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Announcements

Homework 3 due Thursday of next week.
Begin reading chapter 11 for next week.
Midterm survey and evaluation.

Looking ahead: https://pages.cs.wisc.edu/~|phanna/teaching/
2022fall ¢s839/schedule.html
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Interest and Emphasis

So far, assumed we are updating states equally (same learning rate) but according to
the on-policy state distribution, /.

We may wish to emphasize some states more.

State interest, [, represents how much we care about accurate estimation in state ..

Emphasis is a learned multiplier on the learning rate.
* M, < I, +yM,_,

e W, < W, +aM[R,— V(S , W) —V(S,W)] VV(S,, W)
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Interest and Emphasis

@ Ot Connn
= e — 3 g — = 1l

* Interestis (1, 0O, 1, 0)
 Semi-gradient 2-step TD converges to weight vector (3.5, 1.5)

 Emphatic 2-step TD converges to weight vector (4, 2)
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On-Policy Control

As usual, for control we will estimate action-values, g(s, a, w).

For linear function approximation, features are now a function of (s,a)
pairs, X(S, a).

Function approximation often inherently means that making g(s, a, w)
more accurate at one state will make it less accurate at another state.

Now making 7 greedy w.r.t. g(s, a, w) is no longer guaranteed to improve
7T — no more policy improvement theorem.
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Semi-Gradient Sarsa

Episodic Semi-gradient Sarsa for Estimating ¢ =~ g.

Input: a differentiable action-value function parameterization §: 8 x A x R — R
Algorithm parameters: step size a > 0, small € > 0
Initialize value-function weights w € R arbitrarily (e.g., w = 0)

Loop for each episode:
S, A <+ initial state and action of episode (e.g., e-greedy)
Loop for each step of episode:

Take action A, observe R, S’ Handle termination
If S" is terminal: /
w— w+a|R—§(S,A,w)|Vi(S, A, w)

Go to next episode
Choose A’ as a function of ¢(5’,-, w) (e.g., e-greedy)
W w+a[R+14(S', A, w) - 4(S, A, w)] V4(S, A, w)
S+ 5
A A
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Linear Function Approximation

e Assume value estimate is a linear function of state features.
d
, V(s W) = W' x(s) = Z Wix(s)
i=1

» The features, x.(s), can be non-linear functions of state variables.

» Expressive choices for X(s) make linear methods more powerful than
they first appear.
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1-Hot Features / State Aggregation

For a finite state-space, partition state-space into d mutually exclusive groups.
Let 1 be the group to which state s belongs.
The 1-Hot feature encoding sets x,(s) = 1 and x,(s) = 0 for j # i.

What does generalization look like?

Special caseisd = | &’ | in which case we recover the tabular setting.
o Useful tip for debugging RL implementations!

* Easily switch between easy to understand tabular experiments and more complex
function approximation within same implementation.
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Polynomial Features

» Suppose the state is represented as (s, 5,) € |
. Polynomial representation: (1,sy, S5, 5155, ST, 875 - . . ).

 What is the advantage of the polynomial representation?

* (Can represent any function with sufficiently high order polynomials.
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Fourier Features

Figure 9.3: One-dimensional Fourier cosine-basis features x;, ©+ = 1, 2, 3, 4, for approximating
functions over the interval [0, 1]. After Konidaris et al. (2011).

x(s) = cos(zs ' ¢t
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Fourier Features

c=(0,1)"

c=(1,0)" c=(1,1)"
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Coarse Coding




Tile Coding

* Intuitively, multiple state aggregation mappings at the same time.
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Radial Basis Functions
* Coarse coding with continuous features.

2
15— ¢l
L XiS) = exp | ——————
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Neural Networks
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C1: feature maps S4: f. maps 16@5x5

INPUT
30%32 6@28x28

S2: f. maps
6@14x14

CS layer Fg: layer OUTPUT
84 10

LN,

‘.._ r

"r

l_ i
—— |
| | | Full conection J Gaussian
Convolutions Subsampling Convolutions Subsampling Full /~ connections
connection

Josiah Hanna, University of Wisconsin — Madison



Memory-Based Learning

Non-parametric methods avoid need to fix a functional form for V(s, w).

Instead, keep around all observed states and their value estimates.

When need to compute V(s, W), find closest previously seen states to §
and use their value estimates.

(+) Capacity grows with amount of data, focus approximation resources
on states the agent is actually visiting.

(-) Computationally expensive to find closest states, notion of “closest” is
problem dependent.
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Summary

* Approximate on-policy control with semi-gradient Sarsa parallels tabular
Sarsa but we no longer have guaranteed policy improvement.

e Linear function approximation can be powerful with the right choice of
features.

 Many good options to choose from but the most practical might be to
simply learn the features with a neural network.
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Action ltems

Homework 3.
Begin literature review.
Begin reading Chapter 11.

Midterm survey and evaluation.
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