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Announcements

• Homework 1 released on canvas; due Thursday, September 29.


• Reading Sign-Ups: https://docs.google.com/spreadsheets/d/1-dce7-
qzt8EVM4gYOLIl5WzYEGpioWM4x0VyA6QimzY/edit#gid=0


• How important is the math?


• Very! Particularly Bellman equations for policy value and optimality.

https://docs.google.com/spreadsheets/d/1-dce7-qzt8EVM4gYOLIl5WzYEGpioWM4x0VyA6QimzY/edit#gid=0
https://docs.google.com/spreadsheets/d/1-dce7-qzt8EVM4gYOLIl5WzYEGpioWM4x0VyA6QimzY/edit#gid=0
https://docs.google.com/spreadsheets/d/1-dce7-qzt8EVM4gYOLIl5WzYEGpioWM4x0VyA6QimzY/edit#gid=0
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Overview

• Course Overview


• Review Bellman Equations (wrap up Bellman optimality).


• Yuxiao’s Presentation


• Policy Evaluation via Dynamic Programming


• Policy Iteration

https://pages.cs.wisc.edu/~jphanna/teaching/2022fall_cs839/schedule.html


Josiah Hanna, University of Wisconsin — Madison

Bellman Equation (Review)
• Bellman equation expresses state-value, , in terms of expected 

reward and state-values at next time-step.
vπ(s)

vπ(s) = ∑
a

π(a |s)∑
s′ 

∑
r

p(s′ , r |s, a)[r + γvπ(s′ )]

vπ(s) = Eπ[Rt+1 + γvπ(St+2) |St = s]

vπ(s) = Eπ[Rt+1 |St = s] + γEπ[vπ(St+2) |St = s]
Expected immediate 

reward
Expected future reward 

for t’ > t+1
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• The book uses the concept of a back-up diagram to illustrate value 
function computations:

Bellman Equation

vπ(s) = ∑
a

π(a |s)∑
s′ 

∑
r

p(s′ , r |s, a)[r + γvπ(s′ )]

s

a
r

s′ 

π

p
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Golf Example

• State is ball location. Actions are 
putt (short distance, accurate) or 
drive ball (long distance, less 
accurate).


• Reward is -1 until the ball goes in 
the hole.


• What is value of policy that 
always putts?
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Optimality
• Agent’s objective: find policy that maximizes  for all s.


• The optimal policy — policy that has maximal value in all states.  if  for all 
states and possible policies.


• Does this policy always exist?


• Is it unique?


• Possibly multiple, but always at least one optimal policies in a finite MDP.


• Also, deterministic and Markovian, i.e., action selection only depends on current state.


•

vπ(s)

π⋆ ≥ π vπ⋆ ≥ vπ(s)

π⋆(s) = arg max
a

qπ⋆(s, a) qπ⋆(s, a) = 𝔼[Rt+1 + γvπ⋆(St+1) |St = s, At = a]
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Optimal Value Functions

• Like all policies, the optimal policy has value functions:


• 


• 


• The optimal policy is greedy with respect to the action-values, i.e., 

vπ⋆(s) = 𝔼[Rt+1 + γvπ⋆(St+1) |St = s]

qπ⋆(s, a) = 𝔼[Rt+1 + γvπ⋆(St+1) |St = s, At = a]

π⋆(s) = arg max
a

qπ⋆(s, a)
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Bellman Optimality
v*(s) = Eπ⋆[q(s, A)]

= ∑
a

π⋆(a |s)q⋆(s, a)

= max
a

q⋆(s, a)

= max
a

Eπ⋆[Gt |St = s, At = a]

= max
a

Eπ⋆[Rt+1 + γGt+1 |St = s, At = a]

= max
a

Eπ⋆[Rt+1 + γv⋆(St+1) |St = s, At = a]

= max
a ∑

s′ ,r

p(s′ , r |s, a)[r + γv⋆(s′ )]

From last time: state-value is expected action-value.


Definition of expectation.


Optimal policy is greedy w.r.t 


Definition of action-value .


Recursive definition of return.


Definition of state-value.


Definition of expectation.

q⋆
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Golf Example
• State is ball location. Actions are 

putt (short distance, accurate) or 
drive ball (long distance, less 
accurate).


• Reward is -1 until the ball goes in 
the hole.


• What is action-value of using 
driver and then following the 
optimal policy?
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Approximation

• The optimal policy exists but, in practice, it may not be possible to 
compute.


• In real world problems, we must settle for approximate optimality.


• This is an opportunity — no need to waste time finding optimal actions in 
states the agent rarely visits.


• Need to generalize knowledge across states — more on this in October!
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Yuxiao’s Presentation

• Link to slides.

https://docs.google.com/presentation/d/1oWol_ny6xsR_rN2VmmF8tDZ49dc3eQpr-maeIIwThsY/edit#slide=id.g15afff21048_0_10


Josiah Hanna, University of Wisconsin — Madison

Dynamic Programming in RL
• Dynamic programming is a general class of algorithm that builds a solution to a problem by recursively 

solving sub-problems.


• In RL, dynamic programming refers to algorithms that compute values at one state using values 
(partially) computed for other states.


• Not learning methods!


• “Bootstrapping”


• Learning a guess from a guess.


• Methods that use initial value estimates to compute new, improved value estimates.


• From the expression “pull oneself up by your own bootstraps.”


• Not to be confused with bootstrapping in statistics.
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Dynamic Programming in RL
• Use value functions to find improved policies.


• Turn Bellman equations into value function updates.


• Bellman equation for policy value becomes policy evaluation:


• Bellman optimality equation becomes value iteration:

vk+1(s) ← ∑
a

π(a |s)∑
s′ 

∑
r

p(s′ , r |s, a)[r + γvk(s′ )]

vk+1(s) ← max
a ∑

s′ 

∑
r

p(s′ , r |s, a)[r + γvk(s′ )]
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Limitations of Dynamic Programming
• Require full knowledge of the environment


• Know transitions and rewards.


• May have high computational requirements; linear in actions, states, and rewards per-
update.


• We will discuss relaxing these limitations when we discuss model-based learning in a few 
weeks.


• What is done in practice?


• Dynamic programming methods are applied for solving MDPs in practice.


• Not for full RL problems; but key ideas are important!
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Policy Evaluation (Prediction)
• Given a policy, compute its state- or action-value function.


• When to stop making updates?

• Do these updates converge?


• Yes, update is a contraction mapping with fixed point .

• Convergence proof for value-iteration. Can you generalize it?

qπ

vk+1(s) ← ∑
a

π(a |s)∑
s′ 

∑
r

p(s′ , r |s, a)[r + γvk(s′ )]

qk+1(s, a) ← ∑
s′ 

∑
r

p(s′ , r |s, a)[r + γ∑
a′ 

qk(s′ , a′ )]

http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf
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Policy Evaluation Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
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Policy Improvement (Control)
• We have  for the current policy . How can we improve ?


• Alternate:


• Run policy evaluation updates to find .


• Set 


• Why does this work?

vπ(s) π π

vπ

π′ (s) ← arg max
a ∑

s′ ,r

p(s′ , r |s, a)[r + γvπ(s′ )]

vk+1(s) ← ∑
a

π(a |s)∑
s′ 

∑
r

p(s′ , r |s, a)[r + γvk(s′ )]
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Policy Improvement Theorem
• Suppose for  that  such that .


• Let  and  for all other states.


• What is true about  Why?


• As good as or better than , i.e., 


• If  is sub-optimal, does there exist  such that ?


• Yes, this follows from Bellman Optimality. Must be at least one state where  is not greedy w.r.t. 
its action-value function.


• Optimal value function: 

π ∃s, a qπ(s, a) ≥ vπ(s)

π′ (s) = a π′ (s̃) = π(s̃)

π′ ?

π vπ′ 
(s) ≥ vπ(s), ∀s

π s, a qπ(s, a) ≥ vπ(s)

π

v⋆(s) = max
a

q⋆(s, a)∀s

vk+1(s) ← ∑
a

π(a |s)∑
s′ 

∑
r

p(s′ , r |s, a)[r + γvk(s′ )]
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Policy Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
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Summary

• Bellman equations express relationships between values at one state and 
subsequent states.


• Dynamic programming turns Bellman equations into value function 
updates.


• Policy Evaluation: find value function for a fixed policy.


• Policy Iteration: compute optimal policy by iterating 1) policy evaluation 
and 2) greedy policy improvement.
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Action Items

• Homework 1 now released. Due September 29 @ 9:29 am.


• Start reading for next week.


• Be thinking about final project — proposal due in 2.5 weeks.


• Application of RL to a domain of your choice.


• Or an algorithmic modification to improve an RL algorithm.


• The more concrete your proposal is, the better guidance you will 
receive!


