Advanced Topics in Reinforcement Learning Lecture 11: Models and Planning II

Announcements

- Homework 2 due 1 minute ago. Homework 3 released tonight.
- Project proposals will be reviewed and feedback provided this week.
- Chapter 9 reading is updated on the course website (less to read now).

Project Literature Review

- The next phase of your project is a literature review.
- An essential element to any research project.
 - Minimum expectation is that your survey cites at least 10 relevant references.
 - your project, and then say how it is different from your project.
 - Survey should be submitted as a pdf on Canvas.
- The survey is also a secondary check-in on project direction.
- details.

• For each surveyed source, *briefly describe* (1-2 sentences), say why it is relevant to

See <u>https://pages.cs.wisc.edu/~jphanna/teaching/2022fall_cs839/project.html</u> for more

- Finish RTDP
- Planning at decision-time:
 - Heuristic Search
 - Roll-out Algorithms
 - MCTS

Today

Trajectory Sampling

- Uniform sampling of states can be inefficient.
- It may be more effective to focus value back-ups on states that the agent will visit often.
- How to know what states the agent will visit?
 - Initialize the agent in a start state and follow the current policy from there.
 - Simulate entire trajectories within the model or real world. Back-up the values for these states.

Real-time Dynamic Programming

- Key Idea: perform a value-iteration update on each state as it is visited.
- For n episodes:
 - Start in initial state, S_0 .
 - Repeat $A_t \sim \pi(A = a \mid S_t), S', R \sim Model(S_t, A_t)$ where π is ϵ -greedy.
 - At each step, t, apply the value iteration update to $Q(S_t, A_t)$:

$$Q(s,a) \leftarrow \sum_{s',r} p(s',r|s,a)[r \cdot s',r]$$

 $+ \gamma \max Q(s', a')$

RTDP Example

- iteration.

•
$$\pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a)[r+\gamma)$$

•
$$\pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a)[r+\gamma\max_{a'} \sum_{s'',r'} p(s'',r'|s'',a')[r'+\gamma v_{\pi}(s'')]]$$

- Slow deliberation before making a decision.
- Contrasts with immediate decision-making of model-free methods.

Planning at Decision Time

• So far we considered using planning to improve the value-function and speed-up policy

• Now we consider using planning to immediately compute an action for a given state.

 $\mathcal{V}_{\pi}(S')$]

Heuristic Search

- Motivation: model is perfect and action-value function is imperfect.
- Focus memory and computation on immediate relevant state and next decision.
- Deeper search generally leads to a better action choice at expense of more computation.

- **Rollout:** following a policy until termination, i.e, rolling out the policy.
- Monte Carlo learning at decision-time; improve upon the roll-out policy.
- Rolling out the policy only requires a sample model.
- Computation time is a limiting factor. Roll-out algorithms computation affected by:
 - Speed to sample from model.
 - Speed to execute rollout policy.

Roll-out Algorithms

Paul's Presentation

<u>Slides</u>

Part I Summary

- Functions (policies, value functions, and models) have been represented as look-up tables.
- We have seen 4 types of algorithms:
 - Dynamic programming methods.
 - Model-free Monte Carlo methods.
 - Model-free temporal difference learning methods.
 - Model-based learning and planning methods.
- All algorithms we have seen are instances of generalized policy iteration:

•
$$\pi_0 \to q_0 \to \cdots \to \pi_k \to q_k \to \pi_{k+1} \to \cdots$$

of update Temporaldifference learning 🖒 depth (length) of update Monte Carlo $\rightarrow q_{\star} \rightarrow \pi_{\star}$

Part I Summary

- Much intuition and understanding carries forward as we move into Part II.
 - Returns and values defined similarly.
 - On-policy and off-policy methods.
 - Exploration vs. Exploitation trade-off.
- Looking ahead:
 - The learning agent has limited capacity to model $v_{\pi}(s)$ for all s.
 - The learning agent may never visit the same state twice.

Summary

- Models can be used to produce simulated experience to learn from.
 - Makes better use of finite data.
 - Distribution models permit expected updates such as those made by RTDP.
 - Sample models are generally easier to acquire and can be used with sample updates.
- Models can be used to compute a better decision than acting greedily w.r.t. an inaccurate action-value function.
 - Requires planning at decision time.
 - Computation is the bottleneck for making better decisions.

Action Items

- Homework 3 released tonight.
- Begin literature review.
- Begin reading Chapter 9.

