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Announcements

• Homework 3 due Thursday of next week.


• Everyone should have received project proposal feedback.


• Begin reading chapter 11 for next week.


• Midterm survey and evaluation.
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Project RL Algorithms
• We probably have not covered algorithms you will want to use in your final 

project.


• We have covered the fundamental ideas of more advanced algorithms.


• Q-learning —> Deep Q-Networks (DQN)


• Expected SARSA —> Actor-Critic Methods —> DDPG, TD3, SAC


• Monte Carlo Policy Iteration —> Policy Gradient Methods —> Proximal 
Policy Optimization
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This Week and Next

• Today: overview of function approximation for on-policy prediction.


• Thursday: feature construction methods and on-policy control.


• Next week: off-policy prediction with function approximation.
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Function Approximation in RL
• How different from the tabular case?


• Generalize value estimates across similar states.


• What is the benefit?


• May only visit any given state once.


• Too many states to store an individual value estimate for each.


• What do we lose?


• Accurate approximation everywhere.


• The policy improvement theorem.



Josiah Hanna, University of Wisconsin — Madison

Function Approximation in RL

• Form of the value estimate:


•  with .


• Changing  changes the value estimate at multiple states.


• (Tabular methods are a special case with ).

w ∈ ℝd d ≪ |𝒮 |

w

d = |𝒮 |

̂v(s, w) ≈ vπ(s)



Josiah Hanna, University of Wisconsin — Madison

Linear Function Approximation

• Assume value estimate is a linear function of state features.


• 


• The features, , can be non-linear functions of state variables.


• Expressive choices for  make linear methods more powerful than 
they first appear.

̂v(s, w) = w⊤x(s) =
d

∑
i=1

wixi(s)

xi(s)

x(s)
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Linear FA Example

• What is ?


• List of state variables: 


• Any static function of the state variables.


• Suppose .


• What can you say about the value estimates as  increases?

x(s)

(x, v, θ, ω)

x(s) = (x, v, θ, ω)

w1

https://towardsdatascience.com/how-to-beat-the-cartpole-game-in-5-lines-5ab4e738c93f
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The Prediction Objective
• As you saw in the reading, we have the following objective:


• Note: the policy is fixed because we are just considering prediction.


• Why this objective?


• Do we ever know how well we are doing?


•  and  are unknowns.μ vπ

VE(w) = ∑
s∈𝒮

μ(s)[vπ(s) − ̂v(s, w)]2
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(Stochastic) Gradient Descent
• So far we have seen how to represent value estimates when  and 

how to evaluate different choices of .


• Now, how to select  that minimizes prediction error.


• Assuming we visit states in proportion to , the following update moves us 
towards minimal prediction error:


• 


• This is the same update used for gradient-based linear regression — it’s just 
supervised learning!

d ≪ |𝒮 |
w

w

μ

wt+1 ← wt + α(vπ(St) − ̂v(s, wt))∇ ̂v(St, wt)
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(Stochastic) Gradient Descent

• Unlike supervised learning, we don’t know the targets, .


• Instead, we use a noisy target, :


• 


• Monte Carlo: 


• TD(0): 

vπ(s)

Ut

wt+1 ← wt + α(Ut − ̂v(s, wt))∇ ̂v(St, wt)

Ut ← Gt

Ut ← Rt + γ ̂v(s, w)
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Example 9.1
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Semi-Gradient TD

• 


• Why semi-gradient?


• Why not full-gradient?


• In the linear case, 


• Converges!

wt+1 ← wt + α(Rt + γ ̂v(St+1, wt) − ̂v(s, wt))∇ ̂v(St, wt)

wt+1 ← wt + α(Rt + γ ̂v(St+1, wt) − ̂v(s, wt))x(St)
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LSTD(0)
• Convergence analysis shows that Linear TD(0) converges to .


•  and .


• LSTD(0) estimates  and  and then directly computes the fixed point.


• (+) More data efficient than semi-gradient linear TD(0)


• (-) More computation (after optimizations  vs  for TD(0))


• Harder to extend to deep reinforcement learning.

w = A−1b

A = E[xt(xt − γxt+1)⊤] b = E[Rt+1xt]

A b

O(d2) O(d)
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Interest and Emphasis
• So far, assumed we are updating states equally (same learning rate) but according to 

the on-policy state distribution, .


• We may wish to emphasize some states more.


• State interest, , represents how much we care about accurate estimation in state .


• Emphasis is a learned multiplier on the learning rate.


• 


•

μ

It St

wt+1 ← wt + αMt[Rt − ̂v(St+1, w) − ̂v(St, w)]∇ ̂v(St, w)

Mt ← It + γMt−1
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Interest and Emphasis

• Interest is (1, 0, 1, 0)


• Semi-gradient 2-step TD converges to weight vector (3.5, 1.5)


• Emphatic 2-step TD converges to weight vector (4, 2)
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Summary

• Function approximation allows us to represent state values when there are 
too many states for a look-up table.


• Approximation allows generalization but forces us to choose which states 
to approximate best.


• Linear function approximation is well understood theoretically and can be 
powerful with the right set of non-linear features.
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Action Items

• Homework 3.


• Begin literature review.


• Begin reading Chapter 11.


• Midterm survey and evaluation.


