Advanced Topics in Reinforcement Learning

Lecture 22: Evaluation and Reproducibility

Josiah Hanna
University of Wisconsin — Madison
Announcements

• Next week: Multi-agent RL

• No class Thursday! 🎉🎉
Variation in RL

HalfCheetah-v1 (TRPO, Different Random Seeds)
Variation in RL

- Any single run of an RL algorithm may mislead you about expected performance.

- High stochasticity in deep RL algorithms:
 - MDP is stochastic.
 - Exploration policy is usually stochastic.
 - Mini-batch gradient descent with a replay buffer is stochastic.
 - Network weight initialization is stochastic.
 - GPUs have some non-determinism.
Experimental Protocol

• For each algorithm considered, run multiple trials.

• Report aggregate statistics for each algorithm such as mean, median, and mode.

• Report confidence measures such as standard error, %-confidence interval, or interquartile range.

• How many trials?
 • Depends…
 • If computational requirements of experiments are light, can just re-run with a larger number of trials.
 • Otherwise, use power analysis to decide if sample size is sufficient.
Common Random Seeds

• You plan to compare algorithms A and B in simulated environment X.

• Since data in RL is stochastic, what if algorithm A gets unlucky with observed data?

• To prevent this, fix a set of common random seeds. Ensure that each algorithm is ran once with each seed.

```python
import random

seeds = [random.randint(1e6) for _ in range(n_trials)]

for seed in seeds:
    # Run algorithm A with seed
    ...

# Run algorithm B with seed
...```
Yunfu’s Presentation

- Slides
Hyper-parameters Matter
Hyper-parameter Selection

• Report how hyper-parameters selected. Why?

• Best hyper-parameters are problem dependent and so the process is more important than the final hyper-parameter values.

• How to select:
  • Graduate student descent
  • Random search
  • Grid search
  • More advanced: Bayesian optimization, population-based training, neural architecture search.
Community Standards

• What should conference and journal standards for reproducibility be?
  • Reproducibility challenges
  • Reproducibility check-lists
• Culture challenges:
  • Emphasis on positive results and novelty.
  • Low benefit for reproducing work of others and considering incremental questions.
Sharing Code

• Is code sharing sufficient?
  • Not necessarily, may require missing compute and data resources.

• Why do different code-bases give different performances?
  • Deep RL implementations often have hidden tricks that go beyond the base algorithm.

  • Example: observation normalization, i.e., divide observed state variables by a running average of their standard deviation.
Summary

• Deep RL experiments are very stochastic. Makes evaluation of deep RL algorithms a challenge.

• Deep RL algorithms can be sensitive to their hyper-parameters. Reporting these values is necessary for replicability.

• Community standards and values matter for what type of science is done.
Action Items

• Multi-agent RL reading for next week.

• Continue making progress on your final project.