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Announcements

Next week: RL application

Final projects due < 1 week.

Please complete the course evaluation! At 19% right now.
* Due December 14!!

Today:

* Advanced offline RL challenges.

» Off-policy Evaluation.
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Offline RL Formalism

 Assume the target task can be described as an MDP.
» A behavior policy, mg(a|s), has collected dataset & = {(s;, a;, 5;, 1) } i ;-
* Possibly multiple behavior policies and possibly unknown to us.

e Goal: Use Y to learn policy, &, that maximizes expected return when
deployed on the target task.
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Challenges

o Distribution shift: distribution of data in & is different than it would be if &
was collected with the current policy, 7.

* Similar challenge for any off-policy RL algorithm but more extreme Iin
offline RL.

 Missing data for some actions.

e Should we take or avoid those actions?

Training data What the policy wants to do
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Image credit: Sergey Levine’s Offline RL Lecture



Conservative Q-Learning
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Josiah Hanna, University of Wisconsin — Madison



Conservative Q-Learning

* Be pessimistic with out-of-distribution action-values.
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» Make 7 greedy w.r.t. ) and repeat.

Breakout
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* Limitations: when to stop training to avoid over-
fitting? We lack offline RL workflows as we have with _ «|
supervised learning.
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John’s Presentation

e Slides



https://docs.google.com/presentation/d/1UuX-zogBqCAHzVHJFWVQDM4GZcj2kRzn/edit

Advanced Challenges

* Non-stationarity: offline data was collected in the past and the target MDP
may have changed.

» Offline data may lack rewards or actions.

 Example: videos of a task show you what happened but not how done.
* Partial observabillity:

 Markov assumption might be violated.

e Unobserved confounders.
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Unobserved Confounders

» So far we have assumed the data was generated by ﬂﬁ(a | §) meaning that the

behavior policy based its action on the state s that we observe in the data.

 What if the behavior policy had access to information not recorded in the
data?

 Example:

* \We have medical data that records a patient’s vital signs, a treatment
prescribed by a doctor, and whether the patient recovered or not.

 Doctor observes — but does not record — the wealth of the patient.

Josiah Hanna, University of Wisconsin — Madison



Unobserved Confounders

Data Generating Process The Data

{sick, pill, healthy}
{sick, no pill, not healthy}
{not sick, no pill, healthy}
{not sick, no pill, healthy}

Assume wealth leads to recovery
(e.g., better diet) and affects
doctor’s decision.

— —

Tg: if rich and sick, give pill else don'’t.

Even if the pill is useless, an online RL algorithm will conclude that it is
beneficial!
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Off-Policy Evaluation

* |In offline RL, the learned policy does not interact with the real world until
deployment time.

« How do we know that a learned policy will perform well?

* How do we select hyper-parameters for RL algorithms?
« Answer: use Y to estimate J(x) for learned policy 7.

What would the expected return be had we ran 7 instead of ﬂﬂ?
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Importance Sampling Policy Evaluation

» Assume & consists of full episodes, 2 = {(Sy, Ag, Ry, S15-- -9 A R}

] 3
If & had been generated by target policy 7 then — Z Z ;/th’ is an unbiased estimator of J(x).
m

i=1 t=0
« Since Y was generated by g, We iInstead use importance sampling to adjust for distribution

shift:
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« Limitations: high variance; requires g IS kKnown or estimated.

 Can be improved with different variance reduction techniques: weighted IS, control variates.
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Approach — generating unbiased estimates of p(0)

* Unbiased estimate p(0, 7, 0;) generated using importance sampling

‘I -
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. Pr(7|0) m(a¢|s, 0) Empirical estimate of PDF of
(9, ,6)7; = R = R - A : :
pLO, 7, 6:) (T)PI‘(T‘(%) \(,T.ltlj[l (a¢|st, 0;) 2 081 [\ p(0,7,0;) from 100,000 trajectories
return =
importance weight g 0-6
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» p(0,7,0;) is bounded from below by zero ~ “oz/ |
* Since returns are normalized to |0, 1] ol
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e |J pper bound: log, , Importance Weighted Return

* Probability of selection of a specific action could be low under behavior policy and high
under evaluation policy - makes the importance weighted return be large

* p(0,1,0;) has expected value in [0, 1] and has a long tail (large upper bound)

* Hence need to account for large range and high-variance to produce a tight
bound on p(6)

Slide Credit: Siddharth Subramani



Experiments and results

Targeting digital advertisement

* Ads shown on a webpage is based on known features of a user
* Problem that attempts to maximize the probability of user clicking an ad
* Sparse reward problem —returns have high variance since most trajectories provide none to less feedback

* This paper uses data from Adobe simulator
* 31 features representing each user, +1 reward when ad is clicked, O when ad is overlooked, T = 20,y =1
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Importance Sampling Policy Evaluation

* |Importance sampling has variance that is exponential in the length of
episodes.

* Alternatively, consider estimating average reward:

1
. J(n) = 1—E[Rt\St ~d A, ~ nj
—7

J ~ R Must be estimated from <. \
(7[) ~ Wi ] Many ways to do this.
m

Breaking the Curse of Horizon: Infinite-Horizon Off-Policy Estimation. Liu et al. 2018
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Model-based Policy Evaluation
e

« Use Y to build a simulator of the target MDP.

N\
» Use Y to learn transition dynamics, p. \
 Evaluate In the simulator. 1\(

 Limitations
* | earning accurate models from scratch is hard.

 \What should the model predict when an action has not been observed?
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Fitted Q-Evaluation

* \Write policy performance in terms of action-values:
» J(mr) =E[q,(S5,A)|S ~dy,A ~ n]

« Estimate ¢, with DQN-like variant of expected SARSA:

2
1 m
3 = — .+ | §! ~ .,, ) — i a;
. (Op) - ._zl (1’, /4 z n(a \Sl)Qg(S, a’) — Qs a))
= ! Like DQN except use

expectation w.r.t. 7
Instead of max
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Which OPE method to use?
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Figure 2: General Guideline Decision Tree.

Image Credit: Empirical Study of Off-Policy Policy Evaluation for Reinforcement Learning. Voloshin et al. 2021.
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Summary

Offline RL is RL with a static batch of data.

 No exploration!

Existing RL algorithms must be adapted for the offline setting to handle
missing actions and distribution shift.

Other challenges include: missing actions, non-stationarity, and partial
observability that introduces unobserved confounders.

Off-policy evaluation can mitigate the risk of deploying a sub-optimal
policy but has many practical challenges.
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Action ltems

» Last reading on RL applications.

* Good luck on your final project.
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