Advanced Topics in Reinforcement Learning Lecture 23: Multi-agent Learning I

Josiah Hanna University of Wisconsin – Madison

Based on Slides from <u>Stefano Albrecht's MARL lectures</u>

Announcements

- Next week: Offline RL
- Final projects due two weeks from Wednesday.
- Course evaluation is now available.

Multi-Agent Systems

Games

Robot soccer

Negotiation/markets Wireless networks

Image Credit: Stefano Albrecht

Autonomous cars

Smart grid

Challenges in Multi-Agent Learning

- Multi-agent credit assignment.
- Curse of multiple agents.
- Non-stationarity in learning.
- Different agents may have different objectives.

Multi-agent Credit Assignment

- All single-agent RL algorithms must solve temporal credit assignment.
 - Which actions contributed to eventual rewards received.
- Now each agent's rewards depend on what other agents do.
 - Did my action contribute when a reward was received?

Non-Stationarity in Multi-Agent Learning

- stationary (unchanging over time).
- individual agents.
- Thus, the true action-values for any policy are also non-stationary.

So far we have assumed that the environment's transition dynamics are

• With learning, the environment appears non-stationary from the view of

Curse of Many Agents

- What if we just learn a policy that outputs an action for all agents?
 - Size of action space grows (possibly exponentially with number of agents).
 - Size of state space might grow.
 - Application communication constraints.
- Multi-agent RL decomposes a large RL problem into smaller, coupled problems.
- ...but agents must coordinate action choices.

Stochastic Games

- Set of states \mathcal{S}_{\cdot}
- For each agent i:
 - Action set \mathscr{A}_i .
 - Reward function, $r_i : \mathcal{S} \times \mathcal{A}_1 \times \ldots \times \mathcal{A}_n \to \mathbf{R}$.
- Transition function, $p : \mathcal{S} \times \mathcal{A}_1 \times \ldots \times \mathcal{A}_n \times \mathcal{S} \rightarrow [0,1].$
- Discount factor γ .

Interaction in Stochastic Games

- Begin in state s_0 .
- At time t:
 - Each agent chooses action according to $\pi(A_t = a \mid S_t)$.
 - Each agent receives reward $r_i(S_t, A_t^1, \ldots, A_t^n)$.
 - Transition to next state.
- How does this affect Markov property?

What do we want to converge to?

- - Convergence defined in terms of policy profiles, $\pi = (\pi_1, \ldots, \pi_n)$.
- the expected return in each state.
- If not, many different solution concepts exist. Some examples:
 - Minimax optimality
 - Nash equilibrium
 - Pareto Optimality

Each agent wants to maximize reward but doing so depends on what other agents do.

• If all use the same reward function, then the optimal policy profile is to just maximize

- A policy is minimax optimal for an agent if it has the best worst-case value.
- Typically considered in two player zero-sum games.
 - Two agents and $r_1(s, a_1, a_2) =$
- Agent 1 selects policy π ; all other agents select the policy that makes π as bad as possible for Agent 1.
- Solution concept pursued in "Markov games as a framework for multiagent reinforcement learning."

Minimax Optimality

$$-r_2(s, a_1, a_2).$$

Nash Equilibrium

- A policy profile is a Nash equilibrium if no agent has an incentive to change their policy.
- Formally, profile π is a Nash equilibrium if $\forall i, \pi' v_{\pi'}^i(s) \leq v_{\pi}^i(s)$ where π' is identical to π except for agent *i*'s policy.
- Assumes all agents are rational.

C U -1,-1 -5,0 0,-5 | -3,-3

Pareto Optimality

- Cannot improve one agent's value without decreasing another agent's value.
- Formally, a policy profile, π , is Paretooptimal in state s if there is no other profile, π' such that $\forall i, v_{\pi'}^i(s) \ge v_{\pi}^i(s)$ and $\exists i, v_{\pi'}^i(s) > v_{\pi}^i(s).$

Adam's Presentation

• <u>Slides</u>

Summary

- learning agents.
- New challenges in MARL:
 - Credit assignment
 - Non-stationarity
- New solution concepts:
 - Minimax optimality, Pareto optimality, Nash equilibrium

• Multi-agent RL aims to scale RL to environments with multiple, possibly

Action Items

- Offline RL reading for next week.
- Good luck on your final project.

