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Announcements

Homework 3 due Thursday of next week.
Everyone should have received project proposal feedback.
Begin reading chapter 11 for next week.

Midterm survey and evaluation.
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Project RL Algorithms

* \We probably have not covered algorithms you will want to use in your final
project.

* \WWe have covered the fundamental ideas of more advanced algorithms.
e Q-learning —> Deep Q-Networks (DQN)
 Expected SARSA —> Actor-Critic Methods —> DDPG, TD3, SAC

 Monte Carlo Policy Iteration —> Policy Gradient Methods —> Proximal
Policy Optimization
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This Week and Next

 Today: overview of function approximation for on-policy prediction.
 Thursday: feature construction methods and on-policy control.

 Next week: off-policy prediction with function approximation.
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Function Approximation in RL

 How different from the tabular case?

* (Generalize value estimates across similar states.
 What is the benefit?

 May only visit any given state once.

 Too many states to store an individual value estimate for each.
 What do we lose?

* Accurate approximation everywhere.

* The policy improvement theorem.
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Function Approximation in RL

Form of the value estimate:

V(s, W) & v_(s)

we RYwithd < | S].
Changing w changes the value estimate at multiple states.

(Tabular methods are a special case withd = | &' |).

Josiah Hanna, University of Wisconsin

— Madison



Linear Function Approximation

e Assume value estimate is a linear function of state features.
d
, V(s W) = W' x(s) = Z Wix(s)
i=1

» The features, x.(s), can be non-linear functions of state variables.

» Expressive choices for X(s) make linear methods more powerful than
they first appear.
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Linear FA Example

frame: 53, Obs: (0.018, 0.669, 0.286, 0.618)
Action: 1.0, Cumulative Reward: 47 .0, Done: 1

» What is X(s5)?

» List of state variables: (x, v, 0, ) o=
e Any static function of the state variables. 0
y -
X
» Suppose X(5) = (x, v, 0, w). Action=1"

» What can you say about the value estimates as w, increases®

https://towardsdatascience.com/how-to-beat-the-cartpole-game-in-5-lines-5ab4e738c93f Josi o . . .
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The Prediction Objective

As you saw In the reading, we have the following objective:

— ~ 2
VE(W) = ) pu(s)[v,(s) — D(s, W]
sES
Note: the policy is fixed because we are just considering prediction.

Why this objective?

Do we ever know how well we are doing?

e i and v_are unknowns.
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(Stochastic) Gradient Descent

So far we have seen how to represent value estimates when d << | &’ | and
how to evaluate different choices of w.

Now, how to select w that minimizes prediction error.

Assuming we visit states in proportion to i, the following update moves us
towards minimal prediction error:

¢ W, 1 < W, +a(v,(S,) —v(s,w,)) Vv(S, w,)

This is the same update used for gradient-based linear regression — it’s just
supervised learning!

Josiah Hanna, University of Wisconsin — Madison



(Stochastic) Gradient Descent

Unlike supervised learning, we don’t know the targets, v_(ss).
Instead, we use a noisy target, U

e W, < W, +a(U,—v(s,w,)) VV(S,, w,)

Monte Carlo: U, « G,

TD(0): U, < R, + yi(s, W)
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Example 9.1
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Figure 9.1: Function approximation by state aggregation on the 1000-state random walk task,

using the gradient Monte Carlo algorithm (page 202).
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Semi-Gradient TD

¢ W, < W, +a(R,+yv(S,. (1, W,)—V(s,W,) VV(S,, w,)
 Why semi-gradient?
 Why not full-gradient??
e Inthe linear case, W,, | < W, + a(R, + yV(S,. 1, W,) — V(s, W,))X(S,)

 Converges!
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 STD(0)

o Convergence analysis shows that Linear TD(0) converges to w = A~ 'b.

- A=E[x(x,—yx,,) ' ]and b = E[R,, X ].

e LSTD(0) estimates A and b and then directly computes the fixed point.

* (+) More data efficient than semi-gradient linear TD(0)

» (-) More computation (after optimizations O(d?) vs O(d) for TD(0))

 Harder to extend to deep reinforcement learning.
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Interest and Emphasis

So far, assumed we are updating states equally (same learning rate) but according to
the on-policy state distribution, /.

We may wish to emphasize some states more.

State interest, [, represents how much we care about accurate estimation in state ..

Emphasis is a learned multiplier on the learning rate.
¢ W, 1 < W, +aMJ[R, —V(S,,{, W) —V(S,wW)] VV(S,, W)

e M, < I, +yM,_,
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Interest and Emphasis

@ Ot Connn
= e — 3 g — = 1l

* Interestis (1, 0O, 1, 0)
 Semi-gradient 2-step TD converges to weight vector (3.5, 1.5)

 Emphatic 2-step TD converges to weight vector (4, 2)
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Summary

* Function approximation allows us to represent state values when there are
too many states for a look-up table.

* Approximation allows generalization but forces us to choose which states
to approximate best.

* Linear function approximation is well understood theoretically and can be
powerful with the right set of non-linear features.
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Action ltems

Homework 3.
Begin literature review.
Begin reading Chapter 11.

Midterm survey and evaluation.
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