Advanced lopics In
Reinforcement Learning

Lecture 4: Dynamic Programming

Josiah Hanna
University of Wisconsin — Madison

Announcements

Homework 1 released on canvas; due Thursday, September 29.

Reading Sign-Ups: https://docs.google.com/spreadsheets/d/1-dce’-
qzt8EVM4gYOLIISWzYEGpioWM4x0VyA6QimzY/edit#gid=0

How important is the math?

e Very! Particularly Bellman equations for policy value and optimality.

Josiah Hanna, University of Wisconsin — Madison

https://docs.google.com/spreadsheets/d/1-dce7-qzt8EVM4gYOLIl5WzYEGpioWM4x0VyA6QimzY/edit#gid=0
https://docs.google.com/spreadsheets/d/1-dce7-qzt8EVM4gYOLIl5WzYEGpioWM4x0VyA6QimzY/edit#gid=0
https://docs.google.com/spreadsheets/d/1-dce7-qzt8EVM4gYOLIl5WzYEGpioWM4x0VyA6QimzY/edit#gid=0

Overview

Course Overview

Review Bellman Equations (wrap up Bellman optimality).
Yuxiao’s Presentation
Policy Evaluation via Dynamic Programming

Policy lteration

Josiah Hanna, University of Wisconsin — Madison

https://pages.cs.wisc.edu/~jphanna/teaching/2022fall_cs839/schedule.html

Bellman Equation (Review)

 Bellman equation expresses state-value, vﬂ(s), INn terms of expected
reward and state-values at next time-step.

V]Z'(S) — E]T[Rt+1 T yvjz'(St+2) ‘ St — S]

VJZ'(S) — E]T[Rt+1 ‘ St — S] T }/EE[VE(SH-Q) ‘ St — S]

Expected immediate Expected future reward
reward fort’ > t+1

v(s) =) mals)),) p(s’rls,@)lr+yv(s)]

Josiah Hanna, University of Wisconsin — Madison

Bellman Equation

 The book uses the concept of a back-up diagram to illustrate value
function computations:

ve(s) =) mals) Y,) p(s,rls, a)lr+ yv(s)]

N
N\

0000

/]
i\

Josiah Hanna, University of Wisconsin — Madison

Golf Example

A a4
- State is ball location. Actions are [e)
putt (short distance, accurate) or B['
drive ball (long distance, less » ' "'_‘_ |
accurate). \ . L&

g.(s.driver)

 Reward is -1 until the ball goes in

the hole. (' : "'_3 @ ..

 \What is value of policy that N\
always pUttS? Figure 3.3: A golf example: the state-value func-

tion for putting (upper) and the optimal action-
value function for using the driver (lower). |

Josiah Hanna, University of Wisconsin — Madison

Optimality

Agent’s objective: find policy that maximizes v_(s) for all s.

The optimal policy — policy that has maximal value in all states. 7% > zif v_. > v_(s) for all
states and possible policies.

* Does this policy always exist?
e |s it unique?
Possibly multiple, but always at least one optimal policies in a finite MDP.

* Also, deterministic and Markovian, I.e., action selection only depends on current state.

]Z'*(S) = arg max qﬂ*(s’ a) qﬂ*(S, Cl) — _[Rt+1 + an*(StH) ‘ St = S, At — Cl]

a

Josiah Hanna, University of Wisconsin — Madison

Optimal Value Functions

* Like all policies, the optimal policy has value functions:

* ﬂ*(S) — _[Rt+1 T]/Vﬂ*(SH_l) ‘ St — S]

° qﬂ*(sa Cl) — _[Rt+1 T an*(StH) ‘ St — S,At — Cl]

 The optimal policy is greedy with respect to the action-values, i.e.,

7% (s) = argmax g_.(s, a)

Josiah Hanna, University of Wisconsin — Madison

Bellman Optimality

V*(S) — Eﬂ*[q(s, A)] From last time: state-value is expected action-value.
— 2 71'*(61 ‘ S)q*(S, Cl) Definition of expectation.
— HciaX q*(s, a) Optimal policy is greedy w.rt g,
— maax E]Z G t ‘ St = s, At = a| Definition of action-value .
— mgx Eﬂ*[Rt+1 -+ }/Gt+1 ‘ St — S,At = a| Recursive definition of return.
= mgx E_ R .{+yv,(S,.]S =5,A =d] Definition of state-value.
a
= mj‘X Z p(s,rls,a)lr +yv,(s)] Definition of expectation.
s,

Josiah Hanna, University of Wisconsin — Madison

Golf Example

: : : Uputt | Y Y 4 \ -
 State is ball location. Actions are I

putt (short distance, accurate) or ? -3,."
drive ball (long distance, less LU |

\-6 '.\ \ \\
accurate). A4
* Reward is -1 until the ball goes in Buls, driver)

the hol - —
e hole. ," ,:

¥ g e :
 What is action-value of using \ \ =

driver and then following the | |
Figure 3.3: A golf example: the state-value func-
Optl mal pOI |Cy? tion for putting (upper) and the optimal action-

value function for using the driver (lower). |

Josiah Hanna, University of Wisconsin — Madison

Approximation

The optimal policy exists but, in practice, it may not be possible to
compute.

In real world problems, we must settle for approximate optimality.

This i1s an opportunity — no need to waste time finding optimal actions In
states the agent rarely visits.

Need to generalize knowledge across states — more on this in October!

Josiah Hanna, University of Wisconsin — Madison

Yuxiao’s Presentation

e | Ink to slides.

https://docs.google.com/presentation/d/1oWol_ny6xsR_rN2VmmF8tDZ49dc3eQpr-maeIIwThsY/edit#slide=id.g15afff21048_0_10

Dynamic Programming in RL

Dynamic programming is a general class of algorithm that builds a solution to a problem by recursively
solving sub-problems.

In RL, dynamic programming refers to algorithms that compute values at one state using values
(partially) computed for other states.

 Not learning methods!
“Bootstrapping”
* | earning a guess from a guess.
 Methods that use initial value estimates to compute new, improved value estimates.
 From the expression “pull oneself up by your own bootstraps.”

 Not to be confused with bootstrapping in statistics.

Josiah Hanna, University of Wisconsin — Madison

Dynamic Programming in RL

Use value functions to find improved policies.
Turn Bellman equations into value function updates.

Bellman equation for policy value becomes policy evaluation:
Vi q(8) < 2 m(als) Z Zp(s’, r|s,a)lr +yv(s)]
a s r

Bellman optimality equation becomes value iteration:

Vie1(8) < max Z Zp(s r|s,a)lr +yv(s)]

s’

Josiah Hanna, University of Wisconsin — Madison

Limitations of Dynamic Programming

Require full knowledge of the environment
e Know transitions and rewards.

May have high computational requirements; linear in actions, states, and rewards per-
update.

We will discuss relaxing these limitations when we discuss model-based learning in a few
weeks.

 \WWhat is done in practice?
 Dynamic programming methods are applied for solving MDPs in practice.

* Not for full RL problems; but key ideas are important!

Josiah Hanna, University of Wisconsin — Madison

Policy Evaluation (Prediction)

* Given a policy, compute its state- or action-value function.

Vk+1(S) < Zﬂ'(d‘S)Z ZP(S/,V‘S, Cl)[l/'+ yvk(sl)]

Gs1(5:0) <=). Y p(srls,@)lr+y) qls,a)]

 When to stop making updates?
* Do these updates converge?

 Yes, update is a contraction mapping with fixed point ¢..
» Convergence proof for value-iteration. Can you generalize it?

Josiah Hanna, University of Wisconsin — Madison

http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf

Policy Evaluation Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Josiah Hanna, University of Wisconsin — Madison

Policy Improvement (Control)

» We have v_(s) for the current policy 7. How can we improve 7?

e Alternate:

» Run policy evaluation updates to find v_.

_ Set 7'(s) « arg max Z p(s,rl|s,a)lr+yv (s')]

s’y

 Why does this work"?

Josiah Hanna, University of Wisconsin — Madison

Policy Improvement Iheorem

Suppose for z that ds, a such that g_(s,a) > v_(s).
Let 7'(s) = a and 7'(§) = #(s) for all other states.
What is true about z'? Why?
» As good as or better than x, i.e., v_(s) > v_(s), Vs
If 7 is sub-optimal, does there exist s, a such that g (s, a) > v_(s)?

* Yes, this follows from Bellman Optimality. Must be at least one state where 7 is not greedy w.r.t.
its action-value function.

. Optimal value function: v_(s) = max g, (s, a) Vs
da

Josiah Hanna, University of Wisconsin — Madison

Policy Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Josiah Hanna, University of Wisconsin — Madison

Summary

Bellman equations express relationships between values at one state and
subsequent states.

Dynamic programming turns Bellman equations into value function
updates.

Policy Evaluation: find value function for a fixed policy.

Policy Iteration: compute optimal policy by iterating 1) policy evaluation
and 2) greedy policy improvement.

Josiah Hanna, University of Wisconsin — Madison

Action ltems

« Homework 1 now released. Due September 29 @ 9:29 am.
o Start reading for next week.

* Be thinking about final project — proposal due in 2.5 weeks.
* Application of RL to a domain of your choice.
* Or an algorithmic modification to improve an RL algorithm.

 The more concrete your proposal is, the better guidance you will
receive!

Josiah Hanna, University of Wisconsin — Madison

