Announcements

- **Homeworks:**
 - HW3 due Tuesday. Start early!

- **Class roadmap:**

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Slides</th>
<th>Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, Sept 28</td>
<td>Natural Language Processing</td>
<td>Slides</td>
<td>HW 2 Due, HW 3 Released</td>
</tr>
<tr>
<td>Thursday, Sept 30</td>
<td>Machine Learning: Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday, Oct 5</td>
<td>Machine Learning: Unsupervised Learning I</td>
<td></td>
<td>HW 3 Due, HW 4 Released</td>
</tr>
<tr>
<td>Thursday, Oct 7</td>
<td>Machine Learning: Unsupervised Learning II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday, Oct 12</td>
<td>Machine Learning: Linear Regression</td>
<td></td>
<td>HW 4 Due, HW 5 Released</td>
</tr>
<tr>
<td>Thursday, Oct 14</td>
<td>Machine Learning: K-Nearest Neighbors & Naive Bayes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Everything below here is tentative and subject to change.

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th></th>
<th>Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, Oct 19</td>
<td>Machine Learning: Neural Network I (Perceptron)</td>
<td></td>
<td>HW 5 Due, HW 6 Released</td>
</tr>
<tr>
<td>Thursday, Oct 21</td>
<td>Machine Learning: Neural Network II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday, Oct 26</td>
<td>Machine Learning: Neural Network III</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIDTERM EXAM October 28
Announcements

• Slides posted on course webpage before lecture
 – Updated afterwards
• Recordings of lecture available on Canvas
• Rodney Brooks on AI limitations:
 - https://spectrum.ieee.org/rodney-brooks-ai
Today’s outline

• What is machine learning?
• Supervised Learning
 • Classification
 • Regression
• Unsupervised Learning
 • Clustering
• Reinforcement Learning
Part I: What is machine learning?
HUMANS LEARN FROM PAST EXPERIENCES

MACHINES FOLLOW INSTRUCTIONS GIVEN BY HUMANS
What is machine learning?

• Arthur Samuel (1959): Machine learning is the field of study that gives the computer the ability to learn without being explicitly programmed.
Without Machine Learning

With Machine Learning

* VERY SPECIFIC INSTRUCTIONS

https://tung-dn.github.io/programming.html
What is machine learning?

- Arthur Samuel (1959): Machine learning is the field of study that gives the computer the ability to learn **without being explicitly programmed**.

- Tom Mitchell (1997): A computer program is said to learn from **experience** \(E \) with respect to some class of **tasks** \(T \) and **performance measure** \(P \), if its performance at tasks in \(T \) as measured by \(P \), improves with experience \(E \).
Taxonomy of ML

Supervised Learning

Unsupervised Learning

Reinforcement Learning
Part II: Supervised Learning
Example 1: Predict whether a user likes a song or not
Example 1: Predict whether a user likes a song or not
Example 1: Predict whether a user likes a song or not

User Sharon

DisLike

Like

Intensity

Relaxed Tempo Fast
Example 1: Predict whether a user likes a song or not

User Sharon

- DisLike
- Like

Diagram showing the relationship between Intensity and Tempo, with dots indicating user preferences.
Example 1: Predict whether a user likes a song or not.

User Sharon

- **DisLike**
- **Like**

![Diagram showing a scatter plot with data points indicating user preferences. The axes are labeled: Relaxed, Tempo, and Fast. The plot distinguishes between liked and disliked songs.](image-url)
Example 1: Predict whether a user likes a song or not

User Sharon

- **DisLike**
- **Like**

New data

![Diagram showing a scatter plot with two clusters: one for DisLike and one for Like. The new data point is marked with a star, indicating it is likely to be liked.](image-url)
Example 2: Classify Images

http://www.image-net.org/
Example 2: Classify Images

indoor

outdoor
Example 2: Classify Images

Training data

learning (i.e., training)
Learning (i.e., training) leads to testing performance.
How to represent data?

input data

\[x \in \mathbb{R}^d \]

d: feature dimension

\[x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \]

Tempo

Intensity

There can be many features!
How to represent data?

Label

\[y \in \{0, 1\} \]

Where “supervision” comes from
Represent various types of data

- Image
 - Pixel values

- Bank account
 - Credit rating, balance, # deposits in last day, week, month, year, # withdrawals
Two Types of Supervised Learning Algorithms

Classification

Regression
Example of regression: housing price prediction

Given: a dataset that contains n samples

$$(x_1, y_2), (x_2, y_2), \ldots, (x_n, y_n)$$

Task: if a residence has x squares feet, predict the price?
Example of regression: housing price prediction

Given: a dataset that contains n samples

$$(x_1, y_2), (x_2, y_2), (x_3, y_3), \ldots, (x_n, y_n)$$

Task: if a residence has x squares feet, predict the price?

$$y \in \mathbb{R}$$
Example of regression: housing price prediction

Input with more features (e.g., lot size)

(features/input) \(x \in \mathbb{R}^2 \) \[\rightarrow\] (label/output) \(y \in \mathbb{R} \)

(credit: stanford CS229)
Supervised Learning: More examples

\[x = \text{raw pixels of the image} \quad y = \text{bounding boxes} \]
Two Types of Supervised Learning Algorithms

Classification
• the label is a discrete variable
 \[y \in \{1, 2, 3, \ldots, K\} \]

Regression
• the label is a continuous variable
 \[y \in \mathbb{R} \]
Training Data for Supervised Learning

Training data is a collection of input instances to the learning algorithm:

\[(x_1, y_2), (x_2, y_2), (x_3, y_3), \ldots, (x_n, y_n)\]

Training data is the “experience” given to a learning algorithm.
Goal of Supervised Learning

Given training data

\[(x_1, y_2), (x_2, y_2), (x_3, y_3), \ldots, (x_n, y_n)\]

Learn a function mapping \(f: X \rightarrow Y\), such that \(f(x)\) predicts the label \(y\) on future data \(x\) (not in training data)
Goal of Supervised Learning

Training set error

- 0-1 loss for classification: \(\ell = \frac{1}{n} \sum_{i=1}^{n} (f(x_i) \neq y_i) \)

- Squared loss for regression: \(\ell = \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 \)

A learning algorithm optimizes the training objective

\[
f^* = \arg \min \mathbb{E}_{(x,y)} \ell(f(x), y)
\]

Details in upcoming lectures :)

Loss Functions
Break & Quiz

Q 1.1: Which is true about feature vectors?

- A. Feature vectors can have at most 10 dimensions
- B. Feature vectors have only numeric values
- C. Raw images can be used as feature vectors
- D. Text data cannot be represented as feature vectors
Break & Quiz

Q 1.1: Which is true about feature vectors?

• A. Feature vectors can have at most 10 dimensions
• B. Feature vectors have only numeric values
• C. Raw images can be used as feature vectors
• D. Text data cannot be represented as feature vectors
Break & Quiz

Q 1.2: Which of the following is not typically supervised learning?

A. Object detection (identifying bounding boxes on objects)
B. Classification
C. Regression
D. Dimensionality Reduction (e.g., PCA)
Break & Quiz

Q 1.2: Which of the following is not typically supervised learning?

A. Object detection (identifying bounding boxes on objects)
B. Classification
C. Regression
D. Dimensionality Reduction (e.g., PCA)
Part II: Unsupervised Learning
(no teacher)
Unsupervised Learning

• Given: dataset contains no label x_1, x_2, \ldots, x_n
• **Goal**: discover interesting patterns and structures in the data

![Graph showing data points in a 2D plane with labels $y = 1$ and $y = 0$.]
Unsupervised Learning

- Given: dataset contains no label \(x_1, x_2, \ldots, x_n \)
- **Goal:** discover interesting patterns and structures in the data

\[y = 1 \]
\[y = 0 \]
Clustering

- Given: dataset contains no label x_1, x_2, \ldots, x_n
- Output: divides the data into clusters such that there are intra-cluster similarity and inter-cluster dissimilarity
Clustering

Clustering Irises using three different features

The colors represent clusters identified by the algorithm, not y’s provided as input
Clustering

- You probably have >1000 digital photos stored on your phone
- After this class you will be able to organize them better (based on visual similarity)
Clustering Genes

Identifying Regulatory Mechanisms using Individual Variation Reveals Key Role for Chromatin Modification. [Su-In Lee, Dana Pe'er, Aimee M. Dudley, George M. Church and Daphne Koller. ’06]
Clustering Words with Similar Meanings

[Arora-Ge-Liang-M.-Risteski, TACL’17,18]
How do we perform clustering?

• Many clustering algorithms. We will look at the two most frequently used ones:

• *K-means clustering*: we specify the desired number of clusters, and use an iterative algorithm to find them

• *Hierarchical clustering*: we build a binary tree over the dataset
K-means clustering

• Very popular clustering method

• Don’t confuse it with k-NN classifier

• Input: a dataset x_1, x_2, \ldots, x_n, and assume the number of clusters k is given
K-means clustering

Step 1: **Randomly** picking 2 positions as initial cluster centers (not necessarily a data point)
K-means clustering

Step 2: for each point x, determine its cluster: find the closest center in Euclidean space
K-means clustering

Step 3: update all cluster centers as the centroids
K-means clustering

Repeat step 2 & 3 until convergence

Converged solution!
No labels required!
K-means clustering: A demo

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
Hierarchical Clustering (more to follow next lecture)
Break & Quiz

Q 1.2: Which is true about supervised learning?

A. The process doesn’t involve human input
B. The machine is given training and test data for learning
C. Clustering data makes use of labelled data
D. Supervised learning requires labels
Break & Quiz

Q 1.2: Which is true about supervised learning?

A. The process doesn’t involve human input
B. The machine is given training and test data for learning
C. Clustering data makes use of labelled data
D. Supervised learning requires labels
Q 1.2: Which is true about unsupervised learning?

A. There are only 2 types of unsupervised learning algorithms.
B. K-means clustering is a type of hierarchical clustering.
C. K-means clustering automatically determines the number of clusters.
D. Unsupervised learning is widely used in many applications.
Break & Quiz

Q 1.2: Which is true about unsupervised learning?

A. There are only 2 types of unsupervised learning algorithms.
B. K-means clustering is a type of hierarchical clustering.
C. K-means clustering automatically determines the number of clusters.
D. Unsupervised learning is widely used in many applications.
Part III: Reinforcement Learning
(Learn from reward)
Reinforcement Learning

Given: an agent that can take actions and a reward function specifying how good an action is.

Data: \((x_0, a_0, r_0), (x_1, a_1, r_1), \ldots, (x_n, a_n, r_n)\)

Goal: learn to choose actions that maximize future reward total.
Reinforcement Learning Key Problems

1. Problem: actions may have delayed effects.
 - Requires credit-assignment

2. Problem: no label for best action.
 - Exploration-exploitation trade-off

“..the problem [exploration-exploitation] was proposed [by British scientist] to be dropped over Germany so that German scientists could also waste their time on it.”

- Peter Whittle
Today’s recap

• What is machine learning?

• Supervised Learning
 • Classification
 • Regression

• Unsupervised Learning

• Reinforcement Learning
Thanks!