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Announcements

• Homework 1 released on canvas; due Thursday, September 29.


• Start reading chapter 5 for next week.


• Project page: https://pages.cs.wisc.edu/~jphanna/teaching/
2022fall_cs839/project.html

https://pages.cs.wisc.edu/~jphanna/teaching/2022fall_cs839/project.html
https://pages.cs.wisc.edu/~jphanna/teaching/2022fall_cs839/project.html
https://pages.cs.wisc.edu/~jphanna/teaching/2022fall_cs839/project.html
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Overview

• The Policy Improvement Theorem


• Policy Iteration


• Value Iteration


• Asynchronous Value Iteration


• Samarth’s Presentation
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Policy Evaluation (Prediction)
• Given a policy, compute its state- or action-value function.

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]

qk+1(s, a) ← ∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γ∑
a′￼

qk(s′￼, a′￼)]
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Policy Improvement (Control)
• We have  for the current policy . How can we improve ?


• Behave greedily w.r.t. .


• Suggests a simple algorithm. Alternate:


• Run policy evaluation updates to find .


• Set 


• Why does this work?

vπ(s) π π

∑
s′￼,r

p(s′￼, r |s, a)[r + γvπ(s′￼)

vπ

π′￼(s) ← arg max
a ∑

s′￼,r

p(s′￼, r |s, a)[r + γvπ(s′￼)]

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]
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Policy Improvement Theorem
• Suppose for  that  such that .


• Let  and  for all other states.


• What is true about  Why?


• As good as or better than , i.e., 


• If  then always taking action  cannot decrease expected return.


• If  is sub-optimal, does there exist  such that ?


• Yes, this follows from Bellman Optimality. Must be at least one state where  is not greedy w.r.t. its action-
value function.


• Optimal value function: 

π ∃s, a qπ(s, a) ≥ vπ(s)

π′￼(s) = a π′￼(s̃) = π(s̃)

π′￼?

π vπ′￼
(s) ≥ vπ(s), ∀s

qπ(s, a) ≥ vπ(s) a

π s, a qπ(s, a) > vπ(s)

π

v⋆(s) = max
a

q⋆(s, a)∀s

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]
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Policy Iteration
• First, evaluate  to obtain .


• Then, update  to  such that 


• Policy improvement theorem guarantees that .


• Can converge quickly in practice (in terms of policy updates).


• (Fixing the subtle bug on page 80).

π vπ

π π′￼ π′￼(s) = arg max
a ∑

s′￼,r

p(s′￼, r |s, a)[r + vπ(s′￼)]

vπ′￼
(s) ≥ vπ(s)∀s

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]
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Policy Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
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Value Iteration
• What’s wrong with policy iteration?


• Policy evaluation must converge between policy updates.


• We don’t need the exact action-values — just which action has maximal action-
value.


• Value iteration combines policy evaluation and iteration in one step:


• In-place or out-of-place updates?


• In-place propagates value updates faster.


• Out-of-place is more amenable to analysis.

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]

vk+1(s) ← max
a ∑

s′￼,r

p(s′￼, r |s, a)[r + γvk(s′￼)]
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Value Iteration

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]

s

a

s′￼, r

max

p

s

a

s′￼, r

π

p

Value Iteration Policy Evaluation
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Value Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
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Asynchronous DP
• Regular DP methods require sweeps over the entire state space per-

iteration! 


• Infeasible if we have a large state-space.


• Actually unnecessary — can update states in any order and still converge 
as long as all states updated infinitely often in the limit.


• Why does this help?

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]
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Generalized Policy Iteration
• What is it?


• We can be quite permissive in how we mix evaluation and improvement.


• As long as  becomes closer to  and  becomes greedy w.r.t.  we will 
converge to .


• A general framework for all algorithms we will introduce in this class.


• Do you think this holds when  must generalize across states? I.e., increasing 
the value of  will also increase the value of  for s’ close to s.

v vπ π v
v⋆, π⋆

vπ
vπ(s) vπ(s′￼)

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]
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Samarth’s Presentation

Slides

https://docs.google.com/presentation/d/1r1k4_qZ2uG2qeqLGHprrTC3ID2PJag5zKPoTS_2qilo/edit?usp=sharing
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Summary
• Learning value functions allow us to compute optimal policies.


• Policy Evaluation: find value function for a fixed policy.


• Policy Iteration: compute optimal policy by iterating 1) policy evaluation 
and 2) greedy policy improvement.


• Value Iteration: directly learn optimal value function.


• Dynamic programming methods don’t solve the full RL problem but they 
are the basis for most of the methods we will see in this class.
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Action Items

• Homework 1 released. Due September 29 @ 9:29 am.


• Start reading chapter 5 for next week. First learning methods!


• Be thinking about final project — proposal due in 2 weeks.


• The more concrete your proposal is, the better guidance you will 
receive!


