Advanced Topics in Reinforcement Learning Lecture 4: Dynamic Programming

Announcements

- Homework 1 released on canvas; due Thursday, September 29.
- Start reading **chapter 5** for next week.
- Project page: <u>https://pages.cs.wisc.edu/~jphanna/teaching/</u> 2022fall cs839/project.html

Overview

- The Policy Improvement Theorem
- Policy Iteration
- Value Iteration
- Asynchronous Value Iteration
- Samarth's Presentation

Policy Evaluation (Prediction)

Given a policy, compute its state- or action-value function.

$$v_{k+1}(s) \leftarrow \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) [r + \gamma v_k(s')]$$
$$q_{k+1}(s, a) \leftarrow \sum_{s'} \sum_{r} p(s', r \mid s, a) [r + \gamma \sum_{a'} q_k(s', a')]$$

Policy Improvement (Control)

• We have $v_{\pi}(s)$ for the current policy π . How can we improve π ?

Behave greedily w.r.t.
$$\sum_{s',r} p(s', r \mid s, s', r)$$

- Suggests a simple algorithm. Alternate:
 - Run policy evaluation updates to find v_{π} .

• Set
$$\pi'(s) \leftarrow \arg \max_{a} \sum_{s',r} p(s',r|s,a)$$

• Why does this work?

 $(a)[r + \gamma v_{\pi}(s')]$

 $a)[r + \gamma v_{\pi}(s')]$

Policy Improvement Theorem

- Suppose for π that $\exists s, a$ such that $q_{\pi}(s, a) \geq v_{\pi}(s)$.
- Let $\pi'(s) = a$ and $\pi'(\tilde{s}) = \pi(\tilde{s})$ for all other states.
- What is true about π' ? Why?
 - As good as or better than π , i.e., $v_{\pi'}(s) \ge v_{\pi}(s), \forall s$
 - If $q_{\pi}(s, a) \ge v_{\pi}(s)$ then always taking action a cannot decrease expected return.
- If π is sub-optimal, does there exist s, a such that $q_{\pi}(s, a) > v_{\pi}(s)$?
 - value function.
 - Optimal value function: $v_{\star}(s) = \max q_{\star}(s, a) \forall s$

• Yes, this follows from Bellman Optimality. Must be at least one state where π is not greedy w.r.t. its action-

- First, evaluate π to obtain v_{π} .

- Policy improvement theorem guarantees that $v_{\pi'}(s) \ge v_{\pi}(s) \forall s$.
- Can converge quickly in practice (in terms of policy updates).
- (Fixing the subtle bug on page 80).

Policy Iteration

Then, update π to π' such that $\pi'(s) = \arg \max_{a} \sum_{s',r} p(s', r \mid s, a)[r + v_{\pi}(s')]$

Policy Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

- What's wrong with policy iteration?
 - Policy evaluation must converge between policy updates.
 - We don't need the exact action-values just which action has maximal actionvalue.
- Value iteration combines policy evaluation and iteration in one step: $v_{k+1}(s) \leftarrow \max_{a} \sum_{s' \in \mathcal{S}} p(s', r \mid s, a) [r + \gamma v_k(s')]$
- In-place or out-of-place updates?
 - In-place propagates value updates faster.
 - Out-of-place is more amenable to analysis.

Value Iteration

Value Iteration

Value Iteration

Policy Evaluation

Value Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Asynchronous DP

- Regular DP methods require sweeps over the entire state space periteration!
 - Infeasible if we have a large state-space.
- Actually unnecessary can update states in any order and still converge as long as all states updated infinitely often in the limit.
- Why does this help?

- What is it?

 - converge to v_{\star}, π^{\star} .
- A general framework for all algorithms we will introduce in this class.

Generalized Policy Iteration

• We can be quite permissive in how we mix evaluation and improvement.

• As long as v becomes closer to v_{π} and π becomes greedy w.r.t. v we will

• Do you think this holds when v_{π} must generalize across states? I.e., increasing the value of $v_{\pi}(s)$ will also increase the value of $v_{\pi}(s')$ for s' close to s.

Samarth's Presentation

<u>Slides</u>

Summary

- Learning value functions allow us to compute optimal policies.
- Policy Evaluation: find value function for a fixed policy.
- Policy Iteration: compute optimal policy by iterating 1) policy evaluation and 2) greedy policy improvement.
- Value Iteration: directly learn optimal value function.
- Dynamic programming methods don't solve the full RL problem but they are the basis for most of the methods we will see in this class.

Action Items

- Homework 1 released. Due September 29 @ 9:29 am.
- Start reading chapter 5 for next week. First learning methods!
- Be thinking about final project proposal due in 2 weeks.
 - The more concrete your proposal is, the better guidance you will receive!

