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Announcements

« Homework 4 due November 17 (next week).

 Next week: abstraction and hierarchy
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Model-Free RL
Vm Policy Gradient methods

Actor-Critic Methods

_ REINFORCE
Q-learning
DDPG Trust-region
SARSA .
A2C policy
DQN optimization

Soft Actor-Critic
(SAC)

TD3

Proximal Policy
Optimization
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Policy-based RL

Policy gradient methods use a parameterized policy and learn policy
parameters with gradient ascent.

nyals) =Pr(A, =alS, =s,0, = 0)

J(0) = v, (s))

Orr1 < 9t+av97(9\t) 0 — ﬂ@(a | S) — J(H)
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Actor-Critic Methods

* REINFORCE uses a learned value function only to lower variance.

- Monte Carlo return still drives which actions are reinforced. 0, < 0, + aG,VInmy(A,|S)
* Actor-critic methods use learned value functions to drive policy changes.

* Actor: the policy.

» Critic: value function.

e Can use state-value or action-value functions:
e 0., <0+ ad,Vylnn(A,|S) O, — R, +yv(S,.1,W,) —V(S,, W,)

e 0., < 0,+ai(S,A)V,Inx(A,l|S) Wi < W+ a0, V(S W)

Josiah Hanna, University of Wisconsin — Madison



Actor-Critic Methods

One-step Actor—Critic (episodic), for estimating 79 =~ .,

Input: a differentiable policy parameterization 7 (a|s, )
Input: a differentiable state-value function parameterization 0(s,w)
Parameters: step sizes a? > 0, a% > 0

Initialize policy parameter @ € RY and state-value weights w € R¢ (e.g., to 0)
Loop forever (for each episode):
Initialize S (first state of episode)
I+ 1
Loop while S is not terminal (for each time step):
A~ 7(-]S,0)
Take action A, observe S’, R
§d — R+~9(S",w) —9(S,w) (if S’ is terminal, then ©(S’,w) = 0)
w— w4+ aVoVo(S,w)
0+ 0+a’I5VIinm(AlS,0)

g
S« 5
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Deterministic Policy Gradients

e Actor-critic limitations:  Random sampling for both states and actions.

* Can still have high variance (like REINFORCE) and also introduce bias into
gradient estimates.

* On-policy or require importance sampling to be off-policy.

* Deterministic policy gradient methods overcome these limitations in continuous
action problems:

» Learn a deterministic policy A, < my(S,).

» Approximate g (s, a) with a function approximator, g, that is differentiable w.r.t.

the action.
Can interpret as approximating Q-

° VQJ(Q) X E[ Vaé(St, At) Veﬂe(a) ‘ St ~ dba At ~ b] learning for continuous actions

Deterministic Policy Gradient Algorithms. Silver et al. 2014.
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Deterministic Policy Gradients

» Basis for several state-of-the-art off-policy deep RL algorithms:
 Deep Deterministic Policy Gradient (DDPG). Lilicrap et al. 2015.
o Soft Actor-Critic (SAC). Haarnoja et al. 2018.

 Twin Delayed DDPG (TD3). Fujimoto et al. 2018.
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Natural Policy Gradients

0 — nyals) = J(O)

» V,J(0) is the direction in which an infinitesimally small change in ¢ will
increase J(6) most.

. “Small” is defined using the euclidean norm, | | @] \%.
 Makes step-size sensitive to how the policy Is parameterized.

e The natural gradient, %J(e), is the direction in which an infinitesimally
small change in 7, will increase J(€)) most.  Parameterization no longer matters!

. %J(e) = F~1 V,J(0) where F is the d X d Fisher information matrix.

A Natural Policy Gradient. Kakade. 2001

Natural gradient works efficiently in learning. Amari. 1998 Josiah Hanna, University of Wisconsin — Madison



Trust Region Policy Optimization (TRPO)

* Two limitations of natural policy gradients:
 Computational complexity of estimating Fisher Information matrix.

e Still have to set a step-size parameter.

* Trust Region Policy Optimization (TRPO):

« Approximately solves for the natural gradient (direction to change 6)
with conjugate gradient algorithm.

 Uses a line-search to find a that most increases surrogate objective
L(0’) subject to the constraint Dy, (74| | 75) < €.

Trust Region Policy Optimization. Schulman et al. 2015.
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Jinquan’s Presentation

e Slides



https://docs.google.com/presentation/d/1mZLGsigExKwQ9MG_vLePrGCt7b6uJW3pLo6My8T5pok/edit#slide=id.g18b1588db3e_0_126

Proximal Policy Optimization (PPO)

* Large scale deep RL requires decoupling policy optimization from environment
interaction; enables efficient use of GPUs and parallelized data collection.

* Requires off-policy algorithms; TPRO is an on-policy algorithm

 PPO takes inspiration from TRPO but makes off-policy updates with SGD.

Optimize @ with (s, a, r, s’)

. Optimize the objective E collected while running 6,

|L(s, a, 8, 0] with SGD.

S,CZNﬂ'@k

. L(s,a, 0, €) = min( mgals) A™(s, a), clip( T ls)

1 —e,1+e)A™(s,a))
a9 a9

« No guarantee that Ty, and Ty, . won’t be too different; implementations may use other techniques to
mitigate this.
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What can PPO do?
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What can PPO do?
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Average Reward RL

An alternative objective to discounted return:

1
r(r) = lm —
° () h—oo N

h
Z E[R | Sy, Ag,_1 ~ 7] = Z p(S) Z (als) Zp(s’, rls,a)r
=0 ) a s’ r

Differential return G, = R, | — r(m) + R, ., — r(m) + . ..

Differential value functions that are analogous to our standard value functions.

Ex: V(s) = ) m(als) Y p(s',r|s,a)[r — r(z) + vy(s)]

e 5,=R., =R+ %S, W)= DS, w).

Most algorithms we have seen so far can be adapted to the average reward objective by replacing standard value
functions and TD-errors with the differential variant.
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Average Reward RL
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On-Policy Deep Reinforcement Learning for the Average-Reward Criterion. Zhang and Ross. 2021.
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Summary

e Actor-critic methods use a learned value function as a replacement for the
return in basic policy gradient methods.

« REINFORCE —> Natural policy gradients —> TRPO —> PPO

* In continuing RL problems, average reward can be a more suitable policy
optimization objective

* Algorithms developed for discounted return can still be used with
differential value functions.
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Action ltems

* Get started on final project!

e Homework 4
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