Advanced Topics in Reinforcement Learning Lecture 4: Dynamic Programming

Announcements

- Homework 1 released on canvas; due Thursday, September 29.
- <u>qzt8EVM4gYOLII5WzYEGpioWM4x0VyA6QimzY/edit#gid=0</u>
- How important is the math?

Reading Sign-Ups: <u>https://docs.google.com/spreadsheets/d/1-dce7-</u>

Very! Particularly Bellman equations for policy value and optimality.

Overview

- Course Overview
- Review Bellman Equations (wrap up Bellman optimality).
- Yuxiao's Presentation
- Policy Evaluation via Dynamic Programming
- Policy Iteration \bullet

Bellman Equation (Review)

• Bellman equation expresses state-value, $v_{\pi}(s)$, in terms of expected reward and state-values at next time-step.

$$v_{\pi}(s) = \mathbf{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+2}) | S_t = s]$$

r

$$v_{\pi}(s) = \mathbf{E}_{\pi}[R_{t+1} \mid S_t]$$

Expected immediate reward

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'}^{n}$$

 $= s] + \gamma \mathbf{E}_{\pi}[v_{\pi}(S_{t+2}) | S_t = s]$

Expected future reward for t' > t+1

 $\sum p(s', r \mid s, a)[r + \gamma v_{\pi}(s')]$

Bellman Equation

• The book uses the concept of a **back-up** diagram to illustrate value function computations:

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'}^{n} \sum_{s' \in S} \frac{1}{s'}$$

$$\sum_{r} p(s', r \mid s, a) [r + \gamma v_{\pi}(s')]$$

Golf Example

- State is ball location. Actions are putt (short distance, accurate) or drive ball (long distance, less accurate).
- Reward is -1 until the ball goes in the hole.
- What is value of policy that always putts?

Figure 3.3: A golf example: the state-value function for putting (upper) and the optimal actionvalue function for using the driver (lower).

Optimality

- Agent's objective: find policy that maximizes $v_{\pi}(s)$ for all s.
- The optimal policy policy that has maximal value in all states. $\pi^* \ge \pi$ if $v_{\pi^*} \ge v_{\pi}(s)$ for all states and possible policies.
 - Does this policy always exist?
 - Is it unique?
- Possibly multiple, but always at least one optimal policies in a finite MDP.
 - Also, deterministic and Markovian, i.e., action selection only depends on current state.

•
$$\pi^{\star}(s) = \arg\max_{a} q_{\pi^{\star}}(s, a)$$
 $q_{\pi^{\star}}(s, a) = \mathbb{E}[R_{t+1} + \gamma v_{\pi^{\star}}(S_{t+1}) | S_t = s, A_t = a]$

Optimal Value Functions

• Like all policies, the optimal policy has value functions:

•
$$v_{\pi^*}(s) = \mathbb{E}[R_{t+1} + \gamma v_{\pi^*}(S_{t+1})]$$

- $q_{\pi^*}(s, a) = \mathbb{E}[R_{t+1} + \gamma v_{\pi^*}(S_{t+1}) | S_t = s, A_t = a]$
- The optimal policy is greedy with respect to the action-values, i.e., $\pi^{\star}(s) = \arg \max q_{\pi^{\star}}(s, a)$ \boldsymbol{a}

 $S_{t} = s$]

 $v_*(s) = \mathbf{E}_{\pi^*}[q(s,A)]$ $= \sum \pi^{\star}(a \,|\, s) q_{\star}(s, a)$ $= \max^{a} q_{\star}(s, a)$ \mathcal{A} $= \max_{a} \mathbf{E}_{\pi^{\star}}[G_t | S_t = s, A_t = a]$ $= \max_{a} \mathbf{E}_{\pi^{\star}}[R_{t+1} + \gamma G_{t+1} | S_t = s, A_t = a]$ = $\max_{a} \mathbf{E}_{\pi^{\star}}[R_{t+1} + \gamma v_{\star}(S_{t+1}) | S_t = s, A_t = a]$ $= \max \sum p(s', r \mid s, a)[r + \gamma v_{\star}(s')]$

Bellman Optimality

From last time: state-value is expected action-value.

Definition of expectation.

Optimal policy is greedy w.r.t q_{\star}

Definition of action-value.

Recursive definition of return.

Definition of state-value.

Definition of expectation.

Golf Example

- State is ball location. Actions are putt (short distance, accurate) or drive ball (long distance, less accurate).
- Reward is -1 until the ball goes in the hole.
- What is action-value of using driver and then following the optimal policy?

Figure 3.3: A golf example: the state-value function for putting (upper) and the optimal actionvalue function for using the driver (lower).

Approximation

- The optimal policy exists but, in practice, it may not be possible to compute.
- In real world problems, we must settle for approximate optimality.
- This is an opportunity no need to waste time finding optimal actions in states the agent rarely visits.
- Need to generalize knowledge across states more on this in October!

Yuxiao's Presentation

• Link to slides.

Dynamic Programming in RL

- solving sub-problems.
- lacksquare(partially) computed for other states.
 - Not learning methods!
- "Bootstrapping"
 - Learning a guess from a guess.
 - Methods that use initial value estimates to compute new, improved value estimates.
 - From the expression "pull oneself up by your own bootstraps."
 - Not to be confused with bootstrapping in statistics.

• Dynamic programming is a general class of algorithm that builds a solution to a problem by recursively

In RL, dynamic programming refers to algorithms that compute values at one state using values

Dynamic Programming in RL

- Use value functions to find improved policies.
- Turn Bellman equations into value function updates.
- Bellman equation for policy value becomes policy evaluation:

$$v_{k+1}(s) \leftarrow \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) [r + \gamma v_k(s')]$$

Bellman optimality equation becomes value iteration:

$$v_{k+1}(s) \leftarrow \max_{a} \sum_{s'} \sum_{r} p(s', r \mid s, a) [r + \gamma v_k(s')]$$

Limitations of Dynamic Programming

- Require full knowledge of the environment
 - Know transitions and rewards.
- update.
- weeks.
- What is done in practice?
 - Dynamic programming methods are applied for solving MDPs in practice.
 - Not for full RL problems; but key ideas are important!

• May have high computational requirements; linear in actions, states, and rewards per-

• We will discuss relaxing these limitations when we discuss model-based learning in a few

Policy Evaluation (Prediction)

Given a policy, compute its state- or action-value function.

$$v_{k+1}(s) \leftarrow \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) [r + \gamma v_k(s')]$$
$$q_{k+1}(s, a) \leftarrow \sum_{s'} \sum_{r} p(s', r \mid s, a) [r + \gamma \sum_{a'} q_k(s', a')]$$

- When to stop making updates?
- Do these updates converge?
 - Yes, update is a **contraction mapping** with fixed point q_{π} .
 - <u>Convergence proof for value-iteration</u>. Can you generalize it?

Policy Evaluation Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Policy Improvement (Control)

- We have $v_{\pi}(s)$ for the current policy π . How can we improve π ?
- Alternate:
 - Run policy evaluation updates to find v_{π} .

• Set
$$\pi'(s) \leftarrow \arg \max_{a} \sum_{s',r} p(s', r)$$

Why does this work? \bullet

 $r[s,a)[r+\gamma v_{\pi}(s')]$

Policy Improvement Theorem

- Suppose for π that $\exists s, a$ such that $q_{\pi}(s, a) \geq v_{\pi}(s)$.
- Let $\pi'(s) = a$ and $\pi'(\tilde{s}) = \pi(\tilde{s})$ for all other states.
- What is true about π' ? Why?
 - As good as or better than π , i.e., $v_{\pi'}(s) \ge v_{\pi}(s), \forall s$
- If π is sub-optimal, does there exist s, a such that $q_{\pi}(s, a) \ge v_{\pi}(s)$?
 - its action-value function.
 - Optimal value function: $v_{\star}(s) = \max q_{\star}(s, a) \forall s$

• Yes, this follows from Bellman Optimality. Must be at least one state where π is not greedy w.r.t.

Policy Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Summary

- Bellman equations express relationships between values at one state and subsequent states.
- Dynamic programming turns Bellman equations into value function updates.
- Policy Evaluation: find value function for a fixed policy.
- Policy Iteration: compute optimal policy by iterating 1) policy evaluation and 2) greedy policy improvement.

Action Items

- Homework 1 now released. Due September 29 @ 9:29 am.
- Start reading for next week.
- Be thinking about final project proposal due in 2.5 weeks.
 - Application of RL to a domain of your choice.
 - Or an algorithmic modification to improve an RL algorithm.
 - The more concrete your proposal is, the better guidance you will receive!

