Advanced Topics in Reinforcement Learning Lecture 25: Offline RL I

Announcements

- Next week: RL application
- Final projects due ~ 1 week.
- Please complete the course evaluation! At 14% right now.
- Today:
 - Introduce offline RL problem setting, objectives, and challenges.
 - Describe 3 classes of offline RL methods.
- Thursday:
 - Advanced offline RL challenges.
 - Off-policy Evaluation.

- Online RL is what we have covered so far.
- Exploration makes online RL slow.

 - I.e., (s,a,s',r) tuples.
- What if we already have data available to us?
 - Offline RL is RL applied to a static dataset of (s,a,s',r) tuples without additional exploration.
 - recently along with much attention.

Offline RL Introduction

Have to collect data before any learning can begin and more data as the policy changes.

• Also called "Batch RL." Batch RL is the older term and offline RL has gained prominence

- Modern machine learning is being driven by 1) enormous data sets and 2) large neural networks.
- Collecting a large data set through task interaction often takes a long time. \bullet
- What if we have existing data from:
 - Previously used policies (possibly non-RL policies)?
 - Other tasks?
 - Data from humans (e.g., YouTube videos of people cooking dinner)?
- Many potential applications: \bullet
 - Self-driving cars (large amounts of data available).
 - Healthcare (exploration is limited or impossible).
 - Robotics (diverse data available).

Offline RL Motivation

- Assume the target task can be described as an MDP.
 - More on partial observability next class.
- A behavior policy, $\pi_{\beta}(a \mid s)$, has collected dataset $\mathcal{D} = \{(s_i, a_i, s'_i, r_i)\}_{i=1}^m$.
 - Possibly multiple behavior policies and possibly unknown to us.
- Goal: Use \mathscr{D} to learn policy, π , that maximizes expected return when deployed on the target task.

Offline RL Formalism

Ransheng's Presentation

• <u>Slides</u>

Challenges

- Distribution shift: distribution of data in \mathscr{D} is different than it would be if \mathscr{D} was collected with the current policy, π .
 - Similar challenge for any off-policy RL algorithm but more extreme in offline RL.
- Missing data for some actions.
 - Should we take or avoid those actions?

Training data

Image credit: Sergey Levine's Offline RL Lecture

What the policy wants to do

Warm-up: Imitation learning

- Supervised learning not reinforcement learning. • $\pi \leftarrow \arg \max_{\pi} \sum_{i=1}^{n} \log \pi(a_i | s_i)$
- (Sort of) robust to distribution shift. Performance loss can be quadratic in the episode length.
- Limitations:
 - Cannot improve upon π_{β} (and may do worse).
 - Causal confusion. ${\bullet}$

Image credit: Causal Confusion in Imitation Learning. De Haan et al. 2019.

• Given \mathcal{D} , we can attempt to just mimic the behavior policy that generated the data.

Scenario B: Incomplete Information

What do we want in offline RL?

- Offline RL should improve upon π_{β} .
- Combine the best parts of sub-optimal behaviors.

Decision Transformer: Reinforcement Learning via Sequence Modeling. Chen et al. 2021.

Offline RL Method Classes

- Importance sampling for policy gradient methods.
- Model-based policy optimization.
- Action-value offline RL methods.
- Decision transformers.

Policy Gradients via Importance Sampling

- Recall policy gradient learning:
 - $\nabla_{\theta} J(\pi_{\theta}) = \mathbf{E}[q_{\pi}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) | s_t \sim d_{\pi_{\theta}}, a_t \sim \pi_{\theta}]$
- Gradient is an expectation w.r.t. on-policy distribution.
 - Approximation with \mathcal{D} provides a biased estimate of the gradient.
- One solution: correct with importance sampling.

•
$$\nabla_{\theta} J(\pi_{\theta}) = \mathbf{E}\left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\beta}(a_t \mid s_t)}q_{\pi}(s_t, a_t)\nabla_{\theta}\log \pi_{\theta}(a_t \mid s_t) \mid s_t \sim \mathbf{E}\left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\beta}(a_t \mid s_t)}q_{\pi}(s_t, a_t)\nabla_{\theta}\log \pi_{\theta}(a_t \mid s_t) \mid s_t \sim \mathbf{E}\left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta}(a_t \mid s_t)}q_{\pi}(s_t, a_t)\nabla_{\theta}\log \pi_{\theta}(s_t \mid s_t)\right]$$

Limitations: \bullet

Requires π_{β} is known or first estimated, e.g., with maxin

• High variance unless $\pi_{\beta} \approx \pi_{\theta}$.

 $d_{\pi_{\theta}}, a_t \sim \pi_{\theta}].$

num likelihood
$$\hat{\pi}_{\beta} = \arg \max_{\pi} \sum_{i=1}^{m} \log \pi(a_t | s_t).$$

Model-based Offline RL

- Use \mathscr{D} to build a simulator of the target MDP.
 - Use \mathcal{D} to learn transition dynamics, p.
 - Learn π^{\star} in the simulator.
- Limitations \bullet
 - Learning accurate models from scratch is hard.
 - What should the model predict when an action has not been observed?
- actions, e.g., with a reward penalty $\tilde{r}(s, a) = r(s, a) - \lambda u(s, a)$.

One solution: penalize the policy learned in simulation to avoid out of distribution

Action-value Based Offline RL

• Q-learning is already an off-policy algorithm. What if we just apply it directly to \mathcal{D} ?

•
$$q_{k+1}(s_i, a_i) \leftarrow q_k(s_i, a_i) + \alpha(r_i + \gamma \max_{a'} q_k(s'_i, a') - q_k(s_i, a_i))$$

• $\max_{a'} q_k(s'_i, a')$ might over-estimate value if a' is not in the data.

- Possible fix to over-estimation: keep current policy close to π_{β} .
 - Close in terms of KL-divergence [1] or maximal mean discrepancy [2].

$$\pi_{k+1} = \arg\max_{\pi} \mathbf{E}[q_{\pi_k}(s,a) \,|\, s \sim \mathcal{Q}]$$

- Intuition: make local improvement on top of π_{β} .
- Limitations: may not know π_{β} ; unclear how to estimate it.
- One solution: use an implicit constraint.

[1] Behavior Regularized Offline Reinforcement Learning. Wu et al. 2019. [2] Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. Kumar et al. 2019.

Constrained Policy Iteration

 $\mathcal{D}, a \sim \pi$] such that $d(\pi_{\beta} | | \pi) \leq \epsilon$.

Conservative Q-Learning

action-values.

•
$$\mathscr{L}_{CQL} = (Q(s, a) - (r + \gamma \mathbf{E}_{\pi}[Q(s', a')]))$$

Expected SARSA

 $Q \rightarrow q_{\pi}$

- Make π greedy w.r.t. Q and repeat.
- have with supervised learning.

Instead of a constraint, we can just be pessimistic with out-of-distribution

• Limitations: when to stop training? We lack offline RL workflows as we

Siddharth's Presentation

• <u>Slides</u>

Summary

- Offline RL is RL with a static batch of data.
 - No exploration!
- Existing RL algorithms must be adapted for the offline setting:
 - Policy gradient methods may require importance sampling.
 - Model-based methods may require a pessimism assumption.
 - Q-learning-based methods also require pessimism.

