
Advanced Topics in
Reinforcement Learning

Lecture 4: Dynamic Programming

Josiah Hanna

University of Wisconsin — Madison

Josiah Hanna, University of Wisconsin — Madison

Announcements

• Homework 1 released on canvas; due Thursday, September 29.

• Reading Sign-Ups: https://docs.google.com/spreadsheets/d/1-dce7-
qzt8EVM4gYOLIl5WzYEGpioWM4x0VyA6QimzY/edit#gid=0

• How important is the math?

• Very! Particularly Bellman equations for policy value and optimality.

https://docs.google.com/spreadsheets/d/1-dce7-qzt8EVM4gYOLIl5WzYEGpioWM4x0VyA6QimzY/edit#gid=0
https://docs.google.com/spreadsheets/d/1-dce7-qzt8EVM4gYOLIl5WzYEGpioWM4x0VyA6QimzY/edit#gid=0
https://docs.google.com/spreadsheets/d/1-dce7-qzt8EVM4gYOLIl5WzYEGpioWM4x0VyA6QimzY/edit#gid=0

Josiah Hanna, University of Wisconsin — Madison

Overview

• Course Overview

• Review Bellman Equations (wrap up Bellman optimality).

• Yuxiao’s Presentation

• Policy Evaluation via Dynamic Programming

• Policy Iteration

https://pages.cs.wisc.edu/~jphanna/teaching/2022fall_cs839/schedule.html

Josiah Hanna, University of Wisconsin — Madison

Bellman Equation (Review)
• Bellman equation expresses state-value, , in terms of expected

reward and state-values at next time-step.
vπ(s)

vπ(s) = ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvπ(s′)]

vπ(s) = Eπ[Rt+1 + γvπ(St+2) |St = s]

vπ(s) = Eπ[Rt+1 |St = s] + γEπ[vπ(St+2) |St = s]
Expected immediate

reward
Expected future reward

for t’ > t+1

Josiah Hanna, University of Wisconsin — Madison

• The book uses the concept of a back-up diagram to illustrate value
function computations:

Bellman Equation

vπ(s) = ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvπ(s′)]

s

a
r

s′

π

p

Josiah Hanna, University of Wisconsin — Madison

Golf Example

• State is ball location. Actions are
putt (short distance, accurate) or
drive ball (long distance, less
accurate).

• Reward is -1 until the ball goes in
the hole.

• What is value of policy that
always putts?

Josiah Hanna, University of Wisconsin — Madison

Optimality
• Agent’s objective: find policy that maximizes for all s.

• The optimal policy — policy that has maximal value in all states. if for all
states and possible policies.

• Does this policy always exist?

• Is it unique?

• Possibly multiple, but always at least one optimal policies in a finite MDP.

• Also, deterministic and Markovian, i.e., action selection only depends on current state.

•

vπ(s)

π⋆ ≥ π vπ⋆ ≥ vπ(s)

π⋆(s) = arg max
a

qπ⋆(s, a) qπ⋆(s, a) = 𝔼[Rt+1 + γvπ⋆(St+1) |St = s, At = a]

Josiah Hanna, University of Wisconsin — Madison

Optimal Value Functions

• Like all policies, the optimal policy has value functions:

•

•

• The optimal policy is greedy with respect to the action-values, i.e.,

vπ⋆(s) = 𝔼[Rt+1 + γvπ⋆(St+1) |St = s]

qπ⋆(s, a) = 𝔼[Rt+1 + γvπ⋆(St+1) |St = s, At = a]

π⋆(s) = arg max
a

qπ⋆(s, a)

Josiah Hanna, University of Wisconsin — Madison

Bellman Optimality
v*(s) = Eπ⋆[q(s, A)]

= ∑
a

π⋆(a |s)q⋆(s, a)

= max
a

q⋆(s, a)

= max
a

Eπ⋆[Gt |St = s, At = a]

= max
a

Eπ⋆[Rt+1 + γGt+1 |St = s, At = a]

= max
a

Eπ⋆[Rt+1 + γv⋆(St+1) |St = s, At = a]

= max
a ∑

s′ ,r

p(s′ , r |s, a)[r + γv⋆(s′)]

From last time: state-value is expected action-value.

Definition of expectation.

Optimal policy is greedy w.r.t

Definition of action-value .

Recursive definition of return.

Definition of state-value.

Definition of expectation.

q⋆

Josiah Hanna, University of Wisconsin — Madison

Golf Example
• State is ball location. Actions are

putt (short distance, accurate) or
drive ball (long distance, less
accurate).

• Reward is -1 until the ball goes in
the hole.

• What is action-value of using
driver and then following the
optimal policy?

Josiah Hanna, University of Wisconsin — Madison

Approximation

• The optimal policy exists but, in practice, it may not be possible to
compute.

• In real world problems, we must settle for approximate optimality.

• This is an opportunity — no need to waste time finding optimal actions in
states the agent rarely visits.

• Need to generalize knowledge across states — more on this in October!

Josiah Hanna, University of Wisconsin — Madison

Yuxiao’s Presentation

• Link to slides.

https://docs.google.com/presentation/d/1oWol_ny6xsR_rN2VmmF8tDZ49dc3eQpr-maeIIwThsY/edit#slide=id.g15afff21048_0_10

Josiah Hanna, University of Wisconsin — Madison

Dynamic Programming in RL
• Dynamic programming is a general class of algorithm that builds a solution to a problem by recursively

solving sub-problems.

• In RL, dynamic programming refers to algorithms that compute values at one state using values
(partially) computed for other states.

• Not learning methods!

• “Bootstrapping”

• Learning a guess from a guess.

• Methods that use initial value estimates to compute new, improved value estimates.

• From the expression “pull oneself up by your own bootstraps.”

• Not to be confused with bootstrapping in statistics.

Josiah Hanna, University of Wisconsin — Madison

Dynamic Programming in RL
• Use value functions to find improved policies.

• Turn Bellman equations into value function updates.

• Bellman equation for policy value becomes policy evaluation:

• Bellman optimality equation becomes value iteration:

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

vk+1(s) ← max
a ∑

s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

Josiah Hanna, University of Wisconsin — Madison

Limitations of Dynamic Programming
• Require full knowledge of the environment

• Know transitions and rewards.

• May have high computational requirements; linear in actions, states, and rewards per-
update.

• We will discuss relaxing these limitations when we discuss model-based learning in a few
weeks.

• What is done in practice?

• Dynamic programming methods are applied for solving MDPs in practice.

• Not for full RL problems; but key ideas are important!

Josiah Hanna, University of Wisconsin — Madison

Policy Evaluation (Prediction)
• Given a policy, compute its state- or action-value function.

• When to stop making updates?

• Do these updates converge?

• Yes, update is a contraction mapping with fixed point .

• Convergence proof for value-iteration. Can you generalize it?

qπ

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

qk+1(s, a) ← ∑
s′

∑
r

p(s′ , r |s, a)[r + γ∑
a′

qk(s′ , a′)]

http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf

Josiah Hanna, University of Wisconsin — Madison

Policy Evaluation Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Josiah Hanna, University of Wisconsin — Madison

Policy Improvement (Control)
• We have for the current policy . How can we improve ?

• Alternate:

• Run policy evaluation updates to find .

• Set

• Why does this work?

vπ(s) π π

vπ

π′ (s) ← arg max
a ∑

s′ ,r

p(s′ , r |s, a)[r + γvπ(s′)]

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

Josiah Hanna, University of Wisconsin — Madison

Policy Improvement Theorem
• Suppose for that such that .

• Let and for all other states.

• What is true about Why?

• As good as or better than , i.e.,

• If is sub-optimal, does there exist such that ?

• Yes, this follows from Bellman Optimality. Must be at least one state where is not greedy w.r.t.
its action-value function.

• Optimal value function:

π ∃s, a qπ(s, a) ≥ vπ(s)

π′ (s) = a π′ (s̃) = π(s̃)

π′ ?

π vπ′
(s) ≥ vπ(s), ∀s

π s, a qπ(s, a) ≥ vπ(s)

π

v⋆(s) = max
a

q⋆(s, a)∀s

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

Josiah Hanna, University of Wisconsin — Madison

Policy Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Josiah Hanna, University of Wisconsin — Madison

Summary

• Bellman equations express relationships between values at one state and
subsequent states.

• Dynamic programming turns Bellman equations into value function
updates.

• Policy Evaluation: find value function for a fixed policy.

• Policy Iteration: compute optimal policy by iterating 1) policy evaluation
and 2) greedy policy improvement.

Josiah Hanna, University of Wisconsin — Madison

Action Items

• Homework 1 now released. Due September 29 @ 9:29 am.

• Start reading for next week.

• Be thinking about final project — proposal due in 2.5 weeks.

• Application of RL to a domain of your choice.

• Or an algorithmic modification to improve an RL algorithm.

• The more concrete your proposal is, the better guidance you will
receive!

