Advanced Topics in Reinforcement Learning Lecture 15: Off-Policy Function Approximation II

Announcements

- Homework 3 due 1 minute ago; homework 4 released tonight.
 - Due Nov 17. We won't cover relevant material until 2 weeks from now.
- Begin reading deep RL readings: Section 9.7 and 16.5 of course textbook.
- Midterm survey
 - At 65% right now. Please complete by Friday evening!

Soon

The Deadly Triad

- 1. Function Approximation: changing the value estimate at one state affects the value estimate at other states.
- 2. Bootstrapping: using existing estimated values as part of the learning target instead of only using actual returns.
- 3. Off-Policy Learning: using a distribution of transitions (s, a, s', r) other than that of the target policy.

Do we need the deadly triad?

- Why use function approximation?
 - Too many states to represent explicitly; need generalization.
- Why bootstrap?
 - faster learning.
- Why use off-policy learning?

Memory and computation requirements; learning in non-episodic tasks;

 Separate exploration and exploitation; general purpose learning agents must learn about multiple reward signals and target policies at the same time.

Yohei's Presentation

• <u>Slides</u>

- In practice, each component of the deadly triad is not binary.
- Bootstrapping: can use n-step returns or target networks to decrease amount of bootstrapping.
- Function approximation: larger neural networks decrease overgeneralization.
- Off-Policy learning: controlling distribution of samples from the replay buffer modulates how off-policy updates are.

"Deep Reinforcement Learning and the Deadly Triad." Van Hasselt et al. 2018.

The Deadly Triad in Deep RL

Geometric Interpretation of Value Functions

Possible Learning Objectives

Minimum value error \bullet

•
$$\overline{VE}(\mathbf{w}) = \sum_{s} \mu(s)(v_{\pi}(s) - \hat{v}(s, \mathbf{w}))^2 = |$$

Minimum TD-Error lacksquare

•
$$\overline{TDE}(\mathbf{w}) = \sum_{s} \mu(s) \mathbf{E}_{\pi}[\delta_t^2 | S_t = s, A_t \sim \pi]$$

Minimum Bellman error:

•
$$\overline{BE}(\mathbf{w}) = ||\delta_{\mathbf{w}}||_{\mu}^{2}$$

•
$$\delta_{\mathbf{w}} = \mathbf{E}_{\pi}[\delta_t | S_t = s, A_t \sim \pi]$$

 $\left\| v_{\mathbf{w}} - v_{\pi} \right\|_{u}^{2}$

Only truly SGD with $v_{\pi}(s) \approx G_t$ for $S_t = s$.

 $\delta_t = R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}_t) - \hat{v}(S_t, \mathbf{w}_t)$

Full-gradient TD learning (Naive residual gradient)

Residual Gradient Algorithm

Bellman Error

- The Bellman error in a state is the expected TD error in that state.
- The Bellman error objective is the per-state Bellman error weighted by μ .

•
$$\overline{BE}(\mathbf{w}) = ||\delta_{\mathbf{w}}||_{\mu}^{2}$$

•
$$\delta_{\mathbf{w}} = \mathbb{E}_{\pi}[R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}_t) - \hat{v}(S_t, \mathbf{w}_t)]$$

- In the tabular setting, $\delta_{w} = 0 \implies v_{w} = v_{\pi}$. What can we say about linear function approximation?
 - May not be possible to obtain zero error.

•
$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \alpha \nabla E_{\pi}[\delta_t]^2$$
 with $\nabla E_{\pi}[\delta_t]$

 \mathbf{W}_{t}

 $|^{2} = E_{b}[\rho_{t}\delta_{t}][\nabla \hat{v}(S_{t}, \mathbf{w}_{t}) - \gamma E_{b}[\rho_{t}\hat{v}(S_{t+1}, \mathbf{w}_{t})]]$

Learnability of the Bellman Error

0,2,2,2,2,0,0,2,2,2,2,2,2,2,2,2,0,0,0

Minimal Projected Bellman Error

• Projected Bellman Error: Apply Bellman operator to v_{w} , then project into representable space of value functions. **Policy evaluation** update from chapter 4

•
$$\overline{PBE}(\mathbf{w}) = ||\Pi B_{\pi} v_{\mathbf{w}} - v_{\mathbf{w}}||_{\mu}^{2}$$

- The projected Bellman Error is uniquely determined by the data distribution.
 - Learnable!

or equivalently $||\Pi(B_{\pi}v_{\mathbf{w}} - v_{\mathbf{w}})||_{\mu}^{2}$.

• Since PBE is learnable, we can use $PBE(\mathbf{w})$ as an objective for SGD.

Gradient-TD • SGD with: $\nabla \overline{PBE}(\mathbf{w}) = 2\mathbb{E}[\rho_t(\gamma x_{t+1} - x_t)x_t^{\top}]\mathbb{E}[x_t x_t^{\top}]^{-1}\mathbb{E}[\rho_t \delta_t x_t]$

- Define $\mathbf{v} \approx \mathbb{E}[x_t x_t^{\top}]^{-1} \mathbb{E}[\rho_t \delta_t x_t]$.
 - $\rho_t \delta_t$.
 - Instead of instantly solving for v, we will estimate with SGD:
- When v is learned, we substitute it in for the last two terms in the gradient.

•
$$\nabla \overline{PBE}(\mathbf{w}) \approx \rho_t (x_t - \gamma x_{t+1}) x_t^{\mathsf{T}} v_t$$

• In matrix form, this is a solution to a linear regression with features x_t and target

Gradient-TD

Emphatic TD

- Keep $VE(\mathbf{w})$ as our objective.
- probability (i.e., the on-policy state distribution of the behavior policy).
- others.
- State interest, I_t , represents how much we care about accurate estimation in state S_t .
- Emphasis is a learned multiplier on the learning rate.

•
$$M_t \leftarrow I_t + \gamma \rho_{t-1} M_{t-1}$$

• $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha M_t \rho_t [R_t - \hat{v}(S_{t+1}, \mathbf{w}_t) - \hat{v}(S_t, \mathbf{w}_t)] \nabla \hat{v}(S_t, \mathbf{w}_t)$

Naively applying semi-gradient TD-learning will update states according to their visitation

• We can artificially change the importance of states by emphasizing some states more than

Emphatic TD

Variance in Off-Policy Learning

- - Though not all cases!
- What to do in practice:
 - Keep behavior and target policy close.
 - Clip importance weights: $\bar{\rho}_t \leftarrow \min(\frac{\pi(A_t)}{b(A_t)})$
 - Weighted importance sampling.

• Learn state density ratios: $\frac{d_{\pi}(S_t)}{d_b(S_t)}$.

• In many cases, off-policy learning is inherently of higher variance than on-policy learning.

$$\frac{|S_t|}{|S_t|}, 1)$$

Summary

- Deadly Triad: off-policy, function approximation, and bootstrapping.
- Two paths forward:
 - Reconsider our prediction objective with function approximation.
 - Leads to Gradient-TD methods.
 - Re-weight state updates.
 - Emphatic TD methods.
- Not clear what the "right" algorithm is yet!

Action Items

- Homework 4.
- Literature review due next week.
- Begin deep RL readings.
- Midterm survey (by tomorrow evening).

