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Announcements

 Next week: Offline RL
* Final projects due < two weeks.

e Course evaluation is now available.
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Yoon’s Presentation

e Slides



https://docs.google.com/presentation/d/12Jbf_m5tCETmrIODkLB3-6FiwJlr0XZA1jhlxddGC5E/edit#slide=id.g1a3fb46a2de_0_3

Challenges in Multi-Agent Learning

* Multi-agent credit assignment.
* Curse of multiple agents.

* Non-stationarity in learning.



Independent Learning

o Simplest MARL algorithm is for each agent to pretend other agents are part of
environment and run single-agent RL.

* Lose theoretical guarantees; still can work in practice.

 Example: Alpha Go, OpenAl’s Dota team.

e Shortcomings:

e Single-agent RL converges to deterministic policy but may need a stochastic policy for
optimality in Markov / Stochastic games.

 May never converge due to non-stationarity.

* High variance action-value updates due to lack of multi-agent credit assignment.

Is Independent Learning All You Need in the StarCraft Multi-Agent Challenge? De Witt et al. 2020. Josiah Hanna, University of Wisconsin — Madison



Centralized Learning

Treat cooperative multi-agent RL problem as one big single-agent problem.

Learn a policy that takes as input the state of all agents and outputs an action for each agent.
Example: Deepmind’s Star Craft playing agent.

Shortcomings:

* Curse of multiple agents.

* Agents must either share a reward or agent rewards must be turned into a single reward.

* Observations of all agents are needed to compute an action for any single agent.

Main benefit: avoids multi-agent credit assignment and non-stationarity problems.
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Centralized Training / Decentralized Execution

* Obijective: take advantage of centralized training but enable each agent to
operate independently of others.

* Counterfactual Multi-agent Policy Gradients (COMA) implements this idea
with policy gradient learning.

. Each agent learns a policy ﬂgi(a | 5) with gradient ascent on 6.

Vo J(0) = (Q(s,ay,..,a;..,a,) - Z Ty .5y, a,)) Volog my(a;| s)

Baseline is independent of agent iI’'s action

Counterfactual Multi-Agent Policy Gradients. Foerster et al. 2017. Josiah Hanna, University of Wisconsin — Madison



Game-Theoretic Reinforcement Learning

 What if different agent’s have different rewards?

« Why can we not simply learn Ql-(s, Ay, ..,d,.., an) for agent 1 and take

actions with arg max Q.(s,a,..,d,..,a,)?
d

 Non-stationary if others are learning.
 We don’t know what actions will be taken by other agents.

 Game-Theoretic RL uses various solution types from game theory to
prescribe how other agents will act.
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Game-Theoretic Reinforcement Learning

* Assume all agent’s are rational w.r.t. their own current action- R P S
value functions. R 00 [ -11]1-1

« Agent 1 maintains an action-value function for all other agents.

At each state, action-value functions induce a normal form
game.

» Solution of normal form games is a policy profile, Minimax-Q uses minimax solution (Littman, 1994)
. ( ) Nash-Q uses Nash equilibrium (Hu and Wellman, 2003)
T = s e e ) CE-Q uses correlated equilibrium (Greenwald and Hall, 2003)

* Use this profile to prescribe how other agents will act in

arg max Q.(s,a;,..,a,..,a,).
d
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Minimax Q-learning

o Standard Q-learning:
. O(s,a) « 0(s,a) + a(R +ymax O(s',a’) — Q(s,a))

* Minimax Q-learning:

V(s) = max min Z m(a, | s)0C(s, a;, a,)
’ neM(dl) a, =

1

e J(s,ay,a,) < 0(s,a;,a,) + a(R+yV(s) — 0(s,a;,a,))
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Minimax Q-learning

vs. random

vs. hand-built

vs. MR-challenger
vs. MM-challenger
vs. QR-challenger
vs. QQ-challenger

MR MM QR QQ

% won games | % won games [ % won games | % won games

99.3 6500 99.3 7200 99.4 11300 99.5 8600

48.1 4300 53.7 5300 26.1 14300 76.3 3300
35.0 4300

37.5 4400
0.0 5500
0.0 1200
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Opponent Modelling

 Game-theoretic RL assumes that other agents will act rationally or worst-
case.

* Instead we can try to predict what others might do and then play best

response.
Observed Predicted
interaction history Agent model property of interest
(past actions, states, ...) (actions, class, goal, ...)

Figure Credit: Stefano Albrecht
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Self-Play

 \Where do opponents come from for training?
e “Markov Games” paper evaluated different training-evaluation combinations.
» Basic self-play uses the main agent’s policy as the opponent’s policy.

* |dea: as the policy improves, the opponent also improves.

* ...but might get stuck in cycles or chatter between different non-dominant
policies.

 Can mitigate this by keeping around past versions of the opponent’s policy
and also training against those.
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Matthew’s Presentation

e Slides



https://docs.google.com/presentation/d/1Uxvkxya4HPrT4ZufMhqeRs2cNhOqqcf0oPNxQ4DmB0g/edit#slide=id.p

Summary

 Multi-agent RL aims to scale RL to environments with multiple, possibly
learning agents.

» Often requires algorithm changes to overcome MARL challenges.
* Centralized training / decentralized execution.
* Game-theoretic RL.
 Opponent modelling.
o Self-play

Josiah Hanna, University of Wisconsin — Madison



Action ltems

» Offline RL reading for next week.

* Good luck on your final project.

Josiah Hanna, University of Wisconsin — Madison



