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Announcements

Homework 1 released on canvas; due Thursday, September 29.

Reading Sign-Ups: https://docs.google.com/spreadsheets/d/1-dce’-
qzt8EVM4gYOLIISWzYEGpioWM4x0VyA6QimzY/edit#gid=0

How important is the math?

e Very! Particularly Bellman equations for policy value and optimality.
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Overview

Course Overview

Review Bellman Equations (wrap up Bellman optimality).
Yuxiao’s Presentation
Policy Evaluation via Dynamic Programming

Policy lteration
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https://pages.cs.wisc.edu/~jphanna/teaching/2022fall_cs839/schedule.html

Bellman Equation (Review)

 Bellman equation expresses state-value, vﬂ(s), INn terms of expected
reward and state-values at next time-step.

V]Z'(S) — E]T[Rt+1 T yvjz'(St+2) ‘ St — S]

VJZ'(S) — E]T[Rt+1 ‘ St — S] T }/EE[VE(SH-Q) ‘ St — S]

Expected immediate Expected future reward
reward fort’ > t+1

v(s) = ) mals) ), ) p(s’rls,@)lr+yv(s)]
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Bellman Equation

 The book uses the concept of a back-up diagram to illustrate value
function computations:

ve(s) = ) mals) Y, ) p(s,rls, a)lr+ yv(s)]
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Golf Example

A a4
- State is ball location. Actions are [ e )
putt (short distance, accurate) or B[ '
drive ball (long distance, less » ' "'\_‘_ |
accurate). \ . L&

g.(s.driver)

 Reward is -1 until the ball goes in

the hole. (' : "'_3 @ ..

 \What is value of policy that N\
always pUttS? Figure 3.3: A golf example: the state-value func-

tion for putting (upper) and the optimal action-
value function for using the driver (lower). |
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Optimality

Agent’s objective: find policy that maximizes v_(s) for all s.

The optimal policy — policy that has maximal value in all states. 7% > zif v_. > v_(s) for all
states and possible policies.

* Does this policy always exist?
e |s it unique?
Possibly multiple, but always at least one optimal policies in a finite MDP.

* Also, deterministic and Markovian, I.e., action selection only depends on current state.

]Z'*(S) = arg max qﬂ*(s’ a) qﬂ*(S, Cl) — _[Rt+1 + an*(StH) ‘ St = S, At — Cl]

a

Josiah Hanna, University of Wisconsin — Madison



Optimal Value Functions

* Like all policies, the optimal policy has value functions:

* ﬂ*(S) — _[Rt+1 T ]/Vﬂ*(SH_l) ‘ St — S]

° qﬂ*(sa Cl) — _[Rt+1 T an*(StH) ‘ St — S,At — Cl]

 The optimal policy is greedy with respect to the action-values, i.e.,

7% (s) = argmax g_.(s, a)
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Bellman Optimality

V*(S) — Eﬂ*[q(s, A)] From last time: state-value is expected action-value.
— 2 71'*(61 ‘ S)q*(S, Cl) Definition of expectation.
— HciaX q*( s, a) Optimal policy is greedy w.rt g,
— maax E]Z G t ‘ St = s, At = a| Definition of action-value .
— mgx Eﬂ*[Rt+1 -+ }/Gt+1 ‘ St — S,At = a| Recursive definition of return.
= mgx E_ R .{+yv,(S,. ]S =5,A =d] Definition of state-value.
a
= mj‘X Z p(s,rls,a)lr +yv,(s)] Definition of expectation.
s,
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Golf Example

: : : Uputt | Y Y 4 \ -
 State is ball location. Actions are I

putt (short distance, accurate) or ? -3,."
drive ball (long distance, less LU |

\-6 '.\ \ \\
accurate). A4
* Reward is -1 until the ball goes in Buls, driver)

the hol - —
e hole. ," ,:

¥ g e :
 What is action-value of using \ \ =

driver and then following the | |
Figure 3.3: A golf example: the state-value func-
Optl mal pOI |Cy? tion for putting (upper) and the optimal action-

value function for using the driver (lower). |
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Approximation

The optimal policy exists but, in practice, it may not be possible to
compute.

In real world problems, we must settle for approximate optimality.

This i1s an opportunity — no need to waste time finding optimal actions In
states the agent rarely visits.

Need to generalize knowledge across states — more on this in October!
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Yuxiao’s Presentation

e | Ink to slides.



https://docs.google.com/presentation/d/1oWol_ny6xsR_rN2VmmF8tDZ49dc3eQpr-maeIIwThsY/edit#slide=id.g15afff21048_0_10

Dynamic Programming in RL

Dynamic programming is a general class of algorithm that builds a solution to a problem by recursively
solving sub-problems.

In RL, dynamic programming refers to algorithms that compute values at one state using values
(partially) computed for other states.

 Not learning methods!
“Bootstrapping”
* | earning a guess from a guess.
 Methods that use initial value estimates to compute new, improved value estimates.
 From the expression “pull oneself up by your own bootstraps.”

 Not to be confused with bootstrapping in statistics.
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Dynamic Programming in RL

Use value functions to find improved policies.
Turn Bellman equations into value function updates.

Bellman equation for policy value becomes policy evaluation:
Vi q(8) < 2 m(als) Z Zp(s’, r|s,a)lr +yv(s)]
a s r

Bellman optimality equation becomes value iteration:

Vie1(8) < max Z Zp(s r|s,a)lr +yv(s)]

s’
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Limitations of Dynamic Programming

Require full knowledge of the environment
e Know transitions and rewards.

May have high computational requirements; linear in actions, states, and rewards per-
update.

We will discuss relaxing these limitations when we discuss model-based learning in a few
weeks.

 \WWhat is done in practice?
 Dynamic programming methods are applied for solving MDPs in practice.

* Not for full RL problems; but key ideas are important!
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Policy Evaluation (Prediction)

* Given a policy, compute its state- or action-value function.

Vk+1(S) < Zﬂ'(d‘S)Z ZP(S/,V‘S, Cl)[l/'+ yvk(sl)]

Gs1(5:0) <= ). Y p(srls,@)lr+y ) qls,a)]

 When to stop making updates?
* Do these updates converge?

 Yes, update is a contraction mapping with fixed point ¢..
» Convergence proof for value-iteration. Can you generalize it?
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http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf

Policy Evaluation Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
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Policy Improvement (Control)

» We have v_(s) for the current policy 7. How can we improve 7?

e Alternate:

» Run policy evaluation updates to find v_.

_ Set 7'(s) « arg max Z p(s,rl|s,a)lr+yv (s')]

s’y

 Why does this work"?
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Policy Improvement Iheorem

Suppose for z that ds, a such that g_(s,a) > v_(s).
Let 7'(s) = a and 7'(§) = #(s) for all other states.
What is true about z'? Why?
» As good as or better than x, i.e., v_(s) > v_(s), Vs
If 7 is sub-optimal, does there exist s, a such that g (s, a) > v_(s)?

* Yes, this follows from Bellman Optimality. Must be at least one state where 7 is not greedy w.r.t.
its action-value function.

. Optimal value function: v_(s) = max g, (s, a) Vs
da
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Policy Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
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Summary

Bellman equations express relationships between values at one state and
subsequent states.

Dynamic programming turns Bellman equations into value function
updates.

Policy Evaluation: find value function for a fixed policy.

Policy Iteration: compute optimal policy by iterating 1) policy evaluation
and 2) greedy policy improvement.
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Action ltems

« Homework 1 now released. Due September 29 @ 9:29 am.
o Start reading for next week.

* Be thinking about final project — proposal due in 2.5 weeks.
* Application of RL to a domain of your choice.
* Or an algorithmic modification to improve an RL algorithm.

 The more concrete your proposal is, the better guidance you will
receive!
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