is True!)
 - Causality unneeded: "5 is odd implies the Sun is a star" is True!)

Evaluating a Sentence: Truth Table

• Ex:

Р	Q	R	¬ P	Q∧R	¬P∨Q∧R	¬P∨Q∧R⇒Q
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	0	0	1
1	1	1	0	1	1	1

• Satisfiable

There exists some interpretation where sentence true

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy (i) $\neg(\neg p \rightarrow \neg q) \land r$ (ii) $(\neg p \lor \neg q) \rightarrow (p \lor \neg r)$

- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy (i) $\neg(\neg p \rightarrow \neg q) \land r$ (ii) $(\neg p \lor \neg q) \rightarrow (p \lor \neg r)$

- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Q 1.2: Let A = "Aldo is Italian" and B = "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. $A \lor (\neg A \rightarrow B)$
- b. $A \lor B$
- c. $A \lor (A \rightarrow B)$
- d. A \rightarrow B

Q 1.2: Let A = "Aldo is Italian" and B = "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. A ∨ (¬A → B)
- b. A ∨ B (equivalent!)
- c. $A \lor (A \rightarrow B)$
- d. A \rightarrow B

Q 1.3: How many different assignments can there be to $(x_1 \land y_1) \lor (x_2 \land y_2) \lor ... \lor (x_n \land y_n)$

- A. 2
- B. 2ⁿ
- C. 2²ⁿ
- D. 2n

Q 1.3: How many different assignments can there be to $(x_1 \land y_1) \lor (x_2 \land y_2) \lor ... \lor (x_n \land y_n)$

- A. 2
- B. 2ⁿ
- C. 2²ⁿ
- D. 2n

Knowledge Bases

- Knowledge Base (KB): A set of sentences
 - Like a long sentence, connect with conjunction

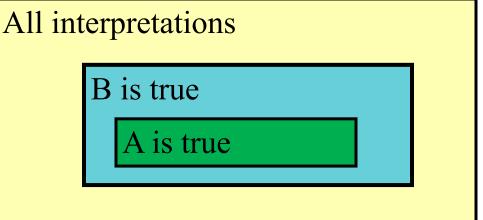
Model of a KB: interpretations where all sentences are True

Goal: inference to discover new sentences

Entailment

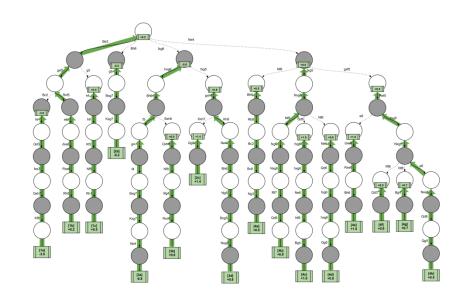
Entailment: a sentence logically follows from others

- Like from a KB. Write $A \models B$
- A ⊨ B iff in every interpretation where A is true, B is also true
 All interpretations



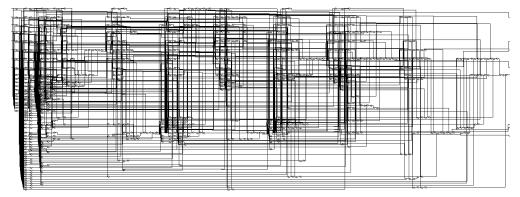
Inference

- Given a set of sentences (a KB), **logical inference** creates new sentences
 - Compare to prob. inference!
- Challenges:
 - Soundness
 - Completeness
 - Efficiency



Methods of Inference: 1. Enumeration

- Enumerate all interpretations; look at the truth table
 - "Model checking"
- Downside: 2ⁿ interpretations for n symbols



S. Leadley

Methods of Inference: 2. Using Rules

- *Modus Ponens*: $(A \Rightarrow B, A) \vDash B$
- And-elimination
- Many other rules
 - Commutativity, associativity, de Morgan's laws, distribution for conjunction/disjunction

Methods of Inference: 3. Resolution

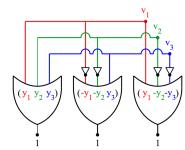
- Convert to special form and use a single rule
- **Conjunctive Normal Form** (CNF)

$$(\neg A \lor B \lor C) \land (\neg B \lor A) \land (\neg C \lor A)$$

a clause

Conjunction of clauses; each clause disjunction of literals

• Simple rules for converting to CNF



Methods of Inference: 3. Resolution

Start with our KB and query B

- Add $\neg B$
- Show that this leads to a contradiction
- Take clauses with a symbol and its complement
 - Merge, throw away symbol: PvQvR, ¬QvSvT: PvRvSvT
 - If no symbol left, KB entails B
 - No new clauses, KB does not entail B

Q 2.1: What is the CNF for $(\neg p \land \neg (p \Rightarrow q))$

- A. $(\neg p \land \neg (p \Rightarrow q))$
- B. (¬p) ∧ (¬p ∨ ¬q)
- C. $(\neg p \lor q) \land (p \lor \neg q) \land (p \lor q)$
- D. $(\neg p \lor \neg q) \land (\neg p \lor q) \land (p \lor \neg q) \land (p \lor q)$

Q 2.1: What is the CNF for $(\neg p \land \neg (p \Rightarrow q))$

- A. $(\neg p \land \neg (p \Rightarrow q))$
- B. (¬p) ∧ (¬p ∨ ¬q)
- C. $(\neg p \lor q) \land (p \lor \neg q) \land (p \lor q)$
- D. (¬p ∨ ¬q) ∧ (¬p ∨ q) ∧ (p ∨ ¬q) ∧ (p ∨ q)

Q 2.2: Which has more rows: a truth table on *n* symbols, or a joint distribution table on *n* binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends

Q 2.2: Which has more rows: a truth table on *n* symbols, or a joint distribution table on *n* binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends

Finding CNFs

• CNF:

$(\neg A \lor B \lor C) \land (\neg B \lor A) \land (\neg C \lor A)$

- Automating transformation
 - Use equivalences for connectives we don't use (i.e., \Rightarrow)
 - Move negatives inside (DeMorgan's laws)
 - Push v inside \land by distributing
- Not guaranteed to be satisfiable

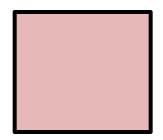
First Order Logic (FOL)

Propositional logic has some limitations

- Ex: how to say "all squares have four sides"
- No context, hard to generalize; express facts

FOL is a more expressive logic; works over

• Facts, Objects, Relations, Functions



First Order Logic (FOL)

Basics:

- Constants: "16", "Green", "Bob"
- Functions: map objects to objects
- Predicates: map objects to T/F:
 - _ Greater(5,3)
 - Color(grass, green)

First Order Logic (FOL)

Basics:

- Variables: x, y, z
- Connectives: Same as propositional logic
- Quantifiers:
 - \forall universal quantifier: $\forall x$ human(x) \Rightarrow mammal(x)
 - ∃ existential quantifier