

CS 540 Introduction to Artificial Intelligence Unsupervised Learning II

Josiah Hanna University of Wisconsin-Madison

October 7, 2021 Slides created by Fred Sala [modified by Josiah Hanna]

Announcements

- Homeworks:
 - HW4 due Tuesday

• Class roadmap:

Tuesday, Sept 28	Natural Language Processing	Slides	HW 2 Due, HW 3 Released
Thursday, Sept 30	Machine Learning: Introduction		
Tuesday, Oct 5	Machine Learning: Unsupervised Learning I		HW 3 Due, HW 4 Released
Thursday, Oct 7	Machine Learning: Unsupervised Learning II		
Tuesday, Oct 12	Machine Learning: Linear Regression		HW 4 Due, HW 5 Released
Thursday, Oct 14	Machine Learning: K-Nearest Neighbors & Naive Bayes		
	Everything below here is tentative	and subject to change.	
Tuesday, Oct 19	Machine Learning: Neural Network I (Perceptron)		HW 5 Due, HW 6 Released
Thursday, Oct 21	Machine Learning: Neural Network II		
	Machine Learning: Neural Network III		

Outline

- Finish up Other Clustering Types
 - Graph-based, cuts, spectral clustering
- Unsupervised Learning: Visualization
 - t-SNE, algorithm, example, vs. PCA
- Unsupervised Learning: Density Estimation
 - Kernel density estimation: high-level intro

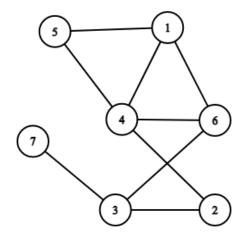
Other Types of Clustering

Graph-based/proximity-based

- Recall: Graph G = (V,E) has vertex set V, edge set E.
 - Edges can be weighted or unweighted
 - Encode similarity

Don't need vectors here

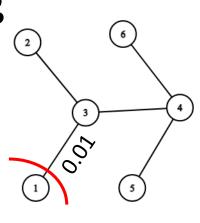
 Just edges (and maybe weights)

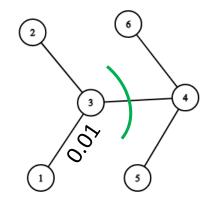


Graph-Based Clustering

Want: partition V into V_1 and V_2

- Implies a graph "cut"
- One idea: minimize the weight of the cut
 - Downside: might just cut of one node
 - Need: "balanced" cut





Partition-Based Clustering

Want: partition V into V_1 and V_2

- Just minimizing weight isn't good... want **balance!**
- Approaches:

$$\operatorname{Cut}(V_1, V_2) = \frac{\operatorname{Cut}(V_1, V_2)}{|V_1|} + \frac{\operatorname{Cut}(V_1, V_2)}{|V_2|}$$
$$\operatorname{NCut}(V_1, V_2) = \frac{\operatorname{Cut}(V_1, V_2)}{\sum_{i \in V_1} d_i} + \frac{\operatorname{Cut}(V_1, V_2)}{\sum_{i \in V_2} d_i}$$

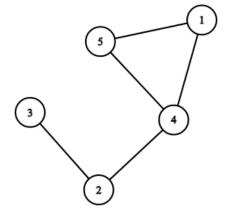
weights at vertex

Partition-Based Clustering

How do we compute these?

- Hard problem \rightarrow heuristics
 - Greedy algorithm
 - "Spectral" approaches
- Spectral clustering approach:

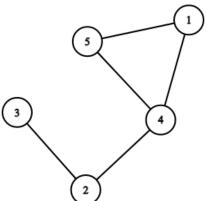
– Adjacency matrix



 $A = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$

Partition-Based Clustering

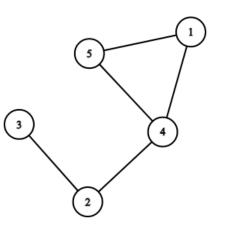
- Spectral clustering approach:
 - Adjacency matrix
 - **Degree** matrix



$$D = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

• Spectral clustering approach:

-1. Compute Laplacian L = D -A(Important tool in graph theory)



$$L = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & -1 & -1 \\ 0 & 2 & -1 & -1 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 3 & -1 \\ -1 & 0 & 0 & -1 & 2 \end{bmatrix}$$
Degree Matrix
Adjacency Matrix
Laplacian

3

- Spectral clustering approach:
 - 1. Compute Laplacian L = D − A
 - 2. Compute k smallest eigenvectors
 - 3. Set *U* to be the *n* x *k* matrix with $u_1, ..., u_k$ as

columns. Take the *n* rows formed as points

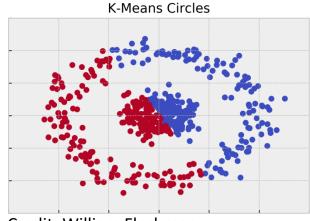
– 4. Run k-means on the representations

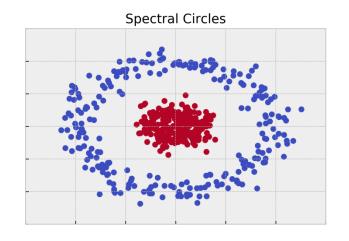
• Compare/contrast to **PCA**:

Use an eigendecomposition / dimensionality reduction

- But, run on Laplacian (not covariance); use smallest eigenvectors, not largest
- Intuition: Laplacian encodes structure information
 - "Lower" eigenvectors give partitioning information

- **Q**: Why do this?
 - 1. No need for points or distances as input
 - 2. Can handle intuitive separation (k-means can't!)





Credit: William Fleshman

Break & Quiz

Q 1.1: We have two datasets: a social network dataset S_1 which shows which individuals are friends with each other along with image dataset S_2 .

What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both S_1 and S_2
- B. graph-based on S₁ and k-means on S₂
- C. k-means on S₁ and graph-based on S₂
- D. hierarchical on S₁ and graph-based on S₂

Break & Quiz

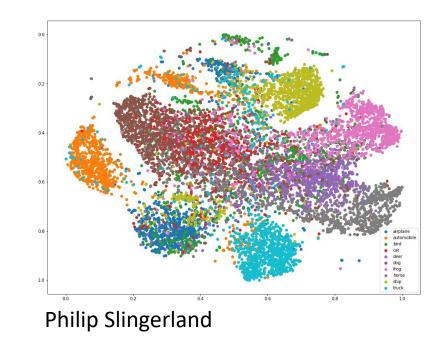
Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled with one of 10 classes. What could we use it for?(i) Supervised learning (ii) PCA (iii) k-means clustering

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (ii)
- D. All of them

Unsupervised Learning Beyond Clustering

Data analysis, dimensionality reduction, etc

- Already talked about PCA
- Note: PCA can be used for visualization, but not specifically designed for it
- Some algorithms **specifically** for visualization



Dimensionality Reduction & Visualization

- Typical dataset: MNIST
- Handwritten digits 0-9
 - 60,000 images (small by ML standards)
 - 28×28 pixel (784 dimensions) 000
 - Standard for image

experiments

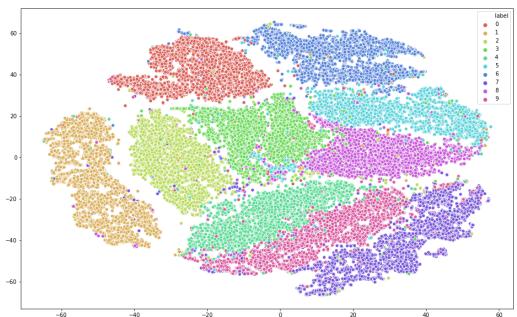
• Dimensionality reduction?

Visualization: T-SNE

Typical dataset: MNIST

- **T-SNE**: project data into just 2 dimensions
- Try to maintain structure

- MNIST Example
- Input: x₁, x₂, ..., x_n
- **Output**: 2D/3D y₁, y₂, ..., y_n



T-SNE Algorithm: Step 1

How does it work? Two steps

- 1. Turn vectors into probability pairs
- 2. Turn pairs back into (lower-dim) vectors

Step 1:

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)} \quad p_{ij} = \frac{1}{2n} (p_{j|i} + p_{i|j})$$

 X_4

X₂

x₁

 \mathbf{X}_2

Intuition: probability that x_i would pick x_j as its neighbor under a Gaussian probability

T-SNE Algorithm: Step 2

 X_4

)X₂

 X_1

 \mathbf{X}_2

How does it work? Two steps

- 1. Turn vectors into probability pairs
- 2. Turn pairs back into (lower-dim) vectors

Step 2: set

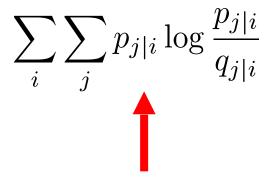
$$q_{ij} = \frac{(1 + ||y_i - y_j||^2)^{-1}}{\sum_{k \neq \ell} (1 + ||y_k - y_\ell||_2^2)^{-1}}$$
Low dimprovementation

$$\sum_i \sum_j p_{j|i} \log \frac{p_{j|i}}{q_{j|i}} \quad \text{KL Divergence}$$
between p and q

T-SNE Algorithm: Step 2

More on step 2:

- We have two distributions *p*, *q*. *p* is fixed
- q is a function of the y_i which we move around
- Move y_i around until the KL divergence is small
 - So we have a good representation!
- **Optimizing a loss function**---we'll see more in supervised learning.



KL Divergence between p and q

T-SNE Examples

- Examples: (from Laurens van der Maaten)
- Movies: https://lvdmaaten.github.io/tsne/examples/ netflix_tsne.jpg

T-SNE Examples

- Examples: (from Laurens van der Maaten)
- NORB: https://lvdmaaten.github.io/tsne/examples/ norb_tsne.jpg

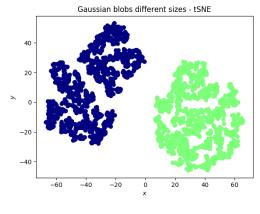
Visualization: T-SNE

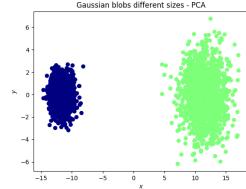
t-SNE vs PCA?

- "Local" vs "Global"
- Lose information in t-SNE
 not a bad thing necessarily
- Downstream use

Good resource/credit:

https://www.thekerneltrip.com/statistics/tsne-vs-pca/





Break & Quiz

Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never
- B. Yes, after running PCA on them
- C. Yes, after mapping them into R^d (ie, embedding)
- D. Yes, after running hierarchical clustering on them

Short Intro to Density Estimation

Goal: given samples $x_1, ..., x_n$ from some distribution *P*, estimate P.

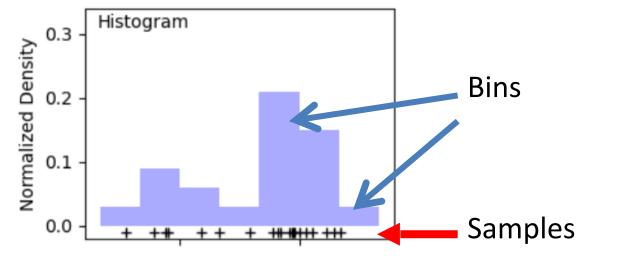
- Compute statistics (mean, variance)
- Generate samples from P
- Run inference

Zach Monge

Simplest Idea: Histograms

Goal: given samples $x_1, ..., x_n$ from some distribution *P*,

estimate P.



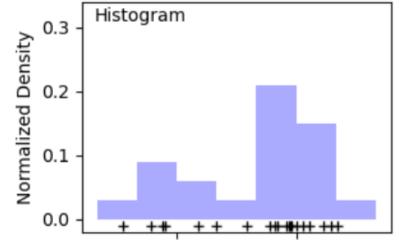
Define bins; count # of samples in each bin, normalize

Simplest Idea: Histograms

Goal: given samples $x_1, ..., x_n$ from some distribution *P*, estimate P.

Downsides:

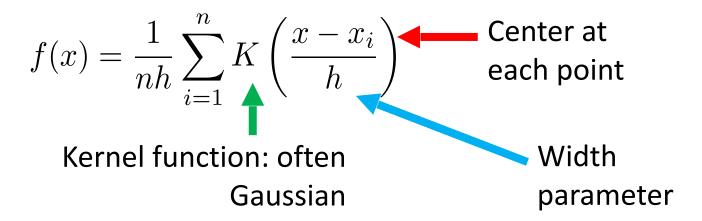
- i) High-dimensions: most bins empty
- ii) Not continuous
- iii) How to choose bins?



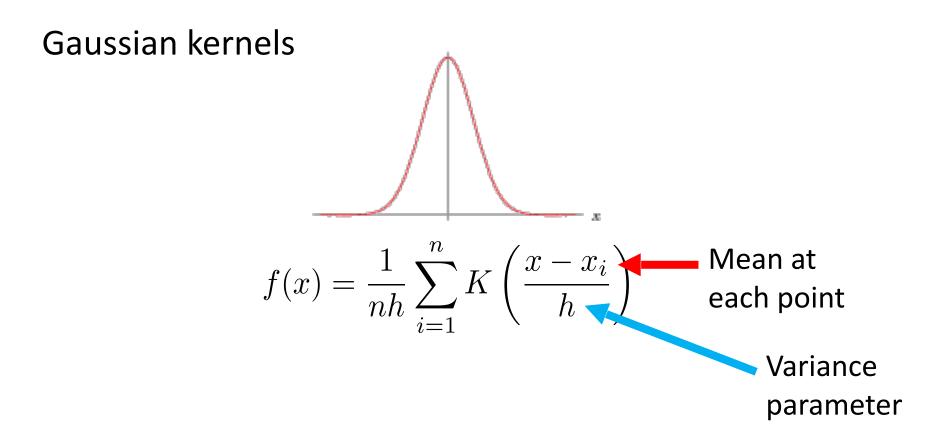
Kernel Density Estimation

Goal: given samples $x_1, ..., x_n$ from some distribution *P*, estimate P.

Idea: represent density as combination of "kernels"



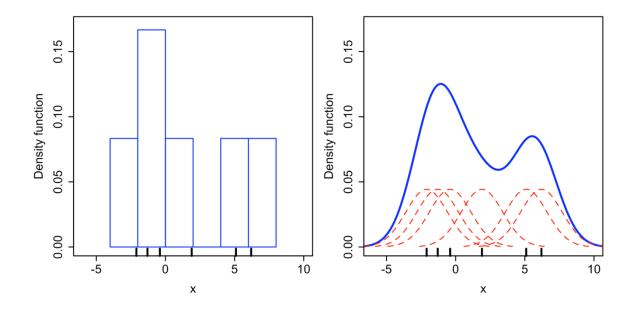
Kernel Density Estimation



Kernel Density Estimation

Idea: represent density as combination of kernels

• "Smooth" out the histogram



Break & Quiz

Q 1.1: Which of the following is not true?

- A. Using a Gaussian kernel for KDE, all possible values for x_i will have non-zero probability.
- B. The goal of KDE is to approximate the true probability distribution function of X.
- C. When using a histogram, every bucket must be represented explicitly in memory
- D. With some kernels, KDE can assign zero probability to some subset of values for x_i.