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Announcements

Soon
Homework 3 due 1 minute ago; homework 4 released tonight.

 Due Nov 17. We won’t cover relevant material until 2 weeks from now.
Begin reading deep RL readings: Section 9.7 and 16.5 of course textbook.
Midterm survey

* At 65% right now. Please complete by Friday evening!
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The Deadly Iriad

1. Function Approximation: changing the value estimate at one state affects
the value estimate at other states.

2. Bootstrapping: using existing estimated values as part of the learning
target instead of only using actual returns.

3. Off-Policy Learning: using a distribution of transitions (s, a, s’, r) other
than that of the target policy.
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Do we need the deadly triad”

 \Why use function approximation?
oo many states to represent explicitly; need generalization.
 Why bootstrap?

« Memory and computation requirements; learning in non-episodic tasks;
faster learning.

 Why use off-policy learning?

 Separate exploration and exploitation; general purpose learning agents must
learn about multiple reward signals and target policies at the same time.
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Yohel’'s Presentation

e Slides



https://docs.google.com/presentation/d/1RFcCrE1zMRkgLjpI3M49ApQHQgjaANlg_yavyKbgo58/edit#slide=id.p

The Deadly Triad in Deep RL

* In practice, each component of the deadly triad is not binary.

 Bootstrapping: can use n-step returns or target networks to decrease
amount of bootstrapping.

* Function approximation: larger neural networks decrease over-
generalization.

o Off-Policy learning: controlling distribution of samples from the replay
buffer modulates how off-policy updates are.

“Deep Reinforcement Learning and the Deadly Triad.” Van Hasselt et al. 2018.

Josiah Hanna, University of Wisconsin — Madison



Geometric Interpretation of Value Functions
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Possible Learning Objectives

e Minimum value error

Only truly SGD withv (s) ~ G
A 2 T

CVEW) = Y u(s)0y(8) = 05, W) = | vy = v, | 2 for S, = s f
\)

0, = R, 1 +yv(S41, W) — (S, W,)

* Minimum TD-Error /

 TDE(w) = Z u(s)E [62|S, = s, A, ~ 7] Full-gradient TD learning

(Naive residual gradient)

e Minimum Bellman error:
Residual Gradient Algorithm

. BE(w) = ||6,]1;
. 5,=E [5|S =5,A, ~ 7]
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Bellman Error

* The Bellman error in a state is the expected TD error in that state.

* The Bellman error objective is the per-state Bellman error weighted by u.

. BE(w) = | |5, |1

* 5w — _ﬂ[Rt+1 + V‘A’(St+19 Wt) — ‘A’(Sta Wt)]

e In the tabular setting, o, = 0 = v, = v_. What can we say about linear function
approximation?

* May not be possible to obtain zero error.

W, <« W,—aVE_[5]*with VE_[5]* = E [p5,][ VIS, W) — yE,[p (S, {, W)]]
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Learnabillity of the Bellman Error

distribution distribution

0,2,2,2,2,0,0,2,2,2,2,2,2,2,2,0,0,0



Minimal Projected Bellman Error

 Projected Bellman Error: Apply Bellman operator to v, then project into

representable space of value functions. - Policy evaluation
update from chapter 4

. PBE(w) = ||IIB_ vy, — v, H or equivalently | |II(B_ vy, — vy, )H

* The projected Bellman Error i1s uniquely determined by the data
distribution.

e | earnablel

e Since PBE is learnable, we can use PBE(w) as an objective for SGD.
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Gradient-TD

. SGD with: VPBE(W) = 2E[p,(yx,,, — x)x,']

. Define v ~ E[xx, ]!

- [/0 tétxt] .

— T9—1
lx.x, |

- [,0 tétxt]

 |In matrix form, this is a solution to a linear regression with features x, and target

POy

e |nstead of instantly solving for v, we will estimate with SGD:

« When v is learned, we substitute it in for the last two terms in the gradient.

. VPBE(W) ~ p(x,

.
— VX DXV
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Gradient-TD
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Emphatic 1D

Keep VE(W) as our objective.

Naively applying semi-gradient TD-learning will update states according to their visitation
probability (i.e., the on-policy state distribution of the behavior policy).

We can artificially change the importance of states by emphasizing some states more than
others.

State interest, It, represents how much we care about accurate estimation in state St.

Emphasis is a learned multiplier on the learning rate.
M, < I, +yp,_M,_,
e W, < W, +aM,p|R, —V(S,,,W,) — V(S,, W) VV(S,, W)
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Emphatic 1D
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Variance in Off-Policy Learning

* |[n many cases, off-policy learning is inherently of higher variance than on-policy learning.
 Though not all cases!
 What to do Iin practice:

 Keep behavior and target policy close.

(A, |S) ,

b, sy

Clip importance weights: p, < min(

* Weighted importance sampling.

d,(S,)
db(St) |

, Learn state density ratios:
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Summary

 Deadly Triad: off-policy, function approximation, and bootstrapping.
 Two paths forward:
 Reconsider our prediction objective with function approximation.
* |eads to Gradient-TD methods.
 Re-weight state updates.
 Emphatic TD methods.

 Not clear what the “right” algorithm is yet!
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Action ltems

Homework 4.
Literature review due next week.
Begin deep RL readings.

Midterm survey (by tomorrow evening).
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