Advanced Topics in Reinforcement Learning Lecture 20: Hierarchical RL I

Announcements

- Homework 4 due Thursday.
- Next week: Ethics, Reproducibility, and Evaluation

Motivation for Abstraction

- People complete tasks by planning, learning, and acting at different level of abstraction.
 - Aids credit assignment and exploration.
- Behaviors are modular and re-used across tasks.
 - Transfer learning; subtask learning
- Different states may be functionally the same.
- Abstraction as perception.

- State Abstraction
- Temporal Abstraction

Types of Abstraction

8 multi-step options (to each room's 2 hallways)

Semi-MDPs

- A formalism that allows actions to last for varying amounts of time.
 - \mathcal{S} : same state set.
 - *O*: Option set.
 - $p(s', r, t \mid s, o)$: Transition probability (includes time).
 - r(s', s, t): Reward function (includes time).
 - γ : discount factor.

- Minimal change to MDP formalism to permit temporal abstraction.
- An option is:
 - $\pi: \mathcal{S} \times \mathcal{A} \to [0,1]$: a policy.
 - $\beta: \mathcal{S} \to [0,1]$: termination probability.
 - $\mathcal{I} \subset \mathcal{S}$: initiation set.
- which occurs with probability $\beta(S_t)$ at each step t.
- $\mathscr{E}(\pi, s, t)$: the event that option π was initiated at time t in state s.

Options Framework

• If agent is in $s \in \mathcal{I}$, then can execute option o which means following π until termination

Options Framework

- Markov policies over options: $\mu : \mathcal{S} \times \mathcal{O} \rightarrow [0,1]$.
- Policies over options determine an underlying flat policy which outputs primitive actions.
 - Flat policy is (usually) non-Markovian. Why?
 - Action selection at each time-step depends on what option is being executed and thus history.
 - Not fully non-stationary policies; only depend on history since current option was selected.

Policies

Multi-Time Models and Value Functions

• $r_s^o = \mathbf{E}[R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^k R_{t+k} | \mathscr{E}(o, s, t)]$

$$p_{ss'}^o = \sum_{k=1}^{\infty} p(s', k) \gamma^k$$

Action-value functions become option-value functions:

•
$$q_{\mu}(s, o) = \mathbf{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | \mathscr{E}(o\mu, s, t)].$$

• $q_{\mu}(s, o) = r_s^o + \sum_{s'} p_{ss'}^o \sum_{o' \in \mathcal{O}} \mu(s', o') q_{\mu}(s', o')$

Learning and Planning

- With recursive action-value definitions, learning and planning easily extend from MDPs:
 - Use value iteration with a known or learned $p_{ss'}^o$ and r_s^o .
 - Use Q-learning for model-free learning.

Examples

4 stochastic primitive actions

8 multi-step options (to each room's 2 hallways)

Initial Values

Hallway options $\mathcal{O}=\mathcal{H}$

Primitive

options

 $\mathcal{O}=\mathcal{A}$

Examples

Iteration #1

Iteration #2

Intra-Option Learning

- up" and modify options.
 - Interrupt an option before termination if another option has higher predicted value (Theorem 2 of reading guarantees improvement).
 - Learn about or improve options:
 - Build multi-time models for planning (section 5).
 - Learn option-values more efficiently (section 6).
 - Improve option policy (section 7).

• Key benefit of the options framework over semi-MDPs is the ability to "open

Where do options come from?

- Manually defined based on domain knowledge.
- Learned from experience
 - maximizes sub-goal reward.
 - reward.

Option Critic Architecture. Bacon et al. 2018.

• Can specify sub-goal rewards and learn an option (i.e., a policy) that

Option-Critic architecture learns options based on original problem

Options Today

- hierarchical RL.
 - Not the only choice!
- Alternative skill formalism in some works:

•
$$\pi_{\text{high}}(z \mid s)$$
 and $\pi_{\text{low}}(a \mid s, z)$.

with no widely accepted one method.

Option Critic Architecture. Bacon et al. 2018.

The options framework is perhaps the most well-known formalism for

Intra-option learning and reasonable sub-goals are still open challenges

Summary

- Temporal abstraction facilitates exploration and credit-assignment.
- Options framework enables extending concepts, theory, and algorithms from MDPs to temporal abstraction.
- Key questions:
 - How are options acquired?
 - How much benefit can we derive from first learning options and then learning the optimal policy over options?

Action Items

• Homework 4 due Thursday!

